

JNCC Report 775

Air Pollution Recovery Indicators (APRI) Development of a Butterfly/Moth Indicator Project Report

Risser, H.A., Jarvis, S.G., Rowe, E. and Stevens, C.

January 2025

© JNCC, Peterborough 2024

ISSN 0963 8091

JNCC's report series serves as a record of the work undertaken or commissioned by JNCC. The series also helps us to share, and promote the use of, our work and to develop future collaborations.

For further information please contact:

JNCC, Quay House, 2 East Station Road, Fletton Quays, Peterborough PE2 8YY. <u>https://jncc.gov.uk/</u>

Communications@jncc.gov.uk

This report was produced for JNCC under an external contract, by Risser, H.A. (UKCEH), Jarvis, S.G. (UKCEH), Rowe, E. (UKCEH), and Stevens, C. (Lancaster University) for contract F21-0708-1581 (112).

This document should be cited as:

Risser, H.A.¹, Jarvis, S.G.¹, Rowe, E.¹ & Stevens, C.² (2025). Air Pollution Recovery Indicators (APRI): Development of a Butterfly/Moth Indicator. *JNCC Report 775 (Project Report)*. JNCC, Peterborough, ISSN 0963-8091. https://hub.jncc.gov.uk/assets/f1bef108-faaf-4759-9133-55a1336fc781.

Author affiliations:

¹ UKCEH ² Lancaster University

Acknowledgements:

Major thanks to several UKCEH colleagues, including Colin Harrower for providing us with the RIS GAI data, Sam Tomlinson and Cristina Martin Hernandez for their help with accessing and understanding the atmospheric pollutant datasets, Thomas Mondain-Monval for providing JASMIN support, and Aneurin O'Neil for mapping support. We would also like to thank all volunteers and staff who have contributed records to the UK Butterfly Monitoring Scheme and Rothamsted Insect Survey.

JNCC EQA Statement:

This document is compliant with JNCC's Evidence Quality Assurance Policy https://jncc.gov.uk/about-jncc/corporate-information/evidence-quality-assurance/

Whilst every effort is made to ensure that the information in this resource is complete, accurate and up-to-date, JNCC is not liable for any errors or omissions in the information and shall not be liable for any loss, injury or damage of any kind caused by its use. Whenever possible, JNCC will act on any inaccuracies that are brought to its attention and endeavour to correct them in subsequent versions of the resource but cannot guarantee the continued supply of the information.

This report and any accompanying material is published by JNCC under the <u>Open</u> <u>Government Licence</u> (OGLv3.0 for public sector information), unless otherwise stated. Note that some images may not be copyright JNCC; please check sources for conditions of reuse.

The views and recommendations presented in this report do not necessarily reflect the views and policies of JNCC.

Summary

This project was undertaken to better understand the potential effects of atmospheric nitrogen (N) pollution upon butterflies and moths (Lepidoptera) in the UK. We used data from long-term monitoring schemes to understand the potential effects of N upon individual Lepidoptera species, summary metrics such as community richness, and within trait groupings. We used a spatiotemporal Generalised Additive Modelling (GAM) approach to test the response of each variable to N, whilst also accounting for other important drivers of change in Lepidoptera (e.g. climate).

We found strong evidence that total butterfly richness was negatively correlated with historic N pollution, but no evidence that total butterfly abundance was impacted by historic N. Both total moth abundance and richness were negatively correlated with the percentage change in N at the site over time, but positively correlated with historic N. The strength and direction of responses of Lepidopteran trait groupings and individual species to N were varied and complex. The abundance of many butterfly and moth species was negatively correlated with historic N. Conversely, the abundance of certain other species was positively correlated with historic N. This demonstrates that individual species may respond very differently to N, with some being favoured whilst others lose out. These results act as a baseline for our understanding of the potential effects of N on invertebrate fauna in the UK.

Using this knowledge of the effects of N on Lepidoptera, we then scoped ideas for the development of an air pollution recovery indicator for Lepidoptera species in the UK. We also suggested potential follow-on work needed to achieve this recovery indicator for Lepidoptera.

