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Executive Summary 
 
In the past... 

• CEH produced three Land Cover Maps (LCM) covering GB, in 1990, and the UK in 2000 
and 2007 

• Developments in remote sensing and geospatial processing techniques have led to 
changes in how the maps were created, especially the spatial structure of the three 
products 

• Developments in the mapping of habitats led to differences in the thematic resolution 
(classes mapped) of the three LCMs 

• One consequence of this is that mapping change accurately with the three LCMs is not 
possible 

Current user requirements.... 

• Accurate UK-wide land cover/broad habitat maps 

• Accurate, reliable assessment of stock and change 

• Condition monitoring 

Aim of this feasibility study... 

• Assess benefits of new methods for classifying satellite data for the operational production 
of the national land cover products 

• Assess the potential for developing change detection methods that are capable of 
accurately mapping change from Landsat-type data for the UK 

• Investigate the potential for a set of biophysical/ecological products to provide additional 
information on within class land cover variability for support of condition monitoring 

Key outcomes.... 

• New very rapid fully automated image classification techniques 

• Use land cover history to train machine learning algorithms 

• Assessed the relative performance of Random Forest, Support Vector Machines, and 
Decision Tree (C4.5) algorithms for land cover classification 

• Random Forest found superior 

• Tested new method for three classifications: 
o Scotland in 2000, Norfolk in 2002 and 2011. 
o The best classification accuracies, based on assessment against CS data were, for 

Scotland in 2000:  65.4 %, for Norfolk in 2002 87.3% and for Norfolk in 2011 80.1%. 
o Classifications are more accurate than those achieved for LCM2007. 

• Assessed importance of multi-date data and ancillary data on classification accuracy. 
Specifically, that: 

o Three-input images will produce better classification accuracy then two-dates. 
o The best timing of input data does not appear to be predictable, although this is 

probably because of variable image quality. 
o The texture and NDVI/NDMI data included in the classifications did not have a 

noticeable effect on the classification accuracy. 
o It is possible to derive accurate classifications from Landsat bands 3, 4 and 5, as 

has been done for LCMs1990 to 2007.  Including Landsat bands 1,2 & 7 slightly 
improves accuracy.  

• Demonstrated that PCA and NDVI-based change detection methods have potential for 
change detection, 71% and 60% accuracy in preliminary change detection assessments 
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Summary... 

The project has achieved its key aims of: 

 Assessing the potential for new classification methods (Random Forest trained with training areas 
harvested from existing LCM data) 

Demonstrating the potential of change detection methods that could be built into the LCM 
production process to produce change detection methods 

Created an initial set of demonstration products for the ecological variables, plus preliminary 
analysis to demonstrate their utility, however their full utility is likely to be for condition monitoring, 
which will require longer times-series of these values 

In the future... 

Next generation LCM products... 

The next LCM will comprise a land cover layer of classified pixels that can be organised into a 
spatial framework of land parcels, giving both pixel and polygon products 

The classification product will include uncertainty/probability information 

Change maps will be generated as land cover time series develop 

Nationwide ecological products, for example based on proxies for vegetation productivity and 
moisture content and impervious surfaces, will help assess the state and condition of broad 
habitats 

The QA/validation... 

Validation data are essential classification and change products.  We anticipate that volunteer 
recording schemes can help with this 

Next steps... 

This project has demonstrated the potential for a new type of LCM, which caters to a wider set of 
needs, however, the methods are still in the early stages and additional work is needed to develop 
a fully operational system 

We anticipate an iterative deployment of functionality, supported by a modular component based 
design. 
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1 Introduction 
 

The optimal management of natural resources requires accurate land cover and habitat information 
across a range of spatial and thematic scales.  This research is concerned with broad-scale 
habitat/land cover mapping from satellites.  It focuses on the use of medium resolution satellite 
data, specifically Landsat-type data.  The availability of Landsat and Landsat-type data for 
operational Earth Observation (EO) products appears secure in the medium-term after the 
successful launch of Landsat 8 in 2013 and the imminent launch of ESA’s Sentinel-2 satellites.  
SPOT, IRS and DMC sensors can provide similar data. 
 
Frequent, widespread observations and change detection at the broad scale have potential to 
inform the targeted deployment of more intensive and costly observation activities, such as those 
developed within the JNCC supported MEOW (Making Earth Observation Work for UK Biodiversity 
Conservation, http://jncc.defra.gov.uk/page-5563) projects.  But the latest UK land cover map 
represents land cover nearly a decade ago, too old to support an integrated approach, and the 
interval between CEH UK land cover maps has typically been seven to ten years.  The reason for 
this has been the complexity and cost of national land cover map production.  Moreover, each map 
has taken several years to complete after the satellite images have become available, so even at 
the time of release information was already becoming stale.  To fully realise its potential land cover 
information needs to be more up-to-date and more frequent.  Lessons from the production of CEH 
land cover maps and from this research project have enabled us to develop techniques that will 
dramatically reduce production time and costs, simultaneous with increases in classification 
accuracy. 

Due to advances in knowledge, technology, satellite-processing techniques and geographical 
information science the production methods for each land cover map have changed.  The first CEH 
land cover map, LCM1990 (Fuller et al 1994) is a pixel product.  LCM1990 preceded Biodiversity 
Action Plan (BAP) broad habitats so land cover is described with 25 bespoke classes.  LCM2000 
(Fuller et al 2005)  is a polygon product and used Object Based Image Analysis techniques (OBIA) 
to classify land parcels derived from image segmentation.  LCM2007 used similar OBIA techniques 
but land parcels were derived from digital cartography.  LCM2000 and LCM2007 have similar, but 
not identical schemas based on BAP broad habitats.  These methodological, spatial and thematic 
differences between CEH land cover maps make change detection difficult.  Consistency of 
derivation is essential for accurate change detection. 

A principal objective of this research is therefore to develop a consistent approach to land cover 
mapping to enable monitoring through time.  Land cover dynamics occur across a range of 
temporal scales, some slow and occurring over decades; to detect these a land cover monitoring 
system must have longevity.  For longevity careful design is essential. We present a modular 
component based design that will give the flexibility to respond to method changes and advances 
in technology.  Moreover, a modular design supports sequential roll-out of functionality, so that 
partial benefits of the system can be realised before full functionality has been implemented.  
Higher levels of automation and improved functionality can be deployed as they are developed. 

Spatial and thematic consistency support temporal comparisons.  We propose a fixed spatial 
framework based on generalised OS MasterMap as a starting point for land cover monitoring.  
Having a fixed spatial structure will enable individual parcels of land to be tracked through time 
allowing spatially explicit change detection.  For some kinds of analysis different types of spatial 
framework might be useful.  A hybrid pixel-object classification technique has been developed that 
can support object based summaries using a variety of spatial frameworks.  Should an improved 
national framework become available in the future it will straightforward to issue new versions of 
parcel based land cover products.   

 

http://jncc.defra.gov.uk/page-5563
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LCM1990 used a thematic structure designed for satellite surveillance, whereas LCM2000 and 
LCM2007 used Biodiversity Action Plan (BAP) broad habitats.  BAP broad habitats were designed 
for ground based surveillance and are not well suited for satellite derived inventories.  This 
compromised accuracy and therefore the ability to detect change.  Going forward it is necessary to 
use inventories optimised for satellite surveillance.   

The three existing CEH land cover maps have been based on maximum likelihood classification.  
However, maximum likelihood classification restricts the kinds of data that can be used in 
automated techniques.  Here we explore non-parametric classification algorithms.  We found them 
easier to use, less restrictive and they gave superior results. 

Categorical descriptions of land have limitations and a better appreciation of land cover/habit 
condition and dynamics can be learned from continuous properties of the land surface.  We 
therefore explore a range of optically derived biophysical variables and change detection 
techniques to complement land cover and change descriptions from classification analyses. 

2 Classification 
 
In this section we explore the effect of classification algorithms and information layers upon 
classification accuracy.  Spatial and thematic structure are also important for classification 
accuracy and change detection and we deal with these in sections 5 and 6. 

 
The three CEH land cover maps were each produced using a Maximum Likelihood Classifier 
(MLC) to classify pixels in 1990 and land parcels in 2000 and 2007.  For pixel classification a MLC 
requires that pixels representing each land cover type have a unimodal, approximately normal 
distribution.  In reality however a land cover type within a satellite scene can have a range of 
spectral variants (multimodal distribution).  This is especially so for arable land cover; the variation 
coming from crops at different stages of development and the wide variety of crop types.  To 
properly train a MLC and minimise interclass confusion each variant has to be explicitly identified.  
The same restriction holds for MLC object-based techniques that use the average spectra of land 
parcels (Fuller et al 2005; Morton et al 2011), but there is an added complication: each land parcel 
must accurately delineate a single land cover type.  Land parcels that fail in this will contain multi-
modal pixel distributions, the mean of which will not represent any of the known spectral variants 
leading to classification error.  These requirements of MLCs make them more difficult to train than 
non-parametric classifiers, which do not require the explicit identification of spectral variants.   
Another restriction of parametric techniques is that they do not support analysis of categorical 
layers.   In this section we therefore compare the performance of a range of non-parametric 
classifiers.  We do not perform maximum likelihood classifications as they are incompatible with 
our automatically generated training data (see section 2.4). 

Object based image analysis (OBIA) is often considered more accurate, preferable to, and 
technically more advanced, than pixel-based analysis and LCM2007 was produced using OBIA.  
The conventional approach of OBIA is to compute the mean spectra for a land parcel and use this 
to determine its most likely land cover type.  One argument for this is that there are far fewer land-
parcel objects than pixels, so it is computationally more efficient.  But with modern computing 
power this argument is not compelling and the need to compute per-parcel statistics is an 
overhead not required when classifying pixels.  Another argument is that mixed pixels and pixel 
irregularities from sensor malfunction and atmospheric anomalies cause local misclassifications 
and a ‘salt-and-pepper effect’ in pixel products, which techniques based on average land parcel 
spectra overcome.  This is true, but filtering techniques are able to clean up many of these 
irregularities within pixel products and it is straightforward to use a spatial framework of land 
parcels to summarise classified pixels into polygon products (section 5) which will also produce a 

cleaner looking product.  Importantly, pixel classifications retain textural information that is lost 
when classifying the average spectra of a land parcel; for example in habitat mosaics with high 
spectral heterogeneity over small areas.  For multi-class land cover mapping we therefore consider 
pixel classification preferable to conventional OBIA, and the software we have developed in this 
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project classifies pixels.  Pixel classifications can easily be summarised by objects (section 5) to 
give a corresponding land parcel product. 

The Department of Computer Science at the University of Waikato, New Zealand, have developed 
a powerful suite of open-source machine learning algorithms, written in Java and packaged 
together into a software workbench called Weka (Wakaito Environment for Knowledge Analysis, 
see Hall et al 2009).  The Weka workbench was not designed for classifying satellite images, but 
provides a well-documented Application Programmers Interface (API) to the classification 
functionality.  The API enables developers to readily incorporate Weka’s machine learning 
algorithms into new software. 

PostgreSQL is an open source object-relational database system.  It has won numerous awards 
and industry recognition.  It is powerful, stable and free.  PostGIS is an open source spatial 
extension to PostgreSQL, providing tools for storing and manipulating raster and vector data.  
Software was developed to integrate Weka (Version 3.7.10) machine learning algorithms with 
PostGIS’s (Version 2.2dev) spatial data processing functionality.  Using this software images were 
imported into a PostgreSQL (Version 9.2) database and classified.  

2.2 Hardware 

All classifications were performed on a 32 bit Linux (Ubuntu 12.04.04 LTS) virtual machine, with 
4GB of RAM and two virtual CPUs, assigned to Intel Xeon x5660 (2.8 GHz) physical CPUs. 

2.3 Classification algorithms 

To determine the best classification tools for future land cover mapping we assess the 
performance in terms of accuracy, processing time and usability of three popular non-parametric 
classification algorithms.   

2.3.1 Support Vector Machines 

Support vector machines (SVMs) partition training data into linearly separable sets.   A plane in  
2-space or hyperplane in higher dimensions, is constructed in such a way that it maximises the 
margin between the two sets; the hyperplanes at the boundaries of the separable sets are the 
support vectors (Figure 2.1).   Points on opposite sides of a support vector belong to different class 
types.  In many problems the boundaries between separable sets are non-linear and a hyperplane 
cannot perform a useful dissection.  A method called the ‘kernel trick’ can be applied to transform 
the feature space such that the sets become linearly separable.  A variety of kernel tricks have 
been invented.  Getting the best possible classification depends on choosing optimal parameters 
for the SVM, choosing the best kernel and best parameters for this.  With multi-parameter models it 
is easy to image an explosion of possible parameter combinations in order to find the optimal 
configuration.  In this exercise we used Weka’s default parameters and with a polynomial kernel. 
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Figure 2.1  Visual Interpretation of a support-vector machine. 

2.3.2 J48 
 
Weka provides an implementation of the C4.5 machine learning algorithm (Quinlin 1993) called 
J48.  The J48 algorithm generates a decision tree by recursively splitting the data into subsets.  At 
each node of the tree the algorithm splits the samples by choosing the attribute that maximises 
information gain (entropy reduction).  With single tree classifiers there is a risk of model overfitting.  
Overfitting occurs when a model has been so tightly matched to the training set that it describes 
the random noise instead of the underlying relationship.  A model that has overfit will have poor 
predictive performance as it will exaggerate minor fluctuations in the data.  When a tree has been 
fully constructed nodes are re-examined according to information gain and those that offer little 
improvement are removed, pruned.  Pruning reduces overfit and improves predictive performance. 
The J48 algorithm is easy to use, requiring just two parameters a pruning parameter and a 
parameter specifying the minimum number of instances per leaf.   We used Weka’s default values. 

2.3.3 Random Forest 

The Random Forest (RF) method was developed by Leo Breiman (Breiman 2002).  The standard 
Weka implementation of RF does not implement all the features of the original Breiman algorithm.  
In particular we were interested in variable importance measures and their potential for assessing 
the relative importance of information layers.  A re-implementation of the RF classifier for Weka, 
FastRandomForest (http://code.google.com/p/fast-random-forest/w) was therefore used.  In tests 
the FastRandomForest algorithm gave equivalent accuracy to the standard algorithm, in addition to 
variable importance measures and significant speed and memory improvements. 

The RF classifier represents a ‘forest’ of decision trees and works on the principle that the 
collective prediction of an ensemble of weak predictors is strong.  Trees are grown by recursively 
splitting the training data using a random selection of the predictor variables; each split maximises 
information gain.  Trees may be fully grown or limited by pre-defined criteria, such as maximum 
tree depth.  We used fully grown trees.  Each tree then votes on the unknown observations and the 
cumulative vote for each determines its classification outcome.  Random Forests, are 
straightforward to use; we simply specified the number of trees to use and a seed for pseudo-
random number generation.  Initial investigations ranging from 10 to 100 random trees did not yield 
significantly increasing classification accuracies.  We therefore used a forest of 10 
trees.  Overfitting is not usually a problem with RF. 

http://code.google.com/p/fast-random-forest/w
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2.4 Land cover history for classifier training 

Obtaining data for training and validating a classifier is usually the most expensive component of 
satellite image analysis.  The normal practice is to gather field-based observations of land cover 
across the satellite scene, with sufficient samples to provide replicates of each spectral variant.  In 
the production of LCM1990, LCM2000 and LCM2007 teams of surveyors were deployed UK-wide 
to gather field data.  For LCM2007 to maximise spatial coverage, data were recorded from a 
moving vehicle using bespoke software on a GPS enabled tablet, so most points were collected 
adjacent to the road network.  Our objective in this research is towards frequent cost-effective land 
cover refresh.   To gather similar field-based observations for this would require a team of 
surveyors on standby ready to be to be deployed as soon as good satellite images become 
available.  Cost and logistics would make this unfeasible.  We have therefore developed a 
technique that uses patterns from historical land cover maps to classify satellite images that does 
not require field visits.  We maintain that field observations are still essential for the validation of 
land cover products and we are investigating the potential of volunteer networks and ‘citizen 
science’ to provide cost efficiencies for this.   

Land cover dynamics are frequently slow, with many sites stable over many years.  If it is known 
which sites are unlikely to have changed significantly, these sites have potential for training and 
validation, and methods using stable sites have been used successfully by NASA (see Friedl et al 
2010) to produce a 1km global land cover product from MODIS data.  An advantage of using stable 
sites is that the same sites can be used for multiple classifications, which can simplify temporal 
analyses. 