Contents

Sur	nma	ry		C
1.	Intr	oduc	tion	1
2.	Dat	a col	lation: Datasets	2
2	.1.	Lep	idoptera abundance/occurrence	2
	2.1 Wio	.1. der C	Standardised monitoring schemes: UK Butterfly Monitoring Scheme and ountryside Butterfly Survey	2
	2.1	.2.	Standardised monitoring schemes: Rothamsted Insect Survey	2
	2.1	.3.	Other monitoring schemes	3
	2.1	.4.	Opportunistic data	3
2	.2.	Lep	idoptera traits	4
2	.3.	Poll	utant deposition	4
2	.4.	Clin	nate	4
2	.5.	Lan	d Use	5
2	.6.	Data	a limitations	5
3.	Dat	a col	lation: Methodology	6
3	.1.	Met	hods	6
	3.1	.1.	Data transformation	6
	3.1	.2.	Introduction to modelling	7
	3.1	.3.	Single species modelling	8
	3.1	.4.	Combined species metrics modelling	8
	3.1	.5.	Trait modelling	8
3	.2.	Res	sults	9
	3.2	.1.	Data exploration	9
	3.2	.2.	Single species modelling	16
	3.2	.3.	Combined species metric modelling	64
	3.2	.4.	Trait modelling	66
4.	Dis	cussi	ion	72
4	.1.	Sing	gle species	72
4	.2.	Cor	nbined species metrics	73
4	.3.	Trai	its	74
4	.4.	Fur	ther work and indicator development	74
	4.4	.1.	Introduction	74
	4.4	.2.	Nitrogen datasets	75
	4.4	.3.	- Additional analyses	75
	4.4	.4.	Developing a causal understanding of N impacts on Lepidoptera	76
Ref	eren	ces.		77
Glo	ssar	y		80
		-		

1. Introduction

Atmospheric nitrogen (N) pollution is a leading cause of biodiversity loss in the UK and other countries. Several recent studies have highlighted the potential link between N pollution and changes in the abundance, richness, and distribution of butterflies (e.g. Betzholtz *et al.* 2013; Klop *et al.* 2015; Öckinger *et al.* 2006; Roth *et al.* 2021; Wallisdevries & Swaay 2013). In the UK, there is a lack of published evidence that nitrogen pollution affects butterflies. In addition, the potential impacts of N on moths have been generally understudied. A recently published master's thesis by Risser (2023) began to disentangle the complex relationships between N and butterflies in the UK and provides a comprehensive overview of the relevant literature on this topic.

As some areas of the UK continue to receive declining pressure from atmospheric nitrogen deposition, it is important from a policy perspective to measure whether seminatural habitats and the species inhabiting them are undergoing any associated recovery. Initial scoping of these potential recovery indicators is described in Perring *et al.* (2024). This report highlighted the importance of including an indicator of recovery for butterflies and/or moths, partly because they are of great public appeal.

In this report, we conducted a study using data from long-term monitoring schemes to understand the potential effects of N upon individual Lepidoptera species, summary metrics such as community richness, and within trait groupings. These results act as a baseline for our understanding of the potential effects of N on invertebrate fauna in the UK. Using this knowledge of the effects of N on Lepidoptera, we then scoped ideas for the development of an air pollution recovery indicator for butterfly species in the UK. We also suggested potential follow-on work needed to achieve this recovery indicator for Lepidoptera.

2. Data collation: Datasets

In this section, we briefly describe the datasets available on Lepidoptera abundance and occurrence in the UK, outlining the strengths and weaknesses of each and discussing which are most suitable for use in the analysis. Similarly, we describe the various driver datasets available, including those on pollutant deposition, climate, and land-use. We chose to use a single butterfly and a single moth dataset in this analysis rather than integrating data from multiple datasets due to the methodological complexity that would involve.

2.1. Lepidoptera abundance/occurrence

2.1.1. Standardised monitoring schemes: UK Butterfly Monitoring Scheme and Wider Countryside Butterfly Survey

The United Kingdom Butterfly Monitoring Scheme (UKBMS) began recording data in 1976 and now records information on 71 species at over 2,000 sites per year using a combination of fixed transects, the Wider Countryside Butterfly Survey (WCBS), timed counts, and egg and larval nest monitoring. Long-term temporal trends were created for 56 of the 59 UK butterflies in 2015 (Fox *et al.* 2015). Chequered Skipper *Carterocephalus palaemon*, Cryptic Wood White *Leptidea juvernica* and Mountain Ringlet *Erebia epiphron* were excluded due to insufficient data being available for those species. Samples are not evenly distributed across the UK because transect locations are usually chosen by the recorder. In addition, transectbased surveys may vary in length. Data are collected by competent volunteers and verified by automated checks, UKBMS Branch Coordinators, and staff at Butterfly Conservation and UKCEH. UKBMS data are used to produce the UK Biodiversity Indicator C6 for butterflies.

Using these data, a Generalised Abundance Index (GAI) is calculated which considers all butterflies recorded across the whole season to create an overall index of maximum species abundance at a site in a particular year, whilst accounting for seasonal variation and missing data (Dennis *et al.* 2016). The GAI site indices are produced using Generalised Additive Models (GAMs) individually fitted to data for each species/site/year combination and so are only available for sites/species/years with sufficient counts. They are reliant on data for the site and year and do not consider species dynamics at other sites. Site index data are openly available (Botham *et al.* 2023).

In this study, we chose to use butterfly data from the UKBMS. Despite the slight spatial biases detailed above, the dataset provides unmatched spatial and temporal coverage.

2.1.2. Standardised monitoring schemes: Rothamsted Insect Survey

The Rothamsted Insect Survey (RIS) Light-trap Network, set up in the 1960s, collects data on (primarily) macro-moths at around 80 traps in the UK and Ireland (Stewart *et al.* 2007). The scheme uses high-powered night traps to sample nocturnal moths. RIS data contribute to the creation of UK moth trends, including the state of moths' report (Fox *et al.* 2021).

This dataset provides the longest time series of standardised moth trap data from across the UK and is therefore very useful for detecting temporal trends. Spatial coverage of RIS traps is not random, therefore the data are likely to be somewhat spatially biased across the UK. Additionally, the traps require mains power and so are unlikely to be placed in extremely remote locations. Despite these caveats, the RIS dataset provides the best long-term standardised survey of moths with decent spatial coverage of the UK.

2.1.3. Other monitoring schemes

2.1.3.1. Garden Moth Scheme

The Garden Moth Scheme (GMS) is a citizen science programme designed to collect standardised data from garden moth traps by encouraging participants to record data weekly over the March-November survey season. Data from the scheme has been used in several studies (e.g. Bates *et al.* 2014; Wilson *et al.* 2018). GMS data collection from across the UK only began in 2007, and therefore does not provide us with a sufficiently long time-series for use in this analysis.

2.1.3.2. Big Butterfly Count

The Big Butterfly Count (BBC), run by Butterfly Conservation, is a citizen science survey launched in 2010. The method requires volunteers to count butterflies for 15 minutes during specific weeks in the summer. Recorders only count selected species of butterflies and a few macro-moths from a pre-defined species list, meaning that not all species are surveyed. BBC data can be used complement, but not replace, more standardised monitoring schemes like the UKBMS (Dennis *et al.* 2017).

2.1.3.3. Garden Butterfly Survey

The Garden Butterfly Survey (GBS) is a citizen science scheme run by the charity Butterfly Conservation in the UK. The GBS collects records in private gardens, community gardens, and allotments. Species data from the scheme are verified by county recorders. The scheme also collects information about surveyors' gardens to allow researchers to explore, for example, the impact of wildlife friendly garden practices on butterflies. Volunteer recorders are not required to follow a set method which can be challenging for replication and makes it important to have larger numbers of samples to accommodate the expected variation when trying to detect change.

2.1.3.4. National Moth Recording Scheme

The National Moth Recording Scheme (NMRS), launched in 2007 but including data from much earlier, is a database of moth records from the UK. The database holds over 34 million records, all of which are verified by county moth recorders.

The NMRS data provide the greatest spatial coverage of any moth recording scheme and contribute to the creation of UK-wide occupancy trends (Randle *et al.* 2019). The scheme covers all moth species (macro or micro) found in the UK, including those that are diurnal as well as nocturnal. Data also contribute to the creation of UK moth trends, including the state of moths' report (Fox *et al.* 2021). NMRS data are mainly collected by opportunistic recorders rather than using a standardised method, so any analyses using the data must account for differences such as in recording effort or the type of trap used.