To detect stable sites we re-organised the three CEH land cover maps into a single spatial 
framework derived from generalised OS MasterMap (a pre-cursor to the final framework of 
LCM2007, see section 5) and a common thematic structure (see section 6).  The process involved 
intersecting the spatial framework with each original map, computing the area of each land cover 
type within each land parcel of the framework and assigning the per-parcel land cover to the 
dominant cover.  This produced three new land cover maps, with identical spatial and thematic 
structures.  We make the assumption that sites that have retained the same land cover class 
across all three maps are stable over the whole period and represent suitable training sites.  For 
some sites this assumption will be incorrect, but so long as it holds in the majority of cases it is 
safe.  To increase the purity of data we restricted our selection of stable sites to those that have 
greater than 95% dominant cover. This process provides 313,980 training sites for the whole of 
GB.  In the production LCM2007 the nation-wide field campaign provided less than 20,000 useable 
training and validation sites. 

Having re-organised historical maps (a one-off task) the training data for classifying a satellite 
scene can be computed in minutes.  The first step uses the raster extent to select an appropriate 
subset of national training sites.  All pixels within these training sites are then selected.  For 
example, for the Norfolk 2011 scene this produced 31587 training sites and 2,190,945 pixels.  
Associated with each pixel is a set of band values, one for each layer (see section 2.2) and a land 
cover type.  We could feed all this pixel data to a classifier, but this is not necessary.  From the full 
collection we sampled with replacement to gather 10,000 samples per land cover type.  Sampling 
reduces the size of the training set without compromising classification accuracy.  Moreover, for 
tree-based classification techniques (RF and J48) an uneven distribution of training points will bias 
classification results towards the dominant type; sampling to produce equal-sized sets removes 
this bias.  Pixel data gathered in this way were compiled into Weka’s Attribute-Relation File Format 
(ARFF).  The ARFF files can then be used for any of the Weka classification algorithms. 

2.5 Satellite Images and Layer Stacks 

Multiple images within a year have the potential to improve classification results because of the 
seasonal information they contain. We obtained satellite data over Norfolk and Scotland for this 
research (Figure 2.3).  The two sites are strongly contrasting.   The Norfolk site is relatively flat, 
mainly agricultural and situated in the least cloudy part of the UK. Conversely, the Scotland site is 
dominated by semi-natural upland vegetation types, with snow-free, cloud-free data being more 
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limited.  For Norfolk in 2002 and 2011 Landsat images representing months 4, 6 and 9 were used.  
For Scotland in 2000 Landsat images from months 3 and 5 were used.  Suitable images later in the 
2000 growing season were unavailable due to cloud, so we used an image from month 7 of the 
previous summer (Table 2.1).  From these image sets, after cloud masking and pre-processing,  
3-date satellite composites were created for each location-year. 
 
 
 

 
 

Figure 2.2.  The distribution of training sites from (a) land cover history, and (b) the LCM2007 field 
campaign. 

 

 
Figure 2.3.  Location of Scotland and Norfolk study regions. 
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Table 2.1 Landsat satellite data for the Norfolk and Scotland study areas. a denotes Landsat ETM image, 
other images are Landsat TM 

 Date 1 Date 2 Date 3 

Norfolk 2002 6th  April 2002 17th June 2002 24th September 2002 
Norfolk 2011 23rd April 2011 26th June 2011 30th September 2011 
Scotland 2000 18th March 2000a 5th May 2000a 29th July 1999 

 
Good quality optical images are essential for accurate vegetation/land cover mapping but other 
data layers are also helpful.  In the production of existing CEH land cover maps an initial 
classification using optical reflectance was followed by the application of knowledgebase 
enhancement rules, derived from ancillary data layers (for example, urban context, topography, soil 
type and coastal proximity), to reassign land cover and improve accuracy (Morton et al 2011).  This 
approach is not consistently repeatable, as rules were heuristic and subjective.  An alternative 
approach, which we investigate here, is to pass all the data layers into a classification algorithm 
and allow this to systematically determine the relationship between layers and land cover.   

Exactly which layers will be useful for improving a classification is not obvious in advance.  Adding 
layers increases the complexity of the classification model as well as increasing computation time.  
Inappropriate layers can degrade results.  There is therefore a balance to be made.  To determine 
the optimal application of layers we compiled a 61 layer stack for each of the three scenes 
(Appendix 1, Table 10.1).  The layers include: 

• Layers 1 to 18: The optical bands of the satellite data for date 1, date 2 and date 3 (where 
dates 1-3 are given in Table 2.1) 

• Layer 19 to 21: The thermal band of the Landsat data for dates 1-3. The Landsat thermal 
band is usually excluded from land cover classification because its spatial resolution is 
coarse at 60m, compared to 30m for the optical bands, and it requires a different pre-
processing chain.   As a consequence utility is rarely assessed. 

• Layers 22 to 27: The NDVI and the NDMI for each image 

• Texture layers 28 to 39: Texture layers attempt to capture the spatial variability of the 
different land cover types. Texture has been found useful in some classification studies. In 
this project we quantified the spatial variability of the NDVI and the NDSWIR in two ways. 
First, using a 5x5 pixel window around the individual pixel, this produces a product that 
varies from pixel to pixel. Second, by quantifying the spectral variability of the NDVI and 
NDSWIR at the polygon-level taking into account existing knowledge of the landscape 
structure. This produces a per-polygon product, where the texture value is constant across 
the polygon. 

• Layers 40 to 41: Layers 40 and 41 are altitudes from the NEXTMap Digital Terrain Model 
(DTM) and Digital Surface Model (DSM).  Altitude is frequently important in separating land 
cover types that are similar spectrally.  

• Layer 42 is the difference between layers 40 and 41.  A DTM represents the land surface 
without any objects on it such as buildings or vegetation, whilst a DSM indicates the highest 
points in the terrain including the objects on it.  The difference between a DSM and DTM 
can therefore be indicative of trees or buildings. 

• Layer 43:  The slope.  Slope has obvious potential for land cover discrimination.  For 
example wetland land cover types, such as lakes and fenland are unlikely on steep terrain.   

• Layer 44: Aspect.  In hilly areas aspect will affect illumination making certain land cover 
types more or less likely. 

• Layers 45 to 54:  These layers were derived with the generalised OS MasterMap spatial 
framework.  DTM, DSM and Diff means and standard deviation values represent per-parcel 
summaries of layers 40 to 42.  DTM, DSM and Diff ranges represent the differences 
between maxima and minimum values within parcels.  These give a variety of parcel-level 
texture measures with potential to influence land cover. 

• Layer 55: NEXTMap Orthorectified Radar Image (ORI).  This national coverage gives an 
indication of surface texture/roughness, which could be useful for discriminating flat 
surfaces, such as lakes and grassland from rougher surfaces such as woodland or crops. 
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• OS Layers 56 to 61: OS OpenData products.  We created pixel masks from 6 OS 
VectorMap district polygon layers representing: Buildings; Foreshore; Land; Surface water; 
Tidal water; and Woodland.  Each of these layers has the potential to resolve certain types 
of spectral confusion. 

The number of potential layer combinations is huge and it would not be feasible to explore all of 
these.  Therefore, to assess the relative importance of layers we constructed a set of questions 
and treatments, based upon our experience of land cover classification and expectations of 
potential layer importance, to address these (Table 2.2).  The questions are: 

• How important is multi-date data? Relevant treatments: 1-8 

• How important is thermal data? Relevant treatments: 9 

• How important are spectral indices? Relevant treatments: 10-11 

• How important is per-pixel texture? Relevant treatments: 12-13 

• How important is per-object texture? Relevant treatments: 14-16 

• How important is topographic products? Relevant treatments: 7-24 

• How important is Nextmap ORI layer? Relevant treatments: 25 

• How important are OS layers? Relevant treatments: 26 

• How important are all the layers together? All treatments 27 

• How important are key layers? Relevant treatments: 28-29 

Analyses are based on the RF classifier.  We did not find the variable importance measures that 
come from the RF classifier straightforward to analyse in a rigorous and systematic way.  We 
therefore restricted analyses to statistical comparisons of replicate classifications. 
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Table 2.2 Classification treatments for the Norfolk 2002, Norfolk 2011 and Scotland 2000 data sets. 
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1 y                                     

2   y                                   

3     y                                 

4 y y                                   

5 y   y                                 

6   y y                                 

7 y y y                                 

8 y y y                                 

9 y y y y                               

10 y y y   y                             

11 y y y     y                           

12 y y y       y                         

13 y y y         y                       

14 y y y           y                     

15 y y y             y                   

16 y y y       y y y y                   

17 y y y               y                 

18 y y y               y y               

19 y y y               y   y             

20 y y y               y     y           

21 y y y               y       y         

22 y y y               y         y       

23 y y y               y           y     

24 y y y               y y y y y y y     

25 y y y                             y   

26 y y y                               y 

27 y y y y y y y y y y y y y y y y y y y 

28 y y y y             y             y y 

29 y y y y             y              y y 

 
RF classifiers are not deterministic with respect to training data.  A different random seed will 
produce a different RF and therefore a slightly different classification result from a single set of 
training data.  To compare layer combinations we must ensure that differences between treatments 
are not simply due to random variation.  For each treatment we therefore performed five 
classifications, each with a different seed for random number generation. 

A systematic, objective way to evaluate classification results is required.  Ideally, a set of field 
observations spatially and temporally coincident with the satellite scenes should be used for 



Developing and Evaluating an Earth Observation-enabled ecological land cover time series system 

 

10 

‘ground truth’, but these data do not exist.  One approach is to use cross-validation.  Cross-
validation uses a proportion of the training data to train a classifier to classify the remainder.  This 
process is repeated until all the data have been classified.  Each iteration is called a fold.  For each 
layer treatment we performed a ten-fold cross-validation.  In each fold 9/10 of the data are used for 
training to classify the remaining 1/10.  The end result is a confusion matrix, in which the 
classification results are compared with the ‘known’ values.   

Cross validation gives an approximate indication of how well a classifier is likely to perform beyond 
the training data and its relative performance between classes.  However, there is a circularity 
about using the training data to rate a classifier built with the training data; it is much better to use 
an independent set of observations.   We therefore used data from Countryside Surveys (CS, 
Norton et al 2012) as an independent source.  The process works by taking all CS squares that 
interact with the study region (Figure 2.4) and counting the classified pixels that intersect with each 
CS land parcel.  A land cover value is then assigned to each parcel using the modal pixel class 
(Figure 2.5a)  CS land parcels classified in this way were then compared to the land cover type 
recorded by field surveyors in the nearest year (Figure 2.5b) and for each CS square a confusion 
matrix was computed.  From the collection of confusion matrices the areal correspondence over all 
squares was computed to produce a single value for each classified scene.  CS-correspondence 
and Cross-validation correspondence results from replicate classifications were analysed using a 
TukeyHSD comparison of means.  

 
Figure 2.4.  The set of CS survey squares intersecting with the Norfolk 2002 scene. 
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Figure 2.5.  (a) Per-parcel land cover derived from a classified image.  (b) Habitat records from CS field 
campaign.  Parcels without colour in (a) are too narrow or small to contain a whole pixel.  Parcels without 
colour in (b) are where field data are missing or represent land cover that cannot be matched with satellite 
derived classes.  All uncoloured parcels are excluded from correspondence analyses. 
 

2.6 Results 

2.6.1 Algorithm Evaluation 
 

Classification accuracy.  For the SVM, J48 and RF algorithms we computed the average 
correspondence with CS squares for a single run of each classification algorithm (Table 2.3).  The 
tests were conducted for the Norfolk 2002 layer stack. The results indicate that RF has the highest 
rank and this is significantly higher than the other two; SVM ranked slightly higher than J48 but the 
difference is not significant (Table 2.4).   
 
Table 2.3  Mean percentage correspondence and rank of classification results for each treatment with 
Countryside Survey field observations. 

Treatment 
ID RF J48 SVM RF rank J48 rank 

SVM 
rank 

1 72.09097 67.68231 63.95766 1 2 3 

2 72.87601 72.35757 55.77853 1 2 3 

3 76.73125 75.09029 68.85107 1 2 3 

4 79.80521 77.89559 78.58771 1 3 2 

5 78.05555 78.89301 79.13586 3 2 1 

6 82.18285 74.58851 71.07742 1 2 3 
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7 83.7061 74.46869 80.89661 1 3 2 

8 83.0734 76.94972 76.48627 1 2 3 

9 83.1276 75.84969 81.15123 1 3 2 

10 84.79736 82.57491 80.51399 1 2 3 

11 79.71321 75.94411 80.014 2 3 1 

12 85.25967 79.16977 81.23956 1 3 2 

13 86.42037 79.21057 81.4281 1 3 2 

14 82.84282 80.80916 78.72239 1 2 3 

15 85.24002 77.25651 82.07179 1 3 2 

16 85.04587 79.43135 82.29008 1 3 2 

17 85.70384 80.16262 76.98416 1 2 3 

18 83.46109 80.68527 77.3301 1 2 3 

19 83.99434 82.29147 78.79991 1 2 3 

20 82.01249 72.98567 77.06096 1 3 2 

21 82.15109 76.50478 78.13984 1 3 2 

22 84.16027 75.42004 81.4856 1 3 2 

23 86.29138 82.07938 77.00738 1 2 3 

24 78.435 73.09494 83.2749 1 3 2 

25 83.048 83.90489 80.70014 2 1 3 

26 86.23977 83.20657 81.09893 1 2 3 

27 83.32948 81.54363 86.55301 2 3 1 

28 86.01791 81.4712 82.73845 1 3 2 

29 87.34534 82.77277 85.15947 1 3 2 

Average Rank 1.172414 2.482759 2.344828 

 
The best classification from the SVM was comparable with the best from RF and for reasons we do 
not yet understand is visually more appealing as it displays a reduced ‘salt-and-pepper’ effect 
(Figure 2.6a and b).  The salt-and-pepper effect is most pronounced in classifications from the J48 
algorithm (Figure 2.6c).  

Table 2.4 Probability of equivalent algorithm performance from Wilcoxon Signed-Rank Test. 

 RF J48 SVM 

RF = 8.08E-06 7.83E-05 

J48 8.08E-06 = 0.5213 

SVM 7.83E-05 0.5213 = 

 
Computation efficiency.  We did not rigorously test the computational performance of each 
algorithm as for each speed was good and unlikely to cause a processing bottleneck in a dedicated 
system, so we just describe relative performance.  We consider two components of a classification: 
the time taken to train and build a classification model; and the time to apply the model to classify a 
satellite scene.  For model construction the rank order was RF, J48, then SVM.  For classification 
speed all algorithms were approximately equal.  The time taken to build the model and classify a 
satellite scene depends on layers processed.   With all layers present the largest region (Scotland 
2000) would require approximately half of an hour of processing time. 

The classification process works on raster objects within the Postgresql, Postgis-enabled 
database.   Postgis models rasters as a collection of independent tiles; each tile is represented as 
a row in a relational table.  This structure is ideal for parallel processing techniques as each tile/row 
can be processed independently and within a multi-processor architecture computation time will be 
directly proportional to the number of processing nodes. It is conceivable in a parallel processing 
environment that computation component of satellite classification can be reduced to seconds. 
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Usability.  All the algorithms were straightforward to use, with RF being the simplest and the SVM 
the most complex because of its parameter range.  Had we experimented with SVM 
parameterisation and kernel tricks it may have been possible to achieve superior classifications, 
perhaps matching or exceeding those from RF, but this complicates use and would only be 
acceptable in a production system if parameterisation could be automated.  However, given the 
promising and clean results of the best SVM, SVMs should not be discarded from future 
considerations.  The J48 algorithm has been tested against MLC and found superior (Sharma et al 
2013) but it is the weakest of the classification tools in this feasibility study. 
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Figure 2.6.  Samples from the best (a) RF, (b) SVM and (c) J48 classifications for Norfolk 2002. 
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2.6.2 Layer analysis 
 

Appendix 2,  
Table 11.1 to  
Table 11.3 give the TukeyHSD comparisons of means from the average overall CS 
correspondence across all CS squares based on RF classifications.  The null hypothesis is that the 
means are the same.  For the purpose of treatment comparison we accept probability values of 0.2 
or less sufficient to reject the null hypotheses.  This gives a 1 in 5 chance of a statistical type-1 
error, but since our goal is to spot general patterns and develop understanding we consider this 
risk acceptable.  Similar tables from the cross-validation were computed but were less informative 
as almost all means were significantly different from one another, so these results are not included.  
To help with the assessment we ranked each treatment for each site to compute the mean rank 
across all sites (Table 2.5). 
 