2.1.4. Opportunistic data

Much of the opportunistic moth data collected by recorders is collated and verified by the NMRS as detailed above. County butterfly recorders collate data in a similar manner, ensuring that records are verified. They often collate data from various sources, including those submitted directly to them and through platforms such as iRecord. Various other data sources exist, such as iNaturalist and social media posts, but it is often difficult to verify the identification and location accuracy of these records.

2.2. Lepidoptera traits

Trait data for macro-Lepidoptera (butterflies and macro-moths) were taken from the Cook *et al.* (2024) dataset. This database contains information from a variety of published sources and reports information on each species' life cycle, host plants, habitat, and trends over time in abundance and distribution. Similar trait information is available for selected micro-moth species should micro-moths be considered in any future analysis (Howell *et al.* 2023). An analysis of all micro-moth species would necessitate the creation of a more comprehensive traits database covering a wider array of species because such a database does not currently exist. It is worth noting that trait databases are a collation of relevant evidence from literature, so traits data may not be comprehensive for species whose traits are poorly understood. This is most likely to be the case for rare or elusive species. In this study, we use the trait database created by Cook *et al.* (2024) because it includes the best available trait data for UK butterfly and macro-moth species.

2.3. Pollutant deposition

In this analysis, we used a single static measure of historic total nitrogen deposition as in Henrys *et al.* (2011). We calculated a measure of historic total nitrogen deposition as the estimated value in 1996 from the Concentration Based Estimated Deposition (CBED) model for deposition to moorland (Levy *et al.* 2020). Data from 1996 were chosen because this represents the approximate mid-point of the two main Lepidoptera datasets used. Note that each year of data in the CBED dataset is the average of the current, previous, and next year, meaning that the 1996 data points are the average of the values in 1995–1997. We also used a measure of change over time in nitrogen deposition at a site, calculated as the percentage change between deposition in 1986 and 2012 from the CBED model for deposition to moorland (Levy *et al.* 2020). Both metrics were calculated at 5 x 5 km resolution. The scale of this data means that we are likely to miss finer-scale variation in pollutant deposition values, however, we judged it to be the most suitable dataset to use in this analysis.

In the scoping work for this project, we identified a stage in the modelling of UK-wide nitrogen datasets whereby historic emissions are calculated using a more recent ammonia emissions field. Thus, older estimates of nitrogen deposition may not be as spatially granular. Therefore, we have been cautious when interpreting the model results with respect to spatial change in nitrogen deposition over time.

There are several other datasets on UK pollutant emissions available which were not used in this project, including datasets created using the Fine Resolution Multi-pollutant Exchange (FRAME) model (Tomlinson *et al.* 2020) and the EMEP4UK model (Scheffler and Vieno, 2022; Scheffler *et al.* 2024). Following discussion with atmospheric nitrogen pollution experts at UKCEH and given that the 2024 EMEP4UK outputs were not available at the time of performing the analyses, we chose to use the CBED dataset for deposition to moorland.

2.4. Climate

The impact of weather variables on butterflies is complex and species dependent (Roy *et al.* 2001). We represented summer temperature from the current and previous years using the average June temperature from each year, and summer rainfall as the June rainfall from each year. Whilst these may not be ideal for all species, particularly those for which climate associations are still untested (including many of the moths), they were used in this analysis to provide a generalised approach. Annual data were obtained from the Met Office HadUK-Grid at 1 km resolution (Met Office *et al.* 2023).

2.5. Land Use

The UKCEH Land Cover Map (LCM) provides information on land cover in the UK at 1 km resolution in 21 target habitat classes. To calculate land use intensity (LUI), we calculated the sum of arable land and improved grassland in each 1 km square in both 1990 (Rowland *et al.* 2020a, 2020b) and 2015 (Rowland *et al.* 2017a, 2017b) to give us a representation of land use intensity which is equal to the proportion of intensive habitats within the square. For example, if 5% of a square was classified as arable land and 12% as improved grassland, the square would have an LUI value of 17 out of 100. This gives an idea of intensity within the square that each UKBMS transect is placed at these two time points. We found that LUI across the UK in 1990 and 2015 were strongly positively correlated, with a Pearson's correlation coefficient of 0.97. We therefore chose to use the LUI value for 1990 only in all further analysis. Due to the limited coverage of the LCM, we could not calculate the LUI for the Republic of Ireland, Isle of Man, and Channel Islands.

2.6. Data limitations

Whilst we did show that the UKBMS and RIS sites cover a broad range of N deposition values (Figures 4 and 5, Section 3.2.1) enabling us to model the effects of both extremely low and high deposition, there is uncertainty in the deposition values and potential issues affecting our ability to detect spatial change in deposition. These potential issues are discussed in section 2.3 of this report.

It is worth noting that all driver datasets used in this analysis give modelled estimates of the variable of interest, meaning that there may be some uncertainty in the final values. Additionally, the spatial scale of the driver datasets will impact the accuracy of the value assigned to the specific UKBMS transect or RIS trap. Climate and LUI variables were calculated at 1 x 1 km scale, whereas pollutant deposition variables were calculated at 5 x 5 km scale. This means that finer scale variation in the driver variables, particularly those representing pollutant deposition, is likely to be lost as values are averaged across the grid square.

There are various caveats to the Lepidopteran datasets used within this analysis that are important to note. Both the UKBMS and RIS have a non-random location structure, and therefore do not provide an unbiased coverage of the UK. RIS trap placement is somewhat dictated by proximity to power sources. UKBMS transects have some tendency to be in higher quality areas in close proximity to towns or cities, due to the nature of the transects being set up in areas where volunteers can feasibly get to and actively want to record at on a weekly basis. The inclusion of data from the WCBS helps to overcome this but likely does not solve all issues of bias.

This analysis provides robust correlative evidence of the impacts of N on resident UK butterfly species. Evidence of the impacts of N on UK resident moths is poorer due to the relatively limited spatial and taxonomic coverage of the moth dataset used. As with all moth data recorded using light traps, it is also worth noting that high-powered traps like those used by the RIS likely attract moths from a relatively large distance due to their flight response towards to the high-powered light, meaning that moths may be drawn in from outside of the habitat immediately surrounding the trap. The attraction range may also vary by moth size, sex, group, and the level of artificial light pollution in the surrounding area (Van de Schoot *et al.* 2024), which we have not accounted for. In addition, there is some potential loss of spatial independence in the RIS GAI data due to reliance on yearly flight curves from UK-wide sites to fill in missing data at individual sites. We attempted to mitigate this by filtering out rows of data where most of a species' flight curve was not sampled in a particular site and year, but some interdependence may remain.

3. Data collation: Methodology

In this section, we used data from long-term monitoring schemes to model the potential effects of nitrogen upon individual Lepidoptera species, summary metrics such as community richness, and within trait groupings.

3.1. Methods

3.1.1. Data transformation

In the UKBMS site indices dataset, values of '-2' are given where the species was present but insufficient data were available to calculate the GAI. These values were treated differently in the abundance and richness models detailed below in sections 3.1.3, 3.1.4, and 3.1.5, with -2 values being transformed to: NA for abundance models, and 1 for richness models. This allows us to include the species presence in the richness estimates even though there is insufficient information to estimate abundance accurately. Site indices are only given for species observed at that site within the survey season. Thus, zero values were assigned for the site index of Lepidoptera species not recorded in the site and survey year. In addition, the data were filtered on a species-by-species basis to only include sites where the species had been observed at least once within the time series. At sites where the individual species has been observed in at least one year, we removed rows showing zero or NA counts from before that year. For example, imagine a situation at site X which has undergone UKBMS surveying from 1992-2022 where the species Aglais io had its first positive count in 2005. Only data from 2005 onwards at that site would therefore be included in the single species analysis. This is because we are interested in testing the potential effect of N on each individual species' abundance, not their occurrence.

In the RIS GAI dataset, the proportion of the annual flight curve/flight period for that species that was surveyed at that site (using weekly data) is noted. The flight curve of a species' represents the dates during which the adults are actively flying. The distribution of a species' flight curve may be unimodal, bimodal, or multimodal depending on the number of generations it has in a given year. Due to the intensive sampling method used by the RIS, most proportions of annual flight curve/flight period are higher than 0.9 (Figure 1a). Where the proportion of the flight curve sampled is very low, the resulting calculation of the site index may be misleading. Thus, it is sensible to filter the dataset to only include samples with a large proportion of the flight curve of that species in that site and year had been sampled because this gave the most trustworthy GAI estimates without causing a large reduction in the amount of data available for analysis (Figure 1b). The zero and NA count data were treated similarly to the UKBMS GAI dataset. Due to the different method used to create the RIS GAI, values of '-2' are not present in the original dataset.