Table 2.5  Provides a text description of the treatment/treatment number, and correspondence (given as a 
rank) between the RF classification and the 2000 or 2007 CS data 
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Single-date - date 1 1 29 28 27 28 

Single-date - date 2 2 28 29 28 28 

Single-date - date 3 3 27 27 29 28 

2-date - dates 1 & 2 4 26 2 24 17 

2-date - dates 1 & 3 5 25 23 11 20 

2-date - dates 2 &3 6 23 25 26 25 

3-date 7 14 18 19 17 

3-date (bands3,4,5 only) 8 18 16 15 16 

3-date + thermal bands 9 14 16 18 16 

3-date + NDVI 10 17 19 13 16 

3-date + NDMI 11 20 12 10 14 

3-date + texture (pixel NDVI) 12 5 15 16 12 

3-date + texture (pixel NDMI) 13 4 20 21 15 

3-date + texture (object NDVI) 14 9 22 14 15 

3-date + texture (object NDMI) 15 10 25 22 19 

3-date +  all texture 16 5 23 25 18 

3-date + DTM 17 7 9 17 11 

3-date + DTM + DSM +Diff 18 13 7 12 11 

3-date + DTM, slope, aspect 19 8 11 9 9 

3-date + DTM + DTM variability 20 19 13 2 11 

3-date + DTM + DSM variability 21 22 14 5 14 

3-date + DTM + Diff variability 22 12 10 23 15 

3-date + DTM + topographic  
    wetness index 

23 14 7 7 9 

3-date + DTM +4 alt 24 24 20 8 17 

3-date + ORI backscatter 25 20 5 20 15 

3-date + OS layers 26 3 4 6 4 

All 61 layers 27 11 6 3 7 

3-date (bands 3,4, & 5 only) , thermal,  
      DTM, ORI, OS 

28 2 3 1 2 
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3-date , thermal, DTM,  ORI, OS 29 1 1 4 2 

 
How important is multi-date data? Relevant treatments: 1-8 

The worst performing classifications result from the single-date classifications. Adding a second-
date improves the accuracy and adding a third date improves further.  Multiple dates clearly 
improve classification results. 

How important is thermal data? Relevant treatments: 9 

The three date optical classification (treatment 7) ranked 17.  Adding thermal (treatment 9) ranked 
16 so thermal data alone does not substantially improve optical classifications, but its effects need 
to be assessed for key classes. 

How important are spectral indices? Treatments 10 and 11 

Spectral indices treatments 10 and 11 gave ranks of 16 and 16 respectively.  This is a very slight 
improvement over rank 17 for treatment 7 but pairwise comparisons were not significant.  Spectral 
indices did not significantly improve classification accuracy. 

How important is texture? Relevant treatments: 12-16 

Adding texture gives ranks 12, 15, 15, 19, 18 for treatments 12-16 respectively.  That three of 
these are ranked more highly than the 3-date (treatment 7) rank of 17 could imply that texture 
slightly improves classification results.  However, cross-referencing treatment 7 against treatments 
12-16 from the TukeyHSD comparisons of means (Appendix 2,  
Table 11.1 to  
Table 11.3) indicates that no effects of texture are significant for any of the sites. 

How important are topographic products? Relevant treatments: 17-24 

The ranks for treatments 17 to 24 are 11, 11, 9, 11, 14, 15, 9 & 17 respectively.  Contrasting with 
treatment 7, rank 17 all but one of these ranks are superior.  This implies that topography is 
important for classification.  However, from the pair-wise significance tests (Appendix 2,  
Table 11.1)  for the Norfolk sites (Appendix 2,  
Table 11.1 and 12.2)   treatments 17 to 24 were not significantly different from treatment 7, except 
for treatment 24 for Norfolk 2002 and the effect was negative (reduced correspondence).  For 
Scotland (Appendix 2, Table 12.3) two treatments had highly significant and positive effects 
(treatments 20 & 21) and treatment 23 had a significant positive effect.  This more pronounced 
effect in Scotland is not suprising as altitudinal gradients are known to affect vegetation 
communities and the Scotland site has more variable topography. 

How important is Nextmap ORI layer? Relevant treatments: 25 

The rank for 3-dates of optical images plus the ORI layer (treatment 25) was 15, just slightly better 
than 3-dates alone (treatment 7) result, with rank 17.  However, for the pair-wise tests none of the 
effects were significant (Appendix 2,  
Table 11.1 to 11.3). 

How important are OS layers? Relevant treatment: 26 

Adding the OS layers increases the average classification rank from 17 (treatment 7) to 4.  This 
prominent difference implies a strong effect of the OS layers on accuracy.  However, from the pair-
wise (Appendix 2,  
Table 11.1 to  
Table 11.3) only Norfolk 2002 shows a statistically significant effect of adding OS layers. 

How important are all the layers together?  Relevant treatment: 27 
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One might expect that putting all the layers together, therefore providing the maximum amount of 
information to the RF algorithm would give the best results.  Certainly ‘going all in’ did produce a 
strong classification result with an average rank of 7, but it is not the best.  We suspect that 
information redundancy complicates tree construction, with reduced gain at each node, and 
consequently weakens classification results.  To try and understand this result we made subjective 
comparisons through visual inspection of different classifications to determine which layers 
appeared to be import.  This intuitive approach led to two extra treatments (28 and 29). 

How important are key layers? Relevant treatments: 28-29 

A simple comparison of correspondence values hides subtleties of layer combinations and their 
effects, so treatments 28 and 29 were determined from a visual assessment of different 
classification treatments.  Treatment 29 includes all Landsat optical bands for the 3-date 
composites, the Landsat Thermal band for each date, altitude from the DTM, the Nextmap ORI 
radar backscatter layer and the 6 OS layers; treatment 28 was the same except for the optical data 
where just 3 bands were included for each date: Landsat bands 3, 4 & 5 representing red, near 
infrared (NIR) and short-wave infrared (SWIR) respectively.  We expected treatments 28 and 29 to 
perform well and they did, each scoring an average rank of 2 across all sites; the TukeyHSD tests 
show that these treatments were on the whole significantly superior to all others.  For both Norfolk 
studies treatment 29 produced the best results, whilst for Scotland treatment 28 was best.  
Previous CEH land cover maps have analysed just the Red, NIR and SWIR optical bands.  The 
results here suggest that a small gain in accuracy might be possible by including fuller spectra. 

The band combinations in treatments 28 and 29 performed better than one might expect from 
examining the individual effects of layers when combined with 3-date composite images.  It is likely 
therefore that layer interactions increase resolving power and interaction effects might be greater 
than the additive effects.  A class-by-class correspondence analysis is required to reveal the 
intricacies of layers and their effects on individual land cover classes.  This is a recommended 
avenue for further research. 

2.6.3 Comparison against LCM2007 
 
Table 2.6 gives the correspondence between LCM2007 and CS 2007 and the best 
correspondence value from the RF layer analysis for each site.  By this measure the new RF 
techniques produced better correspondence results in two of three cases.  This is a very significant 
result considering that the new techniques are fully automated with classifications computed in 
minutes, whereas the techniques used for LCM2007 would require approximately two to four 
weeks of manual effort per region, plus field visits to gather training and validation data. 
 
Table 2.6  Correspondence of LCM2007 with CS2007 for each of the study sites and the best average 
correspondence results from the Random Forest layer analyses. 

 LCM2007 Best RF result 

Scotland 2000 62.64 65.4 

Norfolk 2002 82.66 87.3  

Norfolk 2011 80.86 80.1 

2.6.4 Product uncertainty 
 
Land cover classification gives the most probable land cover class using the information available.  
To determine the most probable class requires that the probability of alternative classes is 
computed too. Therefore for each class it is possible to produce a raster probability surface 
(Figure 2.7).  Combining these probabilities can provide a measure of overall classification 
uncertainty.  A simple approach is to subtract the highest probability at a given pixel location from 
1.  This will give the high values of uncertainty where probabilities are low (Figure 2.8).  How one 
should use probability surfaces and uncertainty information will depend on the type of analysis.  
For example, when assessing land cover change from one class to another, to minimise false 
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results it might be sensible to restrict analyses to regions where confidence for the given land 
cover is high.   

 

Figure 2.7  Probability surfaces of Norfolk 2002 for (a) Deciduous Woodland, (b) Coniferous Woodland and 
(c) Arable Land.  Bright areas are where probability is high. (d) Gives the most likely land cover class. 

 

 

Figure 2.8  Uncertainty of classification around Thetford Forest.  Darker areas in left image represent higher 
uncertainty. 

 
Probability surfaces and uncertainty products also have potential for refining schema and 
improving classifications (See section 6).  For example, in Figure 2.8 to the North East of Thetford 

Forest is an expansive area of relatively high uncertainty.  This is Breckland, an unusual natural 
habitat on sandy soils which is typically covered by grass, gorse and heather and occasional Scots 
pine.  The consistently high uncertainty in this region suggests we need another class to represent 
this land cover type.   

2.7 Discussion 

The production of LCM2007 used 34 twin-date composite images, covering 91% of the UK and 39 
single date images for the remainder.  A MLC was used and typically the classification of a pre-
processed satellite scene took two to four weeks, with much of this effort focusing on the 
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identification of the full range of spectral variants of each land cover type within the scene (this 
level of information is essential for accurate MLC results).  This required significant operator input, 
with careful sorting of training data gathered from the field and the selection of extra training data 
from sources such as Google Earth and aerial photography when the field data were inadequate.  
Taking a conservative estimate of two weeks of elapsed time per scene it is easy to realise that, 
having a fully pre-processed set of satellite images, well over a year of classification effort is 
required to produce a national product with MLC techniques.  The new highly automated training 
and classification processes dramatically reduce time and effort; classification of a satellite scene 
can now be completed in minutes. The key developments that have enabled this are the use of 
machine learning algorithms, which place less restrictions on the organisation of the training data 
and the use of land cover history, as opposed to expensive field campaigns, for classifier training.  
Using land cover history for training does, however, restrict analyses to the historical schema and if 
these do not match new information requirements then extra training data will be necessary.  This 
point is important.  When implementing an operational satellite-based land cover monitoring 
solution it will be necessary to derive land-cover categories that optimise the information potential 
of multi-temporal satellite images and provide sufficient detail to support current and as yet 
undefined future information requirements.  The land cover categories that we have mapped in this 
project are related to BAP broad habitats as these are the categories of the historical maps.  We 
do not consider BAP broad habitats as optimal information categories for broad scale land cover 
mapping from satellites and we return to this point in section 6. 

All the software developed for this project has been based on open source technologies.  Open 
source can provide cost savings.  But equally as important, through providing access to source 
code and a vast availability of online support through discussion forums, open source software 
brings customisation and integration possibilities that cannot be easily achieved with closed 
solution commercial offerings.  This enhances the capacity to adapt to future requirements. 

We employed a hybrid classification approach, we classify pixels and summarise these using a 
spatial framework to produce classified land parcels.  Pixel and parcel classifications give 
complementary information, so the hybrid approach brings the best of both.  Classifying pixels also 
gives the opportunity to summarise classifications using a variety of spatial frameworks (see 
section 5). 

Conventional parametric statistical techniques such as MLC have been used successfully for many 
decades to analyse remotely sensed data.  However, they are more difficult to train than non-
parametric techniques and are unable to include categorical data layers.  More recently attention 
has therefore turned towards non-parametric techniques.  Of the non-parametric classification 
algorithms tested here RF was clearly superior.  It consistently outperformed the others for 
accuracy and was the easiest to use.  Other studies have evaluated RF against a range tree-like 
classifiers that use boosting and bagging techniques (see Gislason et al 2006).  RF was amongst 
the best for classification accuracy and was consistently faster and easier to use than the 
alternatives.  Based on our studies and those elsewhere the RF classifier seems like the best 
candidate for use in an operational land cover monitoring system. 

In this study we found the RF’s variable importance difficult to interpret; their rank changed in a 
counterintuitive way when layer stacks were augmented or reduced.  We therefore preferred to 
interpret variable importance by their statistical effects on overall correspondence with Countryside 
Survey field observations.  However, Gislason et al (2006) and Archre & Kimes (2008) have found 
variable importance measures from RF give insight into the predictive qualities of information 
layers.  More research on the use of RF variable importance and their relevance to classification 
strategies is therefore required.  

Increasing the number of images per growing season significantly increased the classification 
accuracy.  This was expected.  More images give extra seasonal information, which helps separate 
vegetation surfaces with different phenologies.   
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Biophysical indices derived from land surface reflectance did not significantly improve classification 
accuracy.  With hindsight this is not surprising.  Biophysical indices are a function of existing optical 
data channels, so including them within a classifier does not provide extra information. 

When humans visually analyse a satellite scene there is simultaneous consideration of context and 
textural information across a range of spatial scales and this process helps understanding.  
Texture and context are clearly important.  Our attempts to quantify texture in treatments 12 to 16 
aimed to capture some of this.  That this failed to improve classification accuracy is not 
discouraging; other regional-texture summaries may prove useful. 

The combination of radar backscatter (from the ORI layer) with optical reflectance slightly raised 
the accuracy rank but not significantly.  However, through visual inspection of classified images 
radar backscatter appeared to improve the resolution of some classes.  In particular water and 
forest looked better for its inclusion.  It is worth pointing out that the ORI layer is over a decade old 
and at each location it represents just a single point in time.  The first of ESA’s Sentinel-1 satellites 
has recently achieved its operational orbit.  Sentinel-1 will produce a similar type of data, although 
with coarser spatial resolution, but with the advantage of up to 60 revisits per annum.  Our 
classification procedures can readily incorporate radar layers and the potential to include 
hypertemporal radar images has exciting implications for land cover research. 

Similar to radar, the inclusion of thermal layers with optical layers slightly improved rank but 
differences in mean correspondence were not significant.  Again visual inspection showed 
beneficial effects for some classes: water bodies and bare surfaces.  In fact, it was visual 
interpretation on a class-by-class basis that led to treatments 28 and 29, which were consistently 
better than all others.  These observations indicate that comparisons based on overall 
correspondence with CS are too blunt to reveal the intricate effect of data layers. Class by class 
analyses to determine optimal layer combinations are therefore a goal for the future.  Detailed field 
observations will be required to support this. 

The OS derived data layers and the elevation (DSM) both significantly improved classification 
accuracy.  Both of these effects were expected.  The effect of elevation was more pronounced for 
Scotland, which is expected given the increased topographic variability.  

It is easy to image how the use of additional layers could improve the classification accuracy of 
some classes.  But, disregarding the extra computational complexity, it is unwise to add ancillary 
layers without caution.  Spatial data are complex.  Product accuracy is often not well documented 
or understood and this uncertainty will propagate into derived products.  Spatial resolutions of 
layers will differ and data integration will degrade spatial accuracy towards the least resolved.  We 
highlight problems of this kind with an example.  In the production of LCM2000 semi-natural 
grasslands were separated into Acid, Neutral and Calcareous grassland using a 1km pixel 
resolution soil acid-sensitivity map.  Basic soils are relatively insensitive to acidic deposition; they 
retain a high pH through neutralisation and are therefore more likely to support calcareous 
grassland.  Conversely, acid sensitive soils are likely to support acid grassland.  The acid 
sensitivity map was the best readily available data for grassland resolution at the time.  Over the 
interval between LCM2000 and LCM2007 more descriptive and more spatially detailed soil 
products became available. We believe these data improved classification accuracy in LCM2007 
over LCM2000 but this point is moot with regard to change detection.  As ancillary data improves 
so too will the accuracy of derived land cover, but temporal comparisons will reflect this evolution 
of ancillary data as well as real life changes on the ground.  Disentangling these to determine 
where change has really occurred is very difficult and differences of this kind are part of the reason 
that existing CEH land cover products are not well suited for change detection.  To avoid this kind 
of complication in the future ancillary layers should be restricted to those with stable and very well-
known geographies.  This will allow them to remain unchanged over many successive 
classifications, which will simplify change detection.  However, over the long-term it is inevitable 
that methods and ancillary data will improve and too much inflexibility would become a constraint.  
We therefore need to develop methods for data versioning and careful storage of satellite data.  
Should superior ancillary data or classification techniques become available these provisions 
would enable reclassification across all points in time and in doing so preserve the temporal 
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consistency of derivation necessary for change analyses.  With the highly automated techniques 
reclassifications across time will be feasible. 

Our classification procedures produce a pixel probability surface for each land cover type within the 
schema.  Patterns of probability within a classification might have many uses.  For example, if the 
distribution of probabilities within a region change significantly over an interval of time this may be 
indicative of changes in habitat condition or change due to succession.  Patterns of probability give 
uncertainty indicators.  Being able to quantify and interpret uncertainty will support the 
development of strategies to reduce it and thereby increase classification accuracy.  The use of 
probability surfaces is an area for more research. 

3 Ecological products 
 
We define ecological products as biophysical indices that can be readily derived from Landsat-type 
satellite data.  The thesis is these indices provide useful ecological information to complement 
class based descriptions of land cover and classified objects.  They are expected to be of particular 
use in semi-natural areas and for differentiating grassland into higher and lower productivity types.   
For example, in the uplands where vegetation cover is heterogeneous simple class based 
descriptions are limiting and the extra information from biophysical indices could be indicative of 
habitat condition or productivity. The indices are also expected to have a role to play in the future in 
monitoring habitat condition. 
 

3.1 Method 

Three biophysical indices were assessed: 

NDVI –The Normalized Difference Vegetation Index is a simple indicator of the amount of green 

vegetation.  It is calculated as follows 

NDVI = (NIR – RED) / (NIR + RED).   

Red corresponds to Landsat band 3; NIR corresponds to Landsat band 4. 