(a)

(b)

Figure 1a & 1b: Histogram of the frequency of values present in the RIS GAI dataset for the variable representing the proportion of the annual flight curve for that species that was surveyed at that site (1a). Size of RIS GAI dataset (number of rows) when filtered to different cut-off proportions of the annual flight curve surveyed, where a cut-off of 0.0 includes the whole dataset and a cut-off of 0.2 includes rows where >20% of the flight curve for that species was sampled (1b).

Within the RIS dataset, data were collected on three micro-moth species: *Nomophila noctuella*, *Plutella xylostella*, and *Udea ferrugalis*. These were not considered in our analysis due to insufficient trait data being available in the Cook *et al.* (2024) database. The RIS do not distinguish the macro-moths *Mesapamea secalis* and *M. didyma* to species level, rather recording them as their aggregate *M. secalis/didyma*. This is common practice because these two species cannot be accurately identified without microscopic examination of their genitalia. In Cook *et al.* (2024), traits are resolved to species level for this genus. Where the traits we are interested in for this study (Table 1, Section 3.1.5) were similar for these two species, such as their voltinism, overwintering stage, hostplant category, flight season, and habitat, we aggregated trait values. Their aggregated hostplant specificity was assigned an NA value because it differs, with *M. didyma* being oligophagous whereas *M. secalis* is polyphagous.

The spatial coverage of the final UKBMS and RIS datasets used in this analysis are detailed in Section 3.2.1 (Figures 3a and 3b). For each UKBMS transect and RIS trap to have colocated land cover driver data for each year, we had to filter out certain locations, including the Republic of Ireland, Isle of Man, and Channel Islands.

3.1.2. Introduction to modelling

The aim of this modelling is to establish a baseline of evidence of N impacts on butterflies and moths. We analysed the data at three levels to see if/where important relationships are present. We used a Generalised additive model (GAM) approach to identify potential relationships, including those that are non-linear. The GAM approach will allow us to explore relationships between N and Lepidoptera without constraining the relationships to be linear so we can identify (e.g. saturating relationships, or hump-backed relationships where N is beneficial in small amounts). This flexible approach at this stage of indicator exploration ensures the greatest likelihood to identify any potential relationships.

One potential disadvantage of GAMs is that they can overfit the data, indicating changes in relationships that are not generalisable beyond the specific input data used. This can be a

particular problem where the datasets are large, as is the case for some of the models in this report. To avoid this, we limited the potential flexibility of the models by setting the number of basis functions to 4 (where more basis functions allows more wiggly relationships and hence higher potential for overfitting). This choice of basis functions still allows the model to capture a range of non-linear relationships but means the potential for overfitting should be low.

We chose to fit a consistent set of predictors in each GAM model, described below, which were chosen to represent the most important drivers across all Lepidopteran species. To ensure models could be fit to responses where we had less data (e.g. individual species models) we selected a limited set of predictors which could be applied to as many models as possible. This means we may not be able to capture the complexity of ecological relationships for each species, but we are able to model many species.

All models were fit using the bam function from the mgcv R package (Wood, 2017) with a negative binomial distribution. Model predictions were produced using the ggeffects (Lüdecke 2018) package and plotted using the ggplot2 (Wickham 2009) package. Due to the complexity of the models and the associated computing power required, models were run on the JASMIN data analysis platform.

3.1.3. Single species modelling

To identify the impact of nitrogen on each butterfly and moth species, we fit a separate GAM to each species for which we had sufficient data. Models were fit as follows:

Abundance of individual species ~ *Year* + *Historic N deposition*

- + Change in N deposition over time + Historic S deposition
- + June temperature + Previous June temperature + Land Use Intensity
- + June rainfall + Location + Site number

3.1.4. Combined species metrics modelling

To identify the potential impact of nitrogen on the higher-level metrics of richness and total abundance of the whole community, we fitted a separate GAM to each metric for butterflies and moths separately. Models were fit as follows:

Richness ~ *Year* + *Historic N deposition* + *Change in N deposition over time*

+ *Historic S deposition* + *June temperature* + *Previous June temperature*

+ Land Use Intensity + June rainfall + Location + Site number

Total abundance ~ *Year* + *Historic N deposition* + *Change in N deposition over time*

+ *Historic S deposition* + *June temperature* + *Previous June temperature*

+ Land Use Intensity + June rainfall + Location + Site number

3.1.5. Trait modelling

There are a few ways modelling the impacts of N on Lepidoptera could have been approached considering the traits we expect to impact this relationship. The simplest method is to provide a qualitative summary of the number of species in each trait group responding

positively or negatively to N identified in the single species modelling above, as done in Risser (2023).

We quantitatively tested the effect of N on multiple groups of the Lepidoptera subset by traits, as in Staley *et al.* (2022). We calculated metrics such as the abundance of univoltine butterflies and fit the same GAM structure as shown for combined species metrics. This allowed us to understand the potential differences in response of the combined species metrics when considering data from specific trait groupings rather than all species. This is a commonly applied approach and lets us confidently review the impacts quantitatively.

The traits we tested based on evidence suggesting that they are likely to be impacted by N are described in Table 1.

Trait grouping	Traits
Habitat	Heathland, moorland, calcareous grassland, acid grassland, bogs mosses and mires
Overwintering stage	Egg, larva, pupa, adult
Voltinism	Univoltine, multivoltine
Flight season	Early Lepidoptera or Late Lepidoptera
Hostplant specificity	Monophagous, Oligophagous, Polyphagous
Broad hostplant category	Grasses, forbs, lichens

Table	1:	Traits	tested	in	the	trait	modelling	analyses
I UNIC		Trano	losicu			uuu	mouching	unuryses.

It was not possible to test all trait groupings as there may be insufficient data for some groups. Where this occurred, we note this in the results. Note that none of the resident UK butterfly species feed on lichen, thus we were only able to test the effect of N on moth species with lichen as a larval food. We attempted to test the effect of N on Lepidoptera species associated with mosses, however, none of the resident UK butterfly species feed on mosses and insufficient data were available for moss-feeding moths. Some moths feed on mosses as larva, however, only one such species was recorded in the survey, the Gold Swift *Phymatopus hecta* which has been observed feeding on *Mnium hornum* (Henwood *et al.* 2020). This did not provide us with enough data to run the model.

3.2. Results

3.2.1. Data exploration

Deposition of total N (measured in kg N ha-1) varies both spatially and temporally (Figures 2a, 2b & 2c). In general, deposition values have lowered over time. In 1986 and 1996, deposition is generally highest in western GB. Deposition in Northern Ireland appears to have increased over time. Deposition values in 1986 and 1996 are very highly collinear with a correlation value of 0.88 (Figure 2d). Values in 1986 and 2012 are not strongly correlated with a correlation value of 0.44.

Figure 2a, 2b, 2c & 2d: Deposition of total N (kg N ha⁻¹) to UK in 1986 (a), 1996 (b), and 2012 (c) from the CBED model of deposition to moorland. 2d shows the correlation between these three variables.

Percentage change in deposition of total N (measured in kg N ha⁻¹) between the two time points tested varies both spatially and temporally. Percentage change is greatest over the UK between 1986 and 2012 (Figure 3a). Despite clear visual differences in the spatial signal of the two time periods shown, the overall values are strongly colinear with a correlation value of 0.77.

(C)

Figure 3a, 3b & 3c: Percentage change in deposition of total N (kg N ha⁻¹) to UK between 1986–2012 (a) and 1996–2012 (b) from the CBED model of deposition to moorland. 3c shows the correlation between these two variables. NB: panel (a) excludes a single % change value of > 400 ('868.17') in Northern Ireland.