NDMI – The Normalized difference moisture index relates to moisture content.  It is calculated as: 

NDMI = (NIR-SWIR) / (NIR + SWIR) 

Where SWIR corresponds to Landsat band 5. 

Tasselled cap – The tasselled cap spectral transformation approach transforms the original 6 
optical bands of satellite data into a new set of bands, which are intended to more closely reflect 
the brightness, greenness and wetness characteristics of the land surface.  
 
Three types of analysis are presented, the first, is a visual analysis of an upland polygon to 
demonstrate the level of heterogeneity often present within objects in object-based classifications 
and to illustrate how this variability is captured by the biophysical indices.  This analysis is then 
extended to a wider area, using the LCS88 data, to demonstrate the habitat-specific variability of 
the NDMI and the NDVI. Finally, a quantitative analysis of the relationship between the satellite-
derived indices and productivity measures produced from CS2007, to gauge the potential of 
calibrating the satellite data to CS2007 style measurements.  
 
The NDVI, NDMI and tasselled cap transforms were computed for the 2002 and 2011 Norfolk 
Landsat images, the 2000 Scotland images and also for seven AWiFS images used in the 
production of LCM2007.  
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3.2 Visual analysis 

 

Figure 3.1  An annotated Landsat-TM False Colour composite (bands 5,4,3 as RGB) of a Heather polygon 
in the LCS88 classification and equivalent NDMI image for May 2000. 

 
Visual analysis of many upland polygons reveals a high degree of heterogeneity which is poorly 
reflected by a single land cover type attached to a polygon. The example shown (Figure 3.1) is a 
section of a Heather Moorland polygon from the LCS88 data set, as the two images show there is 
a variation in the density of heather coverage, a fire scar and a small water body. The NDMI is also 
shown, the water body shows up as a bright object, whilst the burnt area shows as a very dark 
area, whilst the heather shows up as a mid-grey colour. 
 

3.3 NDVI-NDMI variability for selected upland habitats 
 
To examine the ability of the NDVI and NDMI to provide information about different habitats the 
mean polygon NDVI and NDMI were extracted for the LCS88 polygons covered by the Scotland 
images (Figure 3.2).  Positive relationships between the NDVI and NDMI occur for conifers, 
improved grassland and Bracken, suggesting that increasing water content is associated with 
increasing vegetation greenness for these land cover types. A negative relationship occurs for 
montane, whilst the other upland classes show a boomerang-shaped relationship, with high NDMI 
at low NDVI values and higher productivity at lower NDMI values. The negative relationship 
between NDMI and NDVI, suggests that in some cases there is a constraint on vegetation 
productivity.   This might be due to anoxic conditions typical of wet, boggy sites which prevent the 
decomposition of dead organic matter.  That the relationship between NDVI and NDMI is not 
always a simple linear one indicates that both indices contain separate and complimentary 
information. 
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Figure 3.2  Relationship between NDVI (vegetation greenness) and NDMI (vegetation moisture content) for 
different habitats, based on LCS88 habitat mapping and Landsat-derived NDVI and NDMI for 2000. 

 

3.4 NDVI and CS2007 ANPP estimates 

If satellite derived indices are shown to strongly correlate with ground based measures of 
ecological importance then they may be used as a proxy where ground measurements are 
unavailable.  In CS2007 over 4000 (14.4m x14.4m, 200m2) vegetation plots were sampled 
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(Maskell et al 2008). Relationship between Estimates of percentage cover for all species with over 
5% cover was recorded. These measurements enabled estimates of above ground net primary 
productivity (ANPP) to be produced. To compare the satellite-derived NDVI with the vegetation plot 
derived ANPP the individual pixels containing the vegetation plots centre were extracted.  
Figure 3.3 shows the relationship between the 3-date NDVI (sum of the April, June and September 
NDVI) for both 2002 and 2011 with ANPP. The ANPP estimates are for the three Aggregate 
Vegetation Classes (AVC) that cover grassland, specifically the ‘Tall grassland/herb’, ‘Fertile 
grassland’ and ‘Infertile grassland’ classes.  In this example there is a clear, positive linear 
relationship suggesting that NDVI could be used to estimate ANPP. 

 
Figure 3.3 Relationship between the 3-data NDVI for 2002 and 2011 for Norfolk and the CS2007 estimates 
of ANPP, for the three grassland Aggregate Vegetation Classes (AVC). 

 
The quality of relationships between the satellite derived indices and the field measurements will 
be affected by: 

• The time lag between the satellite data and the field measurements  

• Problems accurately geo-locating the plots and the satellite data, especially as relatively 
large differences in biophysical indices are often found in adjacent pixels.  

• Spatial differences between the vegetation plot scale (14.14m x 14.14m) and the satellite 
data scale (30m x 30m). The vegetations plots were not designed to calibrate satellite data 
and would have covered larger areas if that had been their intent.  

A quantitative analysis of biophysical variables (Appendix 3) shows, whilst the relationships 
between the satellite-derived values and the ANPP are sometimes very good, on other occasions 
the relationships are much poorer.  However, there is a five year difference between the satellite 
data and the field measurements, so concurrent values might produce more consistently good 
relationships. The current results would not justify routinely converting the NDVI to ANPP, using 
the CS data, however, concurrent satellite data might. The uncertainty in calculating the ANPP 
could be part of any derived product. 

3.5 Discussion 

The input data used to create the NDVI, NDMI and TC values are part of the standard processing 
stream within LCM, so an additional stage of calculating the indices would require little additional 
effort. The indices could be presented in several ways: 
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• For a typical LCM-style composite image, comprised of three bands of summer data and 
three bands of winter data, then two per-pixel products for the summer and winter images 
of the respective index could be created. These values would be consistent within the 
bounds of a particular image, but not necessarily across adjacent scenes if images came 
from different dates. For analysis of small areas, within a single image, such as a set of 
upland polygons or an area like the Norfolk broads, then this would be acceptable. . For 
larger-scale applications a more consistent approach might be needed. 

 

• Estimation of ANPP – the CS data and the equations derived from it (section 3.4) would 
enable conversion of the index values to ANPP for grassland areas. One of the limitations 
with this is that the accuracy of the relationships is affected by a number of factors, 
including the number of grassland ANPP estimates within the image, the timing of the 
image, the quality of the image. However, it should be possible to statistically quantify the 
uncertainty of the data. 

 

• NDVI classes – classify the continuous NDVI values into a series of grassland NDVI 
classes, along the lines of: 

• Class 1: Very low NDVI grassland 
• Class 2: Low NDVI grassland 
• Class 3: Medium grassland 
• Class 4: High NDVI grassland 
• Class 5: Very high NDVI grassland 

The NDVI classes would make use of the CS ANPP data set to maintain consistency of the 
classes across boundaries. 

• The correlation between adjacent images, when the time lag between them is small, could 
be used to calibrate one image to the other. 

External activities may also have important impacts on how we would produce these products. The 
most significant development is the current revolution in how large-scale Landsat data is being 
processed with the production of large-scale, seamless products. A global data set of percentage 
forest cover has been produced (Hansen et al 2013) from large-scale mosaics of seamless 
Landsat data (Hansen et al 2014) – effectively lots of Landsat data is stitched together and 
methods are being developed for minimising the phenological differences between adjacent 
Landsat scenes.  The current products rely heavily on Landsat-7, which was damaged in 2003 
resulting in significant data loss within the image, because of this current set of products are not 
suitable for this purpose.  However, future products based on Landsat-8 or Sentinel-2 could be.  
 

4 Change detection 
 

Most existing change detection methods focus on identifying change in specific habitats, for 
example, forestry.  In such cases the change is often very specific, such as a sharp drop in NDVI, 
and because it follows a standard pattern it becomes relatively easy to design a reliable detection 
method. Change detection methods suitable for general land cover mapping purposes need to be 
more general and incorporate fewer assumptions about the direction and magnitude of change; 
this is more difficult to achieve reliably and accurately. 

 
Three main methods of change detection were investigated: 

• Post-classification – post-classification is the change between two classifications and will 
provide baseline accuracy against which to assess the success of the other two methods.  

• Image to Image (also known as image differencing).  

• Classification to Image. 
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4.1 Methods 

4.1.1 Image-to-image change detection 
 

Image-image change detection looks at the difference in spectral properties between two images 
at different points in time. Typically, differences are calculated between spectral index/transform 
values, rather than the image digital index, radiance or reflectance values. The method works best 
with ‘anniversary’ images e.g. April 2002 and April 2011, as this reduces phenological differences 
between images, which can be a major confounding factor in this type of analysis.  
A number of spectral transforms were assessed to determine their suitability for change detection, 
including: 

- Tasselled cap transform – the Tasselled cap (TC) transform was applied to the April 2011 
and April 2002 images. The difference between the different components was then 
calculated, which resulted in six difference images, with band 1 showing the difference in 
brightness between the two-dates, band 2 showing the difference in greenness and band 3 
the difference in wetness. 

- Principal Components Analysis (PCA) - Principal Components Analysis (PCA) of a 12-
band image based on 6 bands of Landsat-TM from April 2002 and 6-bands from April 
2011. In the resultant 12-band PCA image, bands 4,5,6 were found to correspond  most 
strongly to change, with bands 1-3 dominated by image brightness and greenness. A 
composite PCA index was derived from PCA bands 4, 5 and 6, as it is simpler to optimise 
a threshold on a single image rather than three.  

- Cumulative NDVI – for both 2002 and 2011 images for April, June and September were 
available. The sum of the NDVI for the three 2002 NDVI images was calculated, as was 
the NDVI sum for 2011, this cumulative NDVI was then used to calculate the difference 
between 2011 and 2002.  

4.1.2 Classification-to-image change detection 
 

Classification-image change detection is a novel technique which takes a classification and a 
satellite image as inputs. The method uses a land cover classification to provide the land cover 
status at time t1, whilst a remote sensing image provides data on land cover at t2. Knowledge of the 
location of a particular class (from the classification) is used to extract class-specific spectral 
properties (from the satellite image). The change between land cover is assessed by calculating 
spectral distance between the core class spectral properties (the blue area in Figure 4.1) and the 
pixels corresponding to that class. Pixels that have not changed are expected to show standard 
spectral properties for their class and will fall in the blue area of Figure 4.1. Pixels that have 
changed are likely to show different spectral properties and will fall outside the core area and will 
be flagged as anomalous. The method assumes that spectral outliers indicate change. The method 
is applied on a class-by-class basis, following the stages outlined in Figure 4.2. 
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Figure 4.1 Illustration of the class-specific spectral values for class 1 (blue area) based on two spectral 
bands and a single outlier (change pixel). 

 

 

Figure 4.2 Schematic of key elements of the classification-image change detection method. 

 
The classification-image method was applied to a Landsat TM image from May 2000, with the 
classification data from Land Cover Scotland 1988 (LCS88), giving a 14-year period for change to 
occur (visual results are presented for this). The method was also to determine change between 
2002 and 2011, using the satellite data from 2002 for Norfolk in comparison to the best 
classification from the RF algorithm for 2011 (quantitative results are presented for this). 

4.1.3 Classification-to-classification change detection 
 
Classification-to-classification change (sometimes called post-classification change) identifies 
change by using the difference between two classifications.  The two best classifications for the 
Norfolk site for 2002 and 2011 were used. 
 

4.2 Results 

To assess the quality of the results they are assessed according to a visual (sections 4.2.1 and 
4.2.2) and a quantitative assessment (4.2.3).  For the quantitative assessment, the raster products 
from the PCA-based method and the NDVI-based method were converted to polygons (hereafter 
change polygons), filtered to remove clusters of < 4 pixels in size and then masked to remove 
anything classified as Arable in 2011 (using a mask derived from the 2011 classification). From this 
remaining set of change polygons, 30 were randomly selected and then assessed to determine 
whether they represented real change.  To aid this assessment the change polygons were 
exported to Google Earth allowing the use of the time-series of aerial photography contained 

Classification Image 
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Calculate 
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therein.  This, in conjunction, with assessment of the satellite data from 2002 and 2011 enabled 
judgements to be made in most cases about whether significant change had occurred, although 
there were a number of change polygons where this was not clear.  The full results from this 
analysis are in Appendix 4.  Key results are reported in this chapter.  A similar method was applied 
for the post-classification change detection, with land parcels classified as arable in 2011 removed 
to maintain consistency with the other validation data sets.  It was not necessary to remove change 
polygons of < 4 pixels, as the spatial structure of the classification products prevents polygons 
smaller than this.  Thirty random change polygons were then selected and assessed in the same 
manner as the raster-based products. 

4.2.1 Image-to-image change detection 
 
Figure 4.3 shows the 2002 and 2011 images, with annotated changes corresponding to: 

 
1. Deforestation 
2. Standing water in 2002 
3. Great Yarmouth out Harbour (constructed 2007) 
4. More prominent water channels 
 

 
Figure 4.3 Landsat-TM False Colour Composite of Norfolk for April 2002 and 2011 illustrating both 
permanent and temporary changes. 

 

The largest changes were due to changes in crop type, so these were removed using a mask of 
areas classified as arable in LCM2000 and LCM2007. However, visual analysis of some of the 
areas of greatest spectral change (brightest colour), showed that some arable fields were still 
visible in Figure 4.4. A composite PCA index was derived from PCA bands 4, 5 and 6 (Figure 4.5). 
The PCA images (Figure 4.4, Figure 4.5) clearly shows the four annotated changes identified in 
Figure 4.3, in addition to other changes, such as changes around one of the river channels. The 
alterations to the river channels are a series of new water bodies adjacent to the main river 
channels and were created between 2003 and 2006. 

Visual assessment of the PCA images for the whole of the Norfolk area, showed that: 

• Tidal state and the Nene/Ouse washes show high spectral change due to temporary rather 
than permanent change.  This highlights one of the issues with image-image analysis, as 
short-term changes may cause high spectral variability between the two images, but do not 
necessarily represent long-term change.  This suggests that class-specific methods may be 
needed to aid interpretation of the spectral variability. 
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• The sensitivity to changes varied between the three pairs of images.  Visually the April 
image appeared to be most sensitive to change, so this was used for the quantitative 
analysis. 

Visual assessment of the NDVI difference images and the tasselled-cap change images suggested 
that they were, like the PCA images, dominated by the high variability of arable spectral changes.  
Masking out the Arable areas enabled the change in other habitats to be assessed.  

Figure 4.6 shows the three image differencing results for an area of Saltmarsh that is being 
restored on the North Norfolk coast.  The PCA composite image picks up the change as a bright 
patch, whilst the tasselled-cap brightness for April picks it up as a reduced brightness; the NDVI 
picks up the new channel, but appears less sensitive to the vegetation changes of the northern 

patch, than the other two methods.  The post-classification change polygons are also shown; they 
also pick up the change.  The tasselled-cap brightness and greenness components (Figure 4.7) 

pick up the Saltmarsh, but the wetness component is less sensitive. 
 

 

Figure 4.4. Principal Components Analysis image (bands 4,5,6 as RGB respectively) derived from a 12-band 
multi-temporal image comprised of the April 2002 and 2011 images. 
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Figure 4.5 Principal component analysis composite index.  Brightness represents change magnitude. 
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Figure 4.6 comparison of different techniques for the detection of Saltmarsh change near Blakeney, Norfolk 
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Figure 4.7 Tasselled cap change for the brightness (TC1), greenness (TC2) and wetness (TC3) 
components. 
 

4.2.2 Classification-to-image change detection 
 

Figure 4.8 shows the May 2000 image and the associated spectral distance based on the extent of 
the heather class in 1988 and the spectral values in 2000.  Non-heather land cover in 1988 is 
masked from the spectral distance images, so the remaining high spectral distance pixels (white in 
Figure 4.8) show high spectral distance from the core heather signature and are likely to represent 
change.  Figure 4.9 shows similar results for conifer; the highlighted changes all represent stands 
harvested, between 1988 and 2000.  
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Figure 4.8 Examples of land cover change for the Scottish test site between 1988 and 2000 a) heather to 
improved grassland conversion; b) area 1: conversion from heather moorland to young conifer plantation; 
areas 2 & 3: areas of heather burning or heather clearance. 

 

 
Figure 4.9  Examples of conifer harvesting for the Scottish test site between 1988 and 2000. 

4.2.3 Quantitative assessment of the change detection methods 

 
The April PCA, the cumulative NDVI change and the spectral distance method, all thresholded at 2 
standard deviations (SD), produce the best results (Table 4.1).  Assessing 30 change polygons 
was very useful for understanding the differences between the methods and the type of area they 
detect. However, there are order of magnitude differences in the area of change mapped across 
Norfolk by the different methods (Table 4.1), so further analysis is needed to explore the spatial 
distribution of changes, the types of change mapped best by the different methods and 
assessment against a standard change data set to assess the degree of omission. The validation 
presented here assesses the accuracy of the changes that are identified, but does not provide any 
information on the rate (and type) of changes that are undetected.  This information is key for 
developing these methods further. 
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Table 4.1: Summary results for each of the methods for 30 randomly selected change polygons. 1Modified to 
exclude the unidentified changes. Unidentified changes are those where it was not possible to identify with 
certainty whether a change had occurred and unallocated are those cases where it was unclear whether the 
magnitude of the change was significant enough to count as a change. 