The spatial coverage of the two Lepidopteran datasets used in this analysis differ (Figures 4a and 4b). The RIS dataset provides relatively even coverage of the UK, with slightly sparser data in the far north of Scotland and western Northern Ireland, and more dense coverage in south-eastern England. The UKBMS has slightly more uneven coverage, especially in northern Scotland and rural upland areas generally. Both datasets have limited coverage of Scottish Islands and the Isle of Man. The datasets also differ in the total number of sample locations, with the UKBMS having approximately 25 times more sampling sites than the RIS.

Figure 4a & 4b: Locations of RIS (a) and UKBMS (b) monitoring sites. RIS sites were monitored between 1968–2021, whereas UKBMS sites were monitored between 1973–2022. Note that not all sites are monitored in every year, some sites only have data for a very limited number of years, and some sites will have stopped being monitored fairly early on in the time series.

The gradient of total N deposition in 1996 (Figure 5a) is well covered by both the UKBMS (Figure 5b) and the RIS (Figure 5c), with neither survey scheme oversampling extremely high N deposition values. There is perhaps some under sampling by the UKBMS at the lower end of the N deposition range, which can be seen by visually comparing Figures 5a and 5b.

(C)

Figure 5a, 5b & 5c: Distribution of total N deposition values in 1996 across all 5 km squares in the UK (a), UKBMS site locations (b), and RIS site locations (c). Values are taken from the CBED model of deposition to moorland.

The gradient of percentage change in total N deposition values between 1986–2012 (Figure 6a) is well covered by both the UKBMS (Figure 6b) and the RIS (Figure 6c).

(c)

Figure 6a, 6b & 6c: Distribution of percentage change in total N deposition values between 1986–2012 across all 5 km squares in the UK (a), UKBMS site locations (b), and RIS site locations (c). Values are taken from the CBED model of deposition to moorland. NB: panel (a) excludes a single % change value of > 400 ('868.17') in Northern Ireland because it heavily skews the plot.

The area of the UK categorised as experiencing an increase, decrease, or no change in deposition varies depending on the threshold used to characterise the categories (Figures 7a, 7b, 7c & 7d). There are clear spatial clusters of the categories. Areas that have experienced a decrease in deposition tend to be in western and south-eastern Great Britain (GB), although this decrease in south-eastern GB is much less apparent at higher threshold values. In GB, increases in deposition are concentrated in the east coast of Scotland, western England, and south-western England. At all thresholds, Northern Ireland has primarily experienced an increase in deposition.

Figure 7a, 7b, 7c & 7d: Categorical groups of the percentage change in nitrogen in each 5 km grid square across the UK between 1986–2012 to represent decline, no change, and increase. In panel a, decline denotes values of \leq -20%, increase of \geq 20%, and no change of -20 < x < 20. In panel b, decline denotes values of \leq -30%, increase of \geq 30%, and no change of -30 < x < 30. In panel c, decline denotes values of \leq -40%, increase of \geq 40%, and no change of -40 < x < 40. In panel d, decline denotes values of \leq -50%, increase of \geq 50%, and no change of -50 < x < 50.

At all thresholds, there are more 5 km squares that experienced a decrease or no change in deposition than an increase (Figures 8a, 8b, 8c & 8d). Increasing the threshold from 20% to 50% has a far greater impact on the number of 5 km squares classed as decreasing than those classed as increasing.

Figure 8a, 8b, 8c & 8d: Counts of the number of 5 km squares in each category of percentage change in nitrogen in each 5 km grid square between 1986–2012. In panel a, decline denotes values of \leq -20%, increase of \geq 20%, and no change of -20 < x < 20. In panel b, decline denotes values of \leq -30%, increase of \geq 3 0%, and no change of -30 < x < 30. In panel c, decline denotes values of \leq -40%, increase of \geq 40%, and no change of -40 < x < 40. In panel d, decline denotes values of \leq -50%, increase of \geq 50%, and no change of -50 < x < 50.

3.2.2. Single species modelling

Models were fit for 56 butterfly species (Table 2). Of these, results for 8 species were inconclusive due to insufficient input data, usually because the species is rare or very range restricted. We noted where species are primarily migratory as the factors influencing their population trends are likely to be poorly explained by our models, given that much of their life cycle takes place in another country.

Responses to historic N were mixed, with the abundance of 10 species showing a negative correlation with the variable, two species showing a hump-backed relationship, two species showing a significant trend with no clear relationship, and 14 species showing a positive correlation. The abundance