Method Number of 
real 

changes 
(from 30) 

Unidentified/ 
unallocated 

changes 

% accuracy 
(based on 

assessment 
of 30 

polygons)1 

Total area of 
change 

polygons 
(km2) 

Number 
of 

change  
polygon

s 
 

identifie
d 

NDVI  1 SD 4 3 15% 365 7964 
NDVI  2 SD 18 0 60% 65 1275 
April PCA  1 SD 9 2 32% 184 2690 
April PCA  2 SD 20 2 71% 62 1273 
Post-classification 5 2 18% 483 27057 
Spectral distance  2 
SD 

18 1 62% 23 1473 

 

 
Figure 4.10 Distribution of NDVI 2 SD (yellow change polygons) and PCA 2 SD (red change polygons), after 
masking out Arable and off-shore changes. 

 

4.2.4 In Summary 

Cumulative NDVI with 1 SD threshold – overall, this method performed poorly and most of the 
polygons identified (23/30) had not changed. 

Cumulative NDVI with 2 SD threshold – typically detects small change polygons that include a 
mix of land cover types, e.g. boundary between two fields, or a mix of water and grass. The 
method is very good at identifying patches of land that are bare soil/cleared land in one image and 
vegetation in the other. This is because it is sensitivity to sharp increases or decreases in NDVI. 
For example, it detects the removal of scrub at Holt Lowes to maintain the heathland habitat.  
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PCA  1 SD threshold – the PCA analysis is more sensitive to changes in enclosed water bodies 
than the NDVI analysis. These changes are likely to be temporary, although in one case the PCA 
detects a new lake in 2002, which had ‘matured’ by 2011. 

PCA  2 SD threshold – the main errors were due to issues with the arable (five polygons) and 
coastal masking (one polygon), excluding these polygons this technique gives 20 good changes 
out of 24 change polygons.  

Spectral distance  2 SD – The two key sources of error in the spectral distance change mapping, 
appear to be error in the classification, which propagates through into a false change detection 
(five cases) and a potential over-sensitivity to urban change (four cases of urban redevelopment 
were detected), plus two false detections for urban change. This suggests that the threshold for 
urban change needs to be increased to reduce the number of false and marginal changes and 
presumably reflects the high spectral variability of urban environments. More detailed analysis is 
required to determine whether 2 standard deviations from the mean is a sensible threshold for the 
other land cover types.   

In general, four pixels was selected as the smallest change polygon-size for the raster-based 
change detection, although this may be too small, as small, narrow features are sensitive to small 
spatial errors and the change signature may not be strong enough. 

Classification-classification 

Two main types of change polygons were detected: 

• narrow features - a pixel in width (possible less with the 30m pixel resolution data used in 
this project). Typically tree breaks, often with influence or arable, or roads, where the tree 
cover had become slightly denser, but without undergoing any significant change. 

• mixed use polygons - typically including a mix of several land cover parcels, including 
roads/building, woodland and grassland. In these cases there is often no dominant land 
cover and even by eye it would be difficult to assign a dominant land cover.  

The change polygons causing problems can be identified, as they are primarily: 

• multi-modal classes 

• small polygons, where a single pixel change can switch the modal class  
 

The fact that we can identify change, suggests that we should be able to develop methods to 
improve the accuracy of this method, either by applying additional filtering to remove these 
polygons or by developing more sophisticated techniques to deal with them. 
 

4.3 Discussion 
The bands of the multi-temporal PCA that corresponded most to change were found to be bands 4, 
5 and 6, although this may be scene-dependent.  PCA is a statistical technique for optimising the 
orientation of the different components, how they are optimised is data (or image) dependent, so 
change may be captured by different bands of the PCA, depending on how widely change affects 
the scene.  Application of this method to other sets of images is required to assess whether this is 
an issue in practice. 

There are a number of outstanding issues, including: 

• Assessment of the rate of omission – this is difficult as suitable data does not readily 
exist. However, a wide range of changes have been identified and validated, during the 
assessment of the different change methods, so from these, plus other changes noted 
during the course of this project, it should be possible to construct a data set of over 100 
areas of change covering a wide range of changes.  Applying this to the different change 
products will provide valuable information about the respective strengths and weaknesses 
of the different methods. 
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• Data availability - The image-image change methods used anniversary images i.e. the 
same month, but for different years.  Is it realistic to require anniversary images for an 
operational method for the UK? 

• Combining methods - How do we combine the methods to get the best final data product?  
The work so far suggests that there is potential in the various methods assessed.  
However, the work to-date has examined the methods individually and it seems likely that 
using some combination of the methods, to provide corroboration may provide the required 
accuracy and reliability.  It seems likely that the final method will use elements of both the 
classification and spectral change processes to create a hybrid method that captures the 
best of both approaches.  The classification-image method begins to develop this 
approach, whether it can be useful supplemented by the spectral-change methods should 
be assessed. 

• Spatial scale - What is the smallest area that we can detect change for?  Is it the same for 
the different method? How much does it vary between the best case treatment?  This 
assessment needs to be made, as it will be a function of the area and shape of the objects 
as well as the spectral contrast between the change area and the surrounding area. 
However, we should be able to develop guidelines and a better understanding of this area.  
Certainly, the preliminary results suggest that 4 pixels in a vertical or horizontal line are too 
small to be reliably detected, as this type of linear feature is too prone to problems with 
georeferencing errors and mixed pixels.  Any final change product will have a minimum 
mappable unit (MMU) and a minimum feature width (MFW).  The LCM products already 
have these properties; however, we have to consider whether the MMU and MFW of the 
change detection products will be the same or different; they may need to be slightly 
coarser to maintain the high accuracy that most users will require. 

 

5 Spatial Framework 
 
We define a spatial framework as a set of land parcels for organising and summarising land cover 
information derived from satellite images.  An appropriate structure for a spatial framework will 
depend on many factors, with pixel size of key importance. If land parcels within a framework are 
small relative to pixel size they will offer little opportunity to summarise information; for example if 
land parcels smaller than a pixel are permitted it will take several land parcels to describe a single 
pixel.  Ideally a spatial framework should consist of land parcels some multiple of pixel size.  
LCM2000 and LCM2007 used average spectra per land parcel and maximum likelihood 
classification techniques.   For optimal classification performance each land parcel was required to 
contain at least five (preferably more) pixels.  LCM2000 and LCM2007 therefore had a minimum 
mappable unit of 0.5ha and a minimum feature width of 25m.  LCM2000 had a spatial framework of 
image segments, whilst LCM2007 had a spatial framework derived from digital cartography 
integrated with image segments.   

Segmentation boundaries are a function of surface reflectance and therefore time. Segmentations 
at different times from a single region will produce a different set of land parcels due to seasonal 
variations in reflectance and illumination effects.  Successive maps produced from image 
segmentation will therefore be spatially inconsistent, which will complicate change detection.   
Ideally we want a fixed spatial framework that can be used repetitively to summarise classifications 
of the same region at different dates.  This will enable the state of individual parcels of land to be 
tracked through time and will greatly simplify the problem of change detection.  Digital cartography 
represents real-world, surveyed boundaries delineating land parcels, such as fields, lakes, 
woodlands, urban areas and so forth.  These boundaries do change but generally at slow rate 
compared to the land cover they contain.  Many of the field boundaries in the UK are aged, coming 
from or predating the enclosure acts from the 12th to 19th centuries.  A spatial framework based on 
digital cartography will therefore be stable relative to land cover change, enabling units of land to 
be tracked through time. 

The spatial framework constructed for LCM2007 was optimised for optical satellite data of 10-30m 
pixel resolution.  It was constructed from OS MasterMap, OSNI large-scale vector and land parcels 
from agricultural censuses.   This digital cartography is very detailed compared to 20m pixels so 
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land parcels were generalised by merging and splitting (Smith et al 2007; Figure 5.1).  The 
average-spectra, object-based classification techniques of LCM2007 required an extra step: land 
parcels were subdivided using image segments to delineate multi-modal pixel distributions within 
large land parcels.  Multimodal pixel distributions within a land parcel can occur for many reasons.  
For example, habitat mosaics in upland and semi-natural enclosures; multiple crops grown within a 
single field; partial ploughing at the time of image capture; uneven stages of development within a 
crop due to the effects of shading or uneven fertilizer application and so forth. 

Classifying pixels instead of objects relaxes the requirements of a spatial framework, as the 
success of classification is independent of parcel structure.  We propose therefore that the 
LCM2007 spatial framework (pre-integration of segments) is the best available spatial framework 
for summarising pixel 10-30m pixel land cover.  It was designed for pixels of this size and its 
derivation from digital cartography gives spatiotemporal stability, which supports change detection. 
 
 

Figure 5.2(a) shows a pixel classification and Figure 5.2 (b) this same classification organised into 
the LCM2007 spatial framework with land cover assigned to the modal pixel class.  The 
generalising effect of the parcel structure is easily seen by comparing Figure 5.2 (a) and (b).  For 
example, in the South West corner there appears to be more woodland in the pixel map.  This is 
because the parcel framework displays the modal class, so cannot visually match the detail 
provided by pixels.  Woodland edges that occur on field boundaries that are narrower than the 
MFW and copses within fields smaller than the MMU will not be shown in the parcel map; only the 
dominant land cover for the parcel is shown.  However, by classifying pixels and summarising by 
parcel we can still retain some of this detail within the parcel product.  For example, the land parcel 
highlighted in Figure 5.3 is dominantly heather, but the frequency distribution of pixels tells us that 
around 30% of the land parcel is covered by grassland.  Analysis of textural information of this kind 
is useful.  It can be indicative of within class changes that might be related to condition, 
succession, disturbance or other change drivers and act as a stimulus for more detailed studies. 
Some analyses will require different kinds of spatial summary.  For example catchment analyses 
may require summaries of the whole catchment rather than more detailed per-parcel summaries.  It 
is conceivable that at some point in the future an improved, more up-to-date version of a parcel 
spatial framework will be required.  But pixel classifications, because they are detached from a 
parcel structure, give us the ability to cope with all these changes. Therefore using the LCM2007 
spatial framework now does not constrain us from this point forward.  We can easily use a new 
improved framework when and if one becomes available. 
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Figure 5.1.  OS MasterMap before and after generalisation. 
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Figure 5.2.  A pixel classification (a) organised according to a generalised OS MasterMap spatial framework 
(b) 
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Figure 5.3.  Pixel classification and corresponding parcel-based summary. The histogram shows the 
distribution of land cover within the highlighted (arrow) land parcel. 
 

6 Thematic considerations 
Thematic descriptions of land cover changed substantially between LCM1990 and LCM2000 and 
to a lesser extent between LCM2000 and LCM2007.  These different ways of describing and 
therefore quantifying land have made change detection very difficult.  For change detection 
thematic consistency is essential. We must therefore converge upon an optimal set of land cover 
descriptions and stay with them into the foreseeable future. 
 
There are multiple existing schemas for describing land cover and habitats (UK BAP habitats; 
EUNIS habitats; General Habitat Categories; the FAO LCCS; and CORINE to name just a few) so 
deciding how to describe land is not straightforward.  Most existing schemas have been designed 
for ground based observations or visual image interpretation and the BAP broad habitats used for 
LCM2000 and LCM2007 fall into the former category.  Some BAP broad habitats are characterised 
by species composition, but species identification is not a realistic goal for most remote sensing 
techniques and certainly not from 20m pixels. In the production of LCM2007 we were therefore 
unable to achieve the desired level of accuracy for some BAP broad habitats. LCM1990 used a 
schema designed for satellite-based surveillance techniques and it is likely that future UK land 
covers schemas will be closer to this than BAP inventories. 
 
Land cover descriptions optimised for satellite derived inventories are required.  In addition 
habitat/land cover descriptions should support multiple reporting requirements at regional, national 
and international level.  We expect descriptions based on plant life-forms (Raunkiær, 1934) such 



Developing and Evaluating an Earth Observation-enabled ecological land cover time series system 

 

41 

as General Habitat Categories and the FAO Land Cover Classification System 
(http://www.fao.org/docrep/003/x0596e/x0596e00.HTM; Di Gregorio & Jansen, 2005; Kosmidou et 
al 2014) will be useful.  Raunkiær life-forms classify vegetation according to morphology, 
biophysical, and phenological traits, which should correlate well with optical and structural remote 
sensing techniques. They are also recognised as a robust means for defining the essential 
character of habitats throughout the world and so have potential to harmonise classification 
systems.  The European Environment Agency, EAGLE (EIONET Action Group on Land Monitoring 
in Europe) working group is developing an INSPIRE compliant hierarchal data model to unify land 
cover and land use descriptions for use in a European land monitoring framework.  If this project 
gains traction the relationship of future nomenclatures with the EAGLE data model should be 
assessed to facilitate semantic translation and maximise reporting potential. 
In the present study, because gathering training data relied on historical land cover inventories 
(see section 2.4) we used land cover descriptions related to these.  To detect stable land parcels it 
was necessary to find a mapping to unite LCM1990, LCM2000 and LCM2007 land cover 
descriptions and observations.  There are not one-to-one mappings between the separate 
schemas used in these maps so it was necessary to generalise and produce a simpler set 
(Table 6.1 gives these descriptions and their relationship to LCM2007 classes; LCM2007 classes 
are given in Table 6.2). 
 
Table 6.1  Simplified class descriptions derived from LCM2007. 

Land Cover Description Related LCM2007 classes 
(See Table 6-2) 

Broad leaved 
woodland 

Broad leaved woodland 1 

Coniferous woodland Coniferous woodland 2 

Arable All types of arable land 3 

Improved grassland Productive grassland through 
reseeding and fertilisation 

4  

Rough/Unproductive 
grassland 

Less productive grassland 5, 6, 7 

Acid grassland Acid Grassland 8 

Fen, Marsh and 
Swamp 

Fen, Marsh and Swamp 9 

Dwarf shrub/Heather >25% cover of dwarf shrub or 
heather 

10 

Heather grassland Mix of grassland and dwarf 
shrub with less than 25% 
dwarf shrub 

11 

Bare rock All exposed rock surfaces, 
including coastal, montane 
and quarries. 

14, 17, 19 

Tidal water Tidal water 15 

Freshwater Fresh water, non-tidal 16 

Sediment Mud or sand 20, 18 

Saltmarsh Saltmarsh 21 

Urban Dense urban 22 

Suburban Built up areas with gardens 
and green space 

23 

 

Table 6.2 LCM2007 class structure.  BAP broad habitats in italic.  Bold descriptions indicate deviations from 
BAP broad habitats (see Morton et al 2011 for full details). 

Aggregate class Broad Habitat LCM2007 class 
Class 

Identifier 

http://www.fao.org/docrep/003/x0596e/x0596e00.HTM
http://sia.eionet.europa.eu/EAGLE
http://sia.eionet.europa.eu/EAGLE
http://inspire.ec.europa.eu/
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Broadleaf woodland 
Broadleaved, Mixed and 

Yew Woodland 

Broadleaved 

woodland 
1 

Coniferous woodland Coniferous Woodland Coniferous Woodland 2 

Arable Arable and Horticulture Arable and Horticulture 3 

Improved grassland Improved Grassland Improved Grassland 4 

Semi-natural grassland 

Rough Grassland Rough grassland 5 

Neutral Grassland Neutral Grassland 6 

Calcareous Grassland Calcareous Grassland 7 

Acid Grassland Acid grassland 8 

Fen, Marsh and Swamp Fen, Marsh and Swamp 9 

Mountain, heath, bog 

Dwarf Shrub Heath 

Heather 10 

Heather grassland 11 

Bog Bog 12 

Montane Habitats Montane Habitats 13 

Inland Rock Inland Rock 14 

Saltwater Saltwater Saltwater 15 

Freshwater Freshwater Freshwater 16 

Coastal 

Supra-littoral Rock Supra-littoral Rock 17 

Supra-littoral Sediment Supra-littoral Sediment 18 

Littoral Rock Littoral Rock 19 

Littoral Sediment 

Littoral sediment 20 

Saltmarsh 21 

Built-up areas and gardens 
Built-up Areas and 

Gardens 

Urban 22 

Suburban 23 

 
This simplified structure is better suited for satellite techniques as the surface descriptions relate 
more directly to optical reflectance.  For example, in the production of LCM2000 and LCM2007 
using optical reflectance alone we were not able to differentiate BAP broad habitat grassland types 
and had to use ancillary data.  The simplified grassland descriptions in Table 6.1 are a more 
realistic target for broad-scale remote sensing techniques.  Similarly BAP exposed rock (Littoral 
Rock, Supra Littoral Rock, Bare Rock) surfaces are similar spectrally so are only separable by 
regional context, so it is better to group them together; the same goes for unvegetated sediment 
surfaces.  
Note that we do not represent Bog in the land cover descriptions.  Bog was recorded inconsistently 
across CEH’s three land cover maps, so the correspondence of Bog through time was inadequate 
to generate training data.  Moreover, Bog according to BAP broad habitats contains a range of 
vegetation types and may be dominated by purple moor-grass (Molinea caerulea) or hare’s tail 
cotton-grass (Eriophorum vaginatum) or dwarf shrubs and heathland, or fen, marsh and swamp.  
This variability of land cover associated with Bog makes it unsuitable as a class for remote sensing 
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techniques.  Montane is also excluded as a range of vegetation types and land surfaces are 
encountered at high altitude.  So further work and research would be required to understand the 
level of detail that could be achieved in these upland areas. 

Our assumption that this revised land cover schema is superior to those from existing CEH land 
cover maps is based on experience and was supported subjectively by visual inspection through 
juxtaposition of aerial and satellite images with classification results.  The high correspondence 
results achieved with CS data are also encouraging (section 2).  But for a proper, objective 
assessment, dedicated, temporally coincident validation inventories are required.   

We expect that uncertainty products derived from class membership probabilities (section 2.6.4) 
will be helpful in determining the optimal schema.  If within a scene, we detect regions of high 
uncertainty (low membership probability across all classes) this will indicate that the training data is 
insufficient to accurately describe the range of land covers or variants within a given land cover.  
One reason for this could be that there is a detectable land cover type that is unaccounted for in 
the schema.  Confirmation would come if the same pattern repeats across years and through this 
process our understanding of the discriminative power of broad scale optical remote sensing can 
evolve.  Extending a schema seems to run against the mantra of thematic consistency, but if it is 
done carefully within a hierarchal structure this should not cause problems for temporal analyses. 
 

7 Statistical interpretation of widespread change 
 
The techniques we have developed will enable more rapid classification of satellite images and can 
lead to more frequent, cost-effective land cover inventories.  In the short to medium term it is 
unlikely that a sufficient set of image data will become available within a single year for a complete 
national, annual refresh.  This gives the option of suspending refresh until a national image set 
becomes available or implementing a rolling update programme.  Exactly which approach is best 
will become clearer as new sensors come on-line and Copernicus services 
(http://www.eea.europa.eu/about-us/what/seis-initiatives/copernicus) mature.  But regardless of the 
approach taken the most current distribution of land cover is likely to be compiled from images 
spanning several years.  Reporting requirements and conservation strategies often require annual 
estimates of stock and change, so a challenge is how to reliably compute annual estimates given 
the temporal variability of the underlying dataset.  
  
If a fraction of national land cover data is produced in each year, an estimate of stock can be 
readily derived using a statistical modelling approach that fills in the missing data and estimates 
mean stock across the whole sample.  This is done by using the estimated correlation structure of 
the data across years. The difficulty is in compensating for potentially different coverage areas in 
each year, differing amounts of data and hence a different error structure on the response of 
interest as compared to any assumption of independence. This type of problem is readily solved 
using Generalised Linear Mixed Models, which enable the user to specify an error structure 
appropriate to the data collected and compensate for an unbalanced design or any unobserved 
latent processes. The Countryside Survey used this approach to produce consistent stock and 
change estimates in 2007; the Mixed Model compensated for the different number of squares 
surveyed in each of the survey years (1978, 1984, 1990, 1998 and 2007).  A similar technique has 
been developed for the Glastir Monitoring and Evaluation Programme (GMEP) for Wales, which is 
coordinated by CEH.   The purpose of GMEP is to assess the impact of Glastir (the Welsh agri-
environment scheme) on the quality of the welsh countryside.  The monitoring comprises a rolling 
programme in which a fraction of widespread sites are surveyed each year.  Similar rolling 
programme approaches have also been employed as an alternative to the single year population 
census in many countries where logistical problems mean a countrywide census is impractical 
within a single year. The most famous example is perhaps the American Community Survey.  
Deriving robust estimates of stock and change from rolling or partial surveys does not therefore set 
a statistical precedent.  CEH have significant expertise with this kind of statistical problem, with 
tested and validated techniques that can be adapted for land cover reporting when processing 
chains are mature and a sufficient time series of data becomes available. 
 

http://www.eea.europa.eu/about-us/what/seis-initiatives/copernicus
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8 Overall assessment towards an operational UK Land Cover 
Stock and Change System 

 
At start of this project we proposed a modular design towards an operational Land Cover Stock 
and Change System (LCSCS).  A modular approach allows iterative deployment of components so 
that some of the benefits of the system can be realised before full functionality is available.  It also 
supports adaptability:  providing the interfaces between components are clearly defined, it is 
straightforward to replace a component with a new enhanced version.  An architecture such as this 
is essential for system longevity and system longevity is essential to realise its benefits, as the 
vegetative response to the drivers of land cover change (for example climate change) can be 
gradual and undetectable over short intervals.  In this section we assess current research and our 
resulting position relative to operational functionality.  All the developments within this project have 
used well established open source tools.  This minimises cost and because they have a strong 
user base they are likely to remain available and continually improving into the future. 
  

8.2 Modular design 

Our new high-level understanding of a LCSCS is given as a component diagram (Figure 8.1).  The 
ball and socket connectors represent component interfaces.  A socket represents an interface 
specification and the ball provision to that specification.  For example the Classification component 
requires prepared images for classifying, so the Image Preparation component must supply image 
data to this specification.  The core functionality is supplied by the LCSCS component and this is 
supplied by integrated functionality of internal components.  There are three main artefacts of the 
system: Change Products (e.g. change maps, statistical estimates of change); Classification 
Products (e.g. pixel maps, land parcel maps) and Ecological Products (e.g. biophysical correlates 
of ecological function).  The LCSCS receives ancillary data and satellite data from external third 
party sources; these are required by the Image Preparation component.  The LCSCS will also 
require in situ field observations, mainly for validation but perhaps training too.   

In situ.  Historically in situ observations have provided most of the data for training and validation.  
We have developed a method to train a classifier using historical land cover patterns (section 2.4) 
so in a future system we expect field observations to mainly serve product validation.  A dedicated 
field campaign would be expensive, but there is scope to augment existing recording schemes and 
to influence new ones so that validation data can be collected in a cost effective basis.   
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Figure 8.1  High-level component architecture for a Land Cover Stock and Change System. 

 
Training.  The training component requires data that links radiance (and ancillary data) to what is 
believed to be on the ground.  Traditionally this data has come from field campaigns, which are 
costly.  In this project we have demonstrated that it is possible to have a fully automated technique 
that generates training data from historical land cover classifications, current composite images 
and ancillary data.  This does not exclude the possibility of using field observations too.  A further 
advantage of using historical classifications for classifier training is that as time series develop 
within the LCSCS the quality of training data will continually improve and consequently so too will 
classification accuracy. 

Validation.  The validation component will need classified images and an independent set of data 
to assess these.  It is straightforward to compute the correspondence between a classified image 
and independent observations and we used a fully automated process to correspond CS 
observations with pixel classifications (section 2.6.1) to assess their quality.  CS observations, 
though, have restricted extent and the interval between surveys is many years, so using these data 
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was a compromise and far from ideal.  In an operational system we need more up-to-date and 
expansive data.  The technique we have developed can use field observations from any source 
provided they link a parcel of land with a set of land cover observations.   

Classification.  Our results here have demonstrated that we are able to classify satellite images at 
a fraction of the time it has taken historically.  Fully automating the training classification 
processes, through the use of land cover history and non-parametric classification techniques, was 
key to this.  Our use of the Weka machine learning suite means that it is straightforward to switch 
amongst any of the classification algorithms this provides.   Weka provides an extensible structure 
so users can develop and add their own classification tools and take full advantage of Weka’s 
generic functionality.  The FastRandomForest algorithm we used was an extension of Weka’s 
standard functionality.  This flexibility and extensibility are important for longevity and continual 
improvement.  

Of the classification tools we tested RF offers ease of use and accuracy and is the front runner for 
operational activity.  We classified pixels and summarise these automatically using a spatial 
framework.  This gives pixel and polygon products and the advantages associated with each.  This 
component is well understood and close to operational functionality. 

Change detection.  The change detection research took a multiple approach, looking at:  (1) 
image-to-image change; (2) classification-to-image change; (3) and classification-to-classification 
change.  Exactly how and which of these processes could be integrated within an operational 
system is not fully clear and more research is required.  Image to image change is powerful but 
reliant on anniversary images and the widespread availability of images of this kind cannot be 
guaranteed.  Classification-to-image change detection and classification-to-classification change 
detection are less sensitive to image timing and so have greater potential for generating wide-scale 
change products.  Classification-to-classification change is the most likely to generate usable 
products as iterative classification is the primary function of the Land Cover Stock and Change 
System.  Methods to combine uncertainty (section 2.6.4) and temporal class changes are an area 
for further research.  Classification to classification change will be the currency used for statistical 
estimates of change (see section 7).  In maintaining a set of ‘fixed’ parcels for classifier training it 

will be necessary to monitor these and make decisions as to whether they remain or are excluded 
from future classifications.  As time flows it will also be necessary to recruit new training polygons.  
We expect that Classification-to-image change detection will help inform such decisions. 

Biophysical variables.  The rationale for calculating biophysical variables was to begin to explore 
their role in capturing within polygon variability and habitat condition.  Their use as an input to 
image classification was also assessed, but did not positively affect results (section 2.6.2).  
Biophysical variables are sensitive to seasonal and recent meteorological events and values 
calculated from different images will give different values.  A number of different options for dealing 
with this were suggested in section 3.5, but need further assessment and trialling with users will be 
needed to identify the best options.  The value of the biophysical variables is likely to increase the 
length of the time-series expands and trends develop.   

Image preparation.  Selection and preparation (pre-processing) of images is a significant 
component in terms of complexity and time when land cover mapping.  Typically this involves 
orthorectification, radiometric corrections for atmospheric effects, cloud masking and 
georeferencing.  We did not examine the automation of these.  The pre-processing steps applied 
by image providers are continually improving.  Landsat-8 and Copernicus services are in their 
infancy and on these, and follow on missions, the LCSCS will largely depend.  Substantial 
research now to streamline and automate the image preparation process would therefore be 
premature.  It is better to wait and see what level of processing is applied. 

Ancillary data and Satellite data.  The production of ancillary data and satellite data are outside the 
functionality of the system.  However, these data influence the development of the image 
preparation component.  We assume the continuity of Optical Landsat-type data for the lifetime of 
the LCSCS and research described in section 2.2 indicates that radar data may also have a 
significant role.  Ancillary data are combined with optical data to enhance class resolution by 
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reducing spectral confusion.  Choices regarding the use of ancillary data should take account of 
stability.  

8.3 Next steps: iterative deployment 

Ultimately we envisage a fully operational LCSCS in a parallel compute environment with fast 
access to newly available satellite data.  With the highly automated techniques we have developed 
we believe it is possible to provide near-real time land cover products and combined with 
sophisticated visualisation tools such as the video wall at ISIC this could open up novel analyses 
and applications.  Rapid turnaround such as this would represent a rolling update of land cover 
information, with refresh occurring when good images become available.  However, in the short 
term it is necessary to demonstrate the feasibility of techniques developed in this research and 
their potential for national scale production.  We believe the best way to achieve this is to produce 
new large-scale land cover products representing at least two points in time; pixel and polygon 
products using the generalised OS MasterMap spatial framework.  The production at large-scale 
will expose production complexities not yet apparent.  Two points in time will allow us to advance 
change detection techniques and will provide historical data for future classifier training.  
Production at a large-scale will also expose the full range of UK land cover types enabling us to 
devise the optimal satellite based land cover schema for the UK. We suggest that a large-scale 
test covering several adjacent images of a discrete geographical area should be conducted, to 
assess: 

• the quality of the image classifications 

• the quality and feasibility of the change products in a more operational setting 

• the utility of the ecological variables 

The area would ideally require three to four images to provide a good test of the methods. One 
possibility would be Wales, as CEH have existing field data from 2012, 2013, which could be used 
as validation data, as well as extensive data held by NRW.  

Of the component functionality (Figure 8.1) the Training and Classification components are the 
best understood and very close to operational functionality.  Tracing their interface dependencies 
using Figure 8.1 shows these to rely on pre-processed images from the Image preparation 
component and historical classifications.  A fully prepared set of images from LCM2007 are 
available and ancillary data.  We therefore have the source material for one point in time.  A goal of 
the EEA’s Copernicus Land Monitoring Services is to produce pan European coverages of optical 
satellite data of 10m to 30m pixel resolution with minimal cloud cover on a three year repeat cycle 
for the production of CORINE land cover maps and five high resolution land cover layers.  Image 
2012 is one such pan European coverage and is available at no cost and this is a candidate for the 
second point in time, although image quality and post-processing may mean it is necessary to 
restrict classification to the best regions, rather than produce a full national coverage. 

Product validation is essential and gathering in situ data for this has traditionally been a very 
expensive component of land cover mapping.  There are numerous recording and study groups 
within the UK; many coordinated by the JNCC and CEH.  A body of work to assess these schemes 
and their potential for revision to gather data for the validation of land cover products is essential.  
We believe that through coordinated effort it should be possible to fulfil the In situ component.  A 
sensible goal would be to have a programme in place within three years.   A workshop to explore 
this potential and kick-start the process in the near future is advisable. 
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10 Appendix 1: Satellite data pre-processing 
 
Table 10.1  Example of the full listing of the sixtyone-band images used as input for the classification 
treatments.  Example shown is for the Scottish site, the Norfolk images followed the same format. 

Layer Data set Additional details Data type 

1 Mar 2000 TM Landsat band 1 Date 1: Blue (0.45-0.52 µm ) 

2 Mar 2000 TM Landsat band 2 Date 1: Green (0.52-0.61 µm) 

3 Mar 2000 TM Landsat band 3 Date 1: Red (0.63-0.69 µm) 

4 Mar 2000 TM Landsat band 4 Date 1: NIR (0.75-0.90 µm) 

5 Mar 2000 TM Landsat band 5 Date 1: SWIR-1(1.55-1.75 µm) 

6 Mar 2000 TM Landsat band 7 Date 1: SWIR-2(2.09-2.35 µm) 

7 May 2000 TM Landsat band 1 Date 2: Blue (0.45-0.52 µm ) 

8 May 2000 TM Landsat band 2 Date 2: Green (0.52-0.61 µm) 

9 May 2000 TM Landsat band 3 Date 2: Red (0.63-0.69 µm) 

10 May 2000 TM Landsat band 4 Date 2: NIR (0.75-0.90 µm) 

11 May 2000 TM Landsat band 5 Date 2: SWIR-1(1.55-1.75 µm) 

12 May 2000 TM Landsat band 7 Date 2: SWIR-2(2.09-2.35 µm) 

13 July 1999 TM Landsat band 1 Date 3: Blue (0.45-0.52 µm ) 

14 July 1999 TM Landsat band 2 Date 3: Green (0.52-0.61 µm) 

15 July 1999 TM Landsat band 3 Date 3: Red (0.63-0.69 µm) 

16 July 1999 TM Landsat band 4 Date 3: NIR (0.75-0.90 µm) 

17 July 1999 TM Landsat band 5 Date 3: SWIR-1(1.55-1.75 µm) 

18 July 1999 TM Landsat band 7 Date 3: SWIR-2(2.09-2.35 µm) 

19 Thermal Mar 2000 Landsat band 6 
Date 1: Thermal IR (10.4-12.5 
µm) 

20 Thermal May 2000 Landsat band 6 
Date 2: Thermal IR (10.4-12.5 
µm) 

21 Thermal July 1999 Landsat band 6 
Date 3: Thermal IR (10.4-12.5 
µm) 

22 NDVI March 2000 per-pixel indices/spectral transforms 

23 NDVI May 2000 per-pixel indices/spectral transforms 

24 NDVI July 1999 per-pixel indices/spectral transforms 

25 
NDSWIR March 
2000 per-pixel indices/spectral transforms 

26 
NDSWIR May 
2000 per-pixel indices/spectral transforms 

27 NDSWIR July 1999 per-pixel indices/spectral transforms 

28 NDVI march 2000 5x5 window texture 

29 NDVI May 2000 5x5 window texture 

30 NDVI July 1999 5x5 window texture 

31 
NDSWIR March 
2000 5x5 window texture 

32 
NDSWIR May 
2000 5x5 window texture 

33 
NDSWIR April 
1999 5x5 window texture 

34 NDVI March 2000 per-polygon texture 

35 NDVI May 2000 per-polygon texture 

36 NDVI July 1999 per-polygon texture 

37 
NDSWIR March 
2000 per-polygon texture 
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38 
NDSWIR May 
2000 per-polygon texture 

39 NDSWIR July 1999 per-polygon texture 

40 NextMap DTM per-pixel altitude 

41 NextMap DSM per-pixel altitude 

42 NextMAP Diff per-pixel altitude 

43 slope per-pixel geomorphology 

44 aspect per-pixel geomorphology 

45 DTM mean per-polygon geomorphology 

46 DTM range  per-polygon geomorphology 

47 DTM std per-polygon geomorphology 

48 DSM mean per-polygon geomorphology 

49 DSM range per-polygon geomorphology 

50 DSM std per-polygon geomorphology 

51 Diff mean per-polygon geomorphology 

52 Diff range per-polygon geomorphology 

53 Diff std per-polygon geomorphology 

54 TWI per-pixel geomorphology 

55 ORI backscatter per-polygon structure 

56 OS buildings per-pixel natonal mapping products 

57 OS foreshore per-pixel natonal mapping products 

58 OS land per-pixel natonal mapping products 

59 OS surfacewater per-pixel natonal mapping products 

60 OS tidalwater per-pixel natonal mapping products 

61 OS woodland per-pixel natonal mapping products 
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11 Appendix 2: Classification assessments 
 

Table 11.1 Norfolk 2002 classification correspondence with CS 1998.  TukeyHSD pairwise significance tests: * < 0.2; ** < 0.1; *** <0.05 

Treatment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

Mean correspondence 72 73.2 77.3 79.4 79.5 81.8 83.5 83.2 83.5 83.3 82.8 84.8 85 84.4 84.3 84.8 84.6 83.8 84.5 83 82.6 84.1 83.5 80.1 82.8 86.4 84.2 86.7 87.3 

1 === - *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

2 - === *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

3 *** *** === - - *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** 

4 *** *** - === - - *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** - *** *** *** *** *** 

5 *** *** - - === - *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** - *** *** *** *** *** 

6 *** *** *** - - === - - - - - *** *** * * *** *** - * - - - - - - *** - *** *** 

7 *** *** *** *** *** - === - - - - - - - - - - - - - - - - *** - *** - *** *** 

8 *** *** *** *** *** - - === - - - - - - - - - - - - - - - *** - *** - *** *** 

9 *** *** *** *** *** - - - === - - - - - - - - - - - - - - *** - *** - *** *** 

10 *** *** *** *** *** - - - - === - - - - - - - - - - - - - *** - *** - *** *** 

11 *** *** *** *** *** - - - - - === - - - - - - - - - - - - * - *** - *** *** 

12 *** *** *** *** *** *** - - - - - === - - - - - - - - - - - *** - - - - * 

13 *** *** *** *** *** *** - - - - - - === - - - - - - - * - - *** - - - - - 

14 *** *** *** *** *** * - - - - - - - === - - - - - - - - - *** - - - - *** 

15 *** *** *** *** *** * - - - - - - - - === - - - - - - - - *** - - - - *** 

16 *** *** *** *** *** *** - - - - - - - - - === - - - - - - - *** - - - - * 

17 *** *** *** *** *** *** - - - - - - - - - - === - - - - - - *** - - - - ** 

18 *** *** *** *** *** - - - - - - - - - - - - === - - - - - *** - * - *** *** 

19 *** *** *** *** *** * - - - - - - - - - - - - === - - - - *** - - - - *** 

20 *** *** *** *** *** - - - - - - - - - - - - - - === - - - *** - *** - *** *** 

21 *** *** *** *** *** - - - - - - - * - - - - - - - === - - * - *** - *** *** 

22 *** *** *** *** *** - - - - - - - - - - - - - - - - === - *** - - - * *** 

23 *** *** *** *** *** - - - - - - - - - - - - - - - - - === *** - *** - *** *** 

24 *** *** ** - - - *** *** *** *** * *** *** *** *** *** *** *** *** *** * *** *** === ** *** *** *** *** 

25 *** *** *** *** *** - - - - - - - - - - - - - - - - - - ** === *** - *** *** 

26 *** *** *** *** *** *** *** *** *** *** *** - - - - - - * - *** *** - *** *** *** === - - - 

27 *** *** *** *** *** - - - - - - - - - - - - - - - - - - *** - - === * *** 

28 *** *** *** *** *** *** *** *** *** *** *** - - - - - - *** - *** *** * *** *** *** - * === - 

29 *** *** *** *** *** *** *** *** *** *** *** * - *** *** * ** *** *** *** *** *** *** *** *** - *** - === 
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Table 11.2  Norfolk 2011 classification correspondence with CS2007.  TukeyHSD pairwise significance tests: * < 0.2; ** < 0.1; *** <0.05. 

Treatment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

Mean 
correspondence 

71.
6 

59.
8 

75.
6 

79.
6 

76.
5 

76.
1 

77.
1 

77.
2 

77.
2 77 78 

77.
4 

76.
9 

76.
8 

76.
1 

76.
5 

78.
4 

78.
5 

78.
2 

77.
9 

77.
7 

78.
3 

78.
5 

76.
9 

78.
7 

78.
9 

78.
6 

79.
2 

80.
1 

1 === *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

2 *** === *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 

3 *** *** === *** - - - - - - *** * - - - - *** *** *** *** *** *** *** - *** *** *** *** *** 

4 *** *** *** === *** *** *** *** *** *** - *** *** *** *** *** - - - - * - - *** - - - - - 

5 *** *** - *** === - - - - - - - - - - - ** *** - - - * ** - *** *** *** *** *** 

6 *** *** - *** - === - - - - * - - - - - *** *** *** * - *** *** - *** *** *** *** *** 

7 *** *** - *** - - === - - - - - - - - - - - - - - - - - - * - *** *** 

8 *** *** - *** - - - === - - - - - - - - - - - - - - - - - - - ** *** 

9 *** *** - *** - - - - === - - - - - - - - - - - - - - - - - - ** *** 

10 *** *** - *** - - - - - 
==
= - - - - - - - - - - - - - - - * - *** *** 

11 *** *** *** - - * - - - - 
==
= - - - * - - - - - - - - - - - - - *** 

12 *** *** * *** - - - - - - - === - - - - - - - - - - - - - - - - *** 

13 *** *** - *** - - - - - - - - === - - - - - - - - - - - * ** - *** *** 

14 *** *** - *** - - - - - - - - - === - - - * - - - - - - ** *** * *** *** 

15 *** *** - *** - - - - - - * - - - === - *** *** *** * - *** *** - *** *** *** *** *** 

16 *** *** - *** - - - - - - - - - - - === ** ** - - - - ** - *** *** *** *** *** 

17 *** *** *** - ** *** - - - - - - - - *** ** === - - - - - - - - - - - - 

18 *** *** *** - *** *** - - - - - - - * *** ** - === - - - - - - - - - - - 

19 *** *** *** - - *** - - - - - - - - *** - - - === - - - - - - - - - * 

20 *** *** *** - - * - - - - - - - - * - - - - === - - - - - - - - *** 

21 *** *** *** * - - - - - - - - - - - - - - - - === - - - - - - - *** 

22 *** *** *** - * *** - - - - - - - - *** - - - - - - === - - - - - - * 

23 *** *** *** - ** *** - - - - - - - - *** ** - - - - - - === - - - - - - 

24 *** *** - *** - - - - - - - - - - - - - - - - - - - === * ** - *** *** 

25 *** *** *** - *** *** - - - - - - * ** *** *** - - - - - - - * === - - - - 

26 *** *** *** - *** *** * - - * - - ** *** *** *** - - - - - - - ** - === - - - 

27 *** *** *** - *** *** - - - - - - - * *** *** - - - - - - - - - - === - - 

28 *** *** *** - *** *** *** ** ** *** - - *** *** *** *** - - - - - - - *** - - - === - 

29 *** *** *** - *** *** *** *** *** *** *** *** *** *** *** *** - - * *** *** * - *** - - - - === 
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Table 11.3  Scotland 2000 classification correspondence with CS1998.  TukeyHSD pairwise significance tests: * < 0.2; ** < 0.1; *** <0.05. 
                              

Treatment 1 2 3 4 5 6 7 8 9 10 11 12 13 1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

21 22 23 24 25 26 27 28 29 

 
Mean 

correspondence 

60.8 59.9 55.3 61.3 62.5 61 61.9 62.1 62 62.3 62.6 62.

1 

61.

7 

6

2

.

3 

6

1

.

6 

6

1

.

3 

6

2

.

1 

6

2

.

5 

6

2

.

8 

6

4

.

1 

63.

9 

61.

6 

63.

1 

63 61.

8 

63.

2 

64 65.

4 

64 

 
1 === - *** - *** - * *** ** *** *** *** - *

*

* 

- - *

*

* 

*

*

* 

*

*

* 

*

*

* 

*** - *** *** - *** *** *** *** 
 

2 - === *** *** *** * *** *** *** *** *** *** *** *

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*** *** *** *** *** *** *** *** *** 
 

3 *** *** === *** *** *** *** *** *** *** *** *** *** *

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*** *** *** *** *** *** *** *** *** 
 

4 - *** *** === *** - - - - - *** - - - - - - *

* 

*

*

* 

*

*

* 

*** - *** *** - *** *** *** *** 
 

5 *** *** *** *** === *** - - - - - - - - - *

*

* 

- - - *

*

* 

*** - - - - - *** *** *** 
 

6 - * *** - *** === - * - *** *** * - *

*

* 

- - *

* 

*

*

* 

*

*

* 

*

*

* 

*** - *** *** - *** *** *** *** 
 

7 * *** *** - - - === - - - - - - - - - - - - *

*

* 

*** - ** - - *** *** *** *** 
 

8 *** *** *** - - * - === - - - - - - - - - - - *

*

* 

*** - - - - * *** *** *** 
 

9 ** *** *** - - - - - === - - - - - - - - - - *

*

* 

*** - * - - ** *** *** *** 
 

10 *** *** *** - - *** - - - === - - - - - - - - - *

*

* 

*** - - - - - *** *** *** 
 

11 *** *** *** *** - *** - - - - === - - - - *

*

* 

- - - *

*

* 

*** - - - - - *** *** *** 
 

12 *** *** *** - - * - - - - - ==

= 

- - - - - - - *

*

* 

*** - - - - * *** *** *** 
 

13 - *** *** - - - - - - - - - ==

= 

- - - - - * *

*

* 

*** - *** *** - *** *** *** *** 
 

14 *** *** *** - - *** - - - - - - - =

=

= 

- - - - - *

*

* 

*** - - - - - *** *** *** 
 

15 - *** *** - - - - - - - - - - - =

=

= 

- - - *

*

* 

*

*

* 

*** - *** *** - *** *** *** *** 
 

16 - *** *** - *** - - - - - *** - - - - =

=

= 

- *

* 

*

*

* 

*

*

* 

*** - *** *** - *** *** *** *** 
 

17 *** *** *** - - ** - - - - - - - - - - =

=

= 

- - *

*

* 

*** - - - - - *** *** *** 
 

18 *** *** *** ** - *** - - - - - - - - - *

* 

- =

=

= 

- *

*

* 

*** - - - - - *** *** *** 
 

19 *** *** *** *** - *** - - - - - - * - *

*

* 

*

*

* 

- - =

=

= 

*

*

* 

* *** - - - - ** *** ** 
 

20 *** *** *** *** *** *** *** *** *** *** *** *** *** *

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

=

=

= 

- *** - * *** - - *** - 
 

21 *** *** *** *** *** *** *** *** *** *** *** *** *** *

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

* - === *** - - *** - - *** - 
 

22 - *** *** - - - - - - - - - - - - - - - *

*

* 

*

*

* 

*** === *** *** - *** *** *** *** 
 

23 *** *** *** *** - *** ** - * - - - *** - *

*

* 

*

*

* 

- - - - - *** === - *** - - *** - 
 

24 *** *** *** *** - *** - - - - - - *** - *

*

* 

*

*

* 

- - - * - *** - ==

= 

*** - - *** - 
 

25 - *** *** - - - - - - - - - - - - - - - - *

*

* 

*** - *** *** === *** *** *** *** 
 

26 *** *** *** *** - *** *** * ** - - * *** - *

*

* 

*

*

* 

- - - - - *** - - *** === - *** - 
 

27 *** *** *** *** *** *** *** *** *** *** *** *** *** *

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

* 

- - *** - - *** - ==

= 

*** - 
 

28 *** *** *** *** *** *** *** *** *** *** *** *** *** *

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*** *** *** *** *** *** *** === *** 
 

29 *** *** *** *** *** *** *** *** *** *** *** *** *** *

*

* 

*

*

* 

*

*

* 

*

*

* 

*

*

* 

*

* 

- - *** - - *** - - *** ==

=  
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12 Appendix 3: Quantitative analysis of biophysical variables 
 
To determine the utility of using the CS2007 ANPP, or similar data, to calibrate the NDVI and 
Tasselled cap values to a known biophysical value, specifically ANPP, the strength of the linear 
relationships between the satellite-derived values and the ANPP were calculated. 
Caveats: 

• The CS estimates of ANPP data are based on field data collected in 2007.  

• The AWIFS data is from the 9 & 10/06/2006 and 27/10/2005.  

• The Landsat data used are mainly from 2000, 2002 and 2011. 

These tables summarise the coefficient of determination (r2) values for the correspondence between 
the CS2007 estimates of Aboveground Net Primary Productivity (ANPP) and the satellite-derived 
NDVI, NDMI and tasselled cap values. Tasselled cap band 1 corresponds to Brightness, whilst band 
2 shows greenness and band 3 wetness. Summary results from these tables are provided in section 
3 of the report. 

Visual analysis showed that X plots are often near the edges of two or more pixels, so it maybe that 
extracting values for either the entire parcel, or the group of pixels closest to the X plot location 
would provide stronger results. 

Table 12.1 summarises the highest coefficients of determination for the best relationships and the 
associated index. Key results from Table 12.1: 

- The sum of the three NDVI values has a high r2 for all classes except the ‘Crops and 
weeds’ class, including the Fertile grassland class, where the r2 for the sum (0.91) is much 
higher than the values for individual dates. This highlights the benefits of multi-temporal 
data. 

- Infertile grassland shows a strong correlation with the satellite-derived values for each of 
the three images, with NDMI, NDVI and TC2 all showing strong relationships 

Table 12.1  Summary of the highest coefficients of determination (r2) for Norfolk 2002.Values with R2 < 0.10 
marked as na. Nes denotes not enough samples. 

AVC_class April Values June June 
value 

September Sept 
value 

sum Sum 
r2 

Crops/weeds na na na na TC1 0.15 na na 

Tall grassland/herb TC2 0.29 TC4 0.52 TC2 0.25 NDVI 0.3 

Fertile grassland TC4 0.15 NDVI 0.5 NDVI, TC2 0.17 NDVI 0.91 

Infertile grassland NDMI 0.84 NDVI, 
TC2 

0.66 TC2 0.82 NDVI 0.85 

Lowland wooded TC3 0.85 TC1 0.99 TC6 1 NDMI 0.99 

 
Table 12.2  Summary of the highest coefficients of determination (r2) for Norfolk 2011.Values with R2 < 0.10 
marked as na. Nes denotes not enough samples. 

AVC_class April Values June June 
value 

Septembe
r 

Sept 
value 

sum sum r2 

Crops/weeds na na na na na na na na 

Tall 
grassland/herb 

NDVI 0.25 TC4 0.23 TC1 0.24 NDVI 0.19 

Fertile 
grassland 

TC5 0.35 na na TC2 0.16 na na 

Infertile 
grassland 

TC2 0.99 nes nes TC2 0.99 nes nes 

Lowland 
wooded 

na na TC1 0.87 TC6 1 na na 
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Table 12.3  Summary of the highest coefficients of determination (r2) for Scotland 2000.Values with R2 < 0. 
10 marked as na. Nes denotes not enough samples. 

AVC_class March March 
value 

May May 
value 

July July 
value 

sum sum r2 

Fertile grassland TC4 0.25 TC3 0.17 TC1 0.32 NDVI 0.23 

Infertile grassland NDVI 0.27 TC2 0.3 na na na na 

Upland wooded TC2 0.34 TC2 0.26 na na na na 

Moorland 
grass/mosaic 

TC1 0.14 na na na na na na 

Heath/bog na na na na na na na na 

 

Scotland 2000 Key results Table 12.3 
• poor results for the Scotland images 

Table 12.4  Summary of the highest coefficients of determination (r2) for AWIFS for GB. Values with R2 < 
0.10 marked as na. Nes denotes not enough samples. 

AVC_class i73 i74 i75 i76 i77 i78 i79 mean 

Crops/weeds na na na na na na none na 

Tall 
grassland/herb 

0.12 na na na 0.11 na none na 

Fertile grassland na na na na na 0.11 0.54 na 

Infertile grassland 0.17 na na 0.18 0.15 0.11 na 0.17 

Lowland wooded 0.16 0.42 na 0.34 0.26 0.50 none 0.29 

Upland wooded na na 0.20 na na 0.19 na na 

Moorland 
grass/mosaic 

na na none na 0.13 none na na 

Heath/bog na na none na na 0.29 na na 

 
AWIFS Key results Table 12.4 

• Correlation between NDVI and Lowland wooded for all images except i75 

• Fertile grassland in i79 and Heath/bog in i78 are the only other cases to show a relationship 

• Largely confirms the poor relationships between the satellite-derived values and the upland 
land cover types observed in Table 12.3. 

The poorer relationships between the NDVI from AWIFS and the vegetation productivity are 
probably largely due to the coarse pixel resolution of the AWIFS imagery (60m cf. 30m for Landsat) 
and consequently the greater disparity between the pixel data and location and the field plot. 
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13 Appendix 4: Change detection 
 
Table 13.1  Validation of 30 randomly selected polygons from the April PCA composite index, with a 
threshold set at mean + 1 standard deviation. For the PCA composite index, higher values represent more 
extreme spectral changes, so only an upper threshold is required 

ID area change notes_ 

13225 4495.7 yes change from arable to grassland, new bldg on farm 

15104 9158.3 no gorse, may be detecting flower vs non-flowering 

15333 9842.8 no arable in both 

19279 18544.1 ??? fen, maybe woodier/less gi than in 2002?? 

23809 6018.4 no water body 

23962 6769.4 yes bare soil 2002, grassland 2011 

25697 20819.4 no mineral extraction & water, slight shift in loc. Change but 
not really LU change. 

26090 5723.6 no bright Ui. sligt shift - offset in resampling? 

33652 4283.2 no arable in 2002, bare soil in 2011 

35685 14003.3 yes deciduous woodland to heathland 

35825 7221.7 no school playing field, may have picked up creation of 
wildlife garden? 

36793 4138.7 no redevelopment of Wisbech greyhound stadium - urban to 
urban change 

38260 4818.6 no fenland water body, possibly slightly different water level, 
or RS issue, 2002 wetter 

42556 5400.0 no fenland water body, possibly slightly different water level, 
or RS issue, 2002 wetter 

45220 4585.4 ?? periodical flooded grazing land, nr Whittlesey sluice gates, 
flooding differs slightly btw 02 & 11 

47128 18853.4 
 

small patch of woodland harvested, bare ground in 2002, 
STRANGE - CHECK NEW AP 

51487 3961.8 yes mineral extraction to grassland 

53150 4093.1 
 

new lake in 2002, 'mature' lake in 2011; looks different, 
but real changed preceded 

53726 54067.8 yes forest regrowth 

55445 4806.7 yes additional development at Snetterton race circuit 

59460 5234.8 yes new stand of conifers, previous land cover unknown 

59577 11324.3 yes redevelopment, sparse urban to urban 

59636 28504.9 yes forest regrowth 

61725 9779.6 yes wood to parkland, adj. to new housing development in 
Thetford 

63005 3871.0 
 

uncertain - possible change of RAF Lakenheath, small 
area may be RS issue, road moves on GE 

65966 5063.9 yes arable to grassland 

68857 10559.4 no arable to arable 

69217 35618.1 yes forest regrowth 

70291 7657.9 yes grassland to arable 

70553 7547.7 no arable & arable 
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Table 13.2  Validation of 30 randomly selected polygons from the April PCA composite index, with a 
threshold set at mean + 2 standard deviations. For the PCA composite index, higher values represent more 
extreme spectral changes, so only an upper threshold is required. 

ID area change notes 

1645 12600.0 yes grassland to arable 

1917 25200.0 yes industrial being redeveloped 

4171 5400.0 yes harvested conifers 

5893 10800.0 yes arable to grassland 

6922 4500.0 yes grassland to expanded bulb/nursery business, spalding 

9770 94500.0 no arable in both 

11986 57600.0 no arable in both 

12083 21600.0 no arable in both 

12595 5400.0 yes Grassland to BMX track, Sloughbottom park 

13964 6300.0 yes Forest regrowth 

14608 17100.0 yes Grass & channel in 2002 change to a pool, adjacent to a 
main channel in the Broads 

14814 4500.0 ?? Looks like redevelopment of urban & wasteland area 

15092 3600.0 yes arable to grazing 

16576 7200.0 yes expansion of mineral extraction 

16640 27000.0 yes arable to grassland 

17364 7200.0 yes arable to grassland 

17706 14400.0 no arable in both 

18189 13500.0 yes conifers harvested 

18401 20700.0 yes conifer regrowth 

18705 5400.0 no Difference in wetness of Ouse washes; 2002 wetter, no 
real change 

18864 7200.0 yes Flooding in 2002; grassland later in 2002 and in 2011 

19507 7200.0 yes Conifer's harvested by 2011 

20527 4500.0 yes changing extent of extraction and water bodies within 
extraction site 

21234 113400.0 no arable in both 

21732 8100.0 yes conifer harvested 

22721 16200.0 no coastal 

23315 7200.0 ?? narrow linear feature, along edge of small linear conifer 
plantation, maybe change, maybe RS issue 

24015 3600.0 yes conifer regrowth 

24339 3600.0 no arable crop to pig farm 

24734 8100.0 yes RSPB Minsmere, increase in size of water body; fen to 
water body 
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Table 13.3  Validation of 30 randomly selected polygons from the cumulative NDVI, with a threshold set at 
mean +/- 1 standard deviation. Note the NDVI change has extreme upper and lower values, so had an upper 
and lower threshold. 

ID area change notes 

21020 6300.0 no mix of urban and arable in both 

21672 8100.0 ?? marginal, saltmarsh, maybe wetter in 2011 

22383 3600.0 no no change, parkland 

28479 5400.0 no water in both 

34289 3600.0 no scrub/woodland, no obvious differences 

37878 12600.0 no arable to arable 

42327 6300.0 no most of polygon doesn’t change, but one polygon 
overlaps an arable field in 2002 & grass in 2011 

49110 5400.0 no grass in 2011 and 2002, greener in 2002 

51758 8100.0 no forest in both 

55721 5400.0 no mix of water, grass and fen in both 

68966 4500.0 no urban in both 

69921 3600.0 no coniferous forest in both 

74941 3600.0 no very slight offset between pixels, but no change 

76762 7200.0 ?? possible area of soil scrape (mousehold heath) to 
increase heather 

99867 26100.0 yes area of new woodland 

108680 5400.0 no urban in both 

119188 62100.0 no grassland in both, maybe slightly wetter in 2011 

124564 8100.0 no arable in both 

126775 3600.0 no grassland in both 

127762 7200.0 ?? pig farm to crop 

128756 8100.0 yes bare soil in 2002; grass in 2011 

132905 30600.0 yes trees harvested 

134992 13500.0 no conifer in both 

136569 9900.0 no playing field in both 

142723 3600.0 no reeds 

145681 3600.0 no no change 

146574 4500.0 no water & woodland in both 

146808 11700.0 no water in both, slight offset btw then 

149545 4500.0 yes half of polygon is harvested forest 

157059 3600.0 no grassland in both 
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Table 13.4  Validation of 30 randomly selected polygons from the cumulative NDVI, with a threshold set at 
mean +/-2 standard deviations. Note the NDVI change has extreme upper and lower values, so had an 
upper and lower threshold. 

ID area change notes 

4258 8100 yes bare soil in april 2002 (reseeding grass?), grassland in 2011 

5988 6300 yes removal of scrub to maintain heath; habitat maintenance, 
Holt Lowes 

6624 3600 no water & trees, maturing of site, no real change 

9018 3600 no edge of water body, no change 

10379 3600 no coastal, no change 

11544 3600 yes new housing on grass camp site 

15327 3600 no water quality, different sediment levels 

16607 3600 yes arable 2002, grass 2011, falls over field boundary 

18165 4500 no mix of grass & trees 

18578 6300 yes arable to grazing 

19952 6300 yes partial change from playing field to car park 

21315 7200 yes grassland to arable 

21940 3600 yes bare soil/arable to grassland 

22955 9000 no arable in both 

24385 3600 yes Grassland to BMX track, Sloughbottom park 

24423 5400 yes football pitch to mineral extraction 

25059 3600 no arable in both 

25698 5400 yes arable in 2002, bare soil early 2011, grass late 2011 

27573 3600 yes grass/wasteland to urban 

29321 6300 no Limpenhoe marshes, slight difference in water level + 
phenology 

29712 3600 no arable in both 

30376 8100 yes unknown, football pitch, possible bare soil/astroturf, Watton 

30922 3600 yes arable to golf course, adj. to expanded caravan park 

32172 4500 yes mineral extraction to grass, site still active 

32229 5400 yes arable to grazing 

33150 3600 no coastal 

35168 3600 no arable in both 

41744 6300 yes Deciduous/mixed woodland to less dense woodland in 06, 
cleared now? 

46234 4500 yes grassland & fenland in 02; more bare soil in 2011? LC 
uncertain 

47700 4500 yes arable to grassland 
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Table 13.5 Validation of 30 randomly selected polygons from the spectral distance with a threshold set at 
mean +2 standard deviations 

ID GRIDCODE area change notes 

377 5 95273 yes arable to grassland 

773 1 5341 yes significant tree growth (recent planting -> canopy closure) 

874 6 45588 no arable in both, classification error 

1016 9 4764 no urban in both, spectral distance error 

1332 9 3604 yes arable to urban 

3552 4 11720 yes arable to grassland 

5529 1 4722 no woodland in both, spectral distance error 

5926 9 7725 yes suburban to urban (country house to private hospital & car park) 

6220 4 65780 yes arable to grassland 

6410 9 5427 yes gravel parking to industrial units 

6474 4 5164 yes arable to grassland 

6684 7 49531 yes arable to greenhouses and water body 

7022 7 26266 yes grassland to (fishing?) lake 

7074 
9 

5400 no narrow polygon straddling edge of two fields; one with poly-
tunnels 

8359 5 30478 no arable in both, classification error 

8515 9 5991 
 

smaller industrial unit to larger industrial unit 

9890 8 5096 no urban in both, spectral distance error 

10459 1 7555 no narrow polygon straddling edge of two fields; classification error 

11254 
1 

5400 no rough grassland in both; classification wrong - area too small, 
affected by adj. Trees 

12357 9 5629 yes Brownfield redevelopment 

14765 4 6440 yes arable to grassland 

15487 2 7821 no grassland in both (Stanford battle ground) 

16540 6 10030 yes possible arable to grassland 

16716 4 8584 yes Extensive flooding in April 2002 

17210 9 11868 yes Playing field to school buildings: Lakenheath (Gi to urban) 

19950 5 19551 no fen in both; classification error 

20564 4 4627 yes Extensive flooding in April 2002 

22540 8 5400 yes Improved grassland to car park 

23340 4 7492 yes arable to grassland 

24392 
9 

8097 no removal of a building at RAF Mildenhall; mainly runway in both 
images (spec. variability of planes?) 
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Table 13.6  Validation of 30 randomly selected polygons from the post-classification change detection 
(difference between the 2002 and 2011 classifications). 
poly_id 2002_class 2011_class area change notes 

368822 9 4 69022.2 yes Ouse washes; wetter in 2002 than 2011, but not flooded 

370787 1 2 145666.0 yes coniferous forest; mix of harvesting and regrowth 

382159 3 4 118209.0 yes Arable in 2002, probably grassland in 2011 

1983277 1 2 17270.6 no Conifer in both; denser by 2011 

2022129 3 4 54938.0 no Arable in both 

2039154 10 2 19413.8 no Sparse woodland, scrub & grass in both 

2040001 3 23 21202.6 no Polygon is grassland.A road is built at the edge of the polygon, which 
causes mixed pixels. 

2043981 1 9 19311.3 no Trees and grassland in both 

2372725 1 2 7676.5 ?? Narrow tree break (too narrow) (poly covers half), denser tree cover by 
2011 

2376688 3 4 29722.7 yes Arable in 2002; Gi in 2011 

4974487 23 16 8457.8 no Park: mix of trees, grass, lake, urban in both: no change 

4974800 23 10 5939.7 no Mix of road & trees; tree cover denser by 2011 

4980658 9 1 5741.2 no Mix of trees and road in both; probably too narrow 

5018936 3 16 5903.7 ?? Not sure; small patch of land; seems to serve various uses; sometimes 
grass; sometimes arable 

5023341 23 16 5302.9 no Half woodland; half suburban in both 

5030754 3 1 7066.9 no GE shows is as a mix trees, garden, allotment/veg garden; prob. no major 
changes 

5041035 1 23 5891.6 no Mix of trees, wood and grass, in both, but affected by arable field to south 

5042302 10 23 6568.3 no Mix of grass, buildings, trees (suburban) in both 

5047361 3 23 6815.6 no Small suburban parcel, no change. 

5047410 23 2 8074.2 no Small suburban polygon; no change 

5050226 3 4 22018.7 no Small parkland polygon; no change 

5052301 23 16 15158.6 no Mix of river, road, houses & gradens; no change 

5066182 4 16 6315.7 no narrow patch of grassland, between road and trees; no chnage 

5575918 3 23 9266.5 no Small suburban polygon; no change 

5592911 2 16 7002.5 no Small suburban polygon; no change 

5594897 3 1 6687.1 no Small patch of scrub/heathland 

5596337 4 1 7365.2 no Small suburban polygon; no change 

5599311 3 9 18191.7 yes arable to grassland 

6642899 3 1 5489.2 no small suburban polygon 

6643138 3 4 7516.8 no Small suburban polygon 
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Table 13.7  Additional details for the 30 randomly selected polygons from the post-classification change 
detection (difference between the 2002 and 2011 classifications). 
poly_i
d 

2002 pixel distribution 2002 
class 

2011 
class 

2011 pixel distribution chan
ge 

36882
2 

0,0,0,0,0,0,0,0,0,65,0,0,0,0,0,0,5,0,0,0,0,0,0,
0,70,9 

9 4 0,0,0,5,62,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,70,4 

yes 

37078
7 

0,84,56,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0
,0,1,154,1 

1 2 0,73,77,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,154,2 

yes 

38215
9 

0,0,1,119,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,122,3 

3 4 0,0,5,8,101,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0
,0,3,122,4 

yes 

19832
77 

0,8,5,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,16,1 

1 2 0,6,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,16,2 

no 

20221
29 

0,0,0,36,2,0,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,0,
12,57,3 

3 4 0,0,13,4,23,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0
,0,10,57,4 

no 

20391
54 

0,3,0,3,0,0,0,0,0,0,7,0,0,0,0,0,3,0,0,0,0,0,0,2
,18,10 

10 2 0,1,4,3,3,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,0,
1,18,2 

no 

20400
01 

0,0,1,7,1,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,2
,18,3 

3 23 0,0,0,1,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
10,18,23 

no 

20439
81 

0,8,1,0,0,0,0,0,0,4,1,0,0,0,0,0,3,0,0,0,0,0,0,1
,18,1 

1 9 0,3,0,0,0,0,0,0,0,12,0,0,0,0,0,0,3,0,0,0,0,0,
0,0,18,9 

no 

23727
25 

0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,5,1 

1 2 0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,5,2 

?? 

23766
88 

0,0,0,14,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,28,3 

3 4 0,0,0,0,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,28,4 

yes 

49744
87 

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,5
,8,23 

23 16 0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,
2,8,16 

no 

49748
00 

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
,4,23 

23 10 0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,
0,4,10 

no 

49806
58 

0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,4,9 

9 1 0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,4,1 

no 

50189
36 

0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,5,3 

3 16 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,
0,5,16 

?? 

50233
41 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3
,3,23 

23 16 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,
1,3,16 

no 

50307
54 

0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,6,3 

3 1 0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,6,1 

no 

50410
35 

0,2,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,5,1 

1 23 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
3,5,23 

no 

50423
02 

0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1
,6,10 

10 23 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
5,6,23 

no 

50473
61 

0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2
,6,3 

3 23 0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,6,23 

no 

50474
10 

0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3
,7,23 

23 2 0,2,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,7,2 

no 

50502
26 

0,0,0,8,0,0,0,0,0,5,4,0,0,0,0,1,2,0,0,0,0,0,0,1
,21,3 

3 4 0,2,0,0,11,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,
0,4,21,4 

no 

50523
01 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,8
,13,23 

23 16 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,1,
5,13,16 

no 

50661
82 

0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,4,4 

4 16 0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,
0,4,16 

no 

55759
18 

0,1,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
,7,3 

3 23 0,1,2,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
2,7,23 

no 

55929
11 

0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,4,2 

2 16 0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,
0,4,16 

no 

55948
97 

0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
,5,3 

3 1 0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,5,1 

no 

55963
37 

0,0,0,1,2,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1
,6,4 

4 1 0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,
0,6,1 

no 

55993
11 

0,0,0,13,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,17,3 

3 9 0,0,0,1,3,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,17,9 

yes 

66428
99 

0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,4,3 

3 1 0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,4,1 

no 

66431
38 

0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,5,3 

3 4 0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,5,4 

no 
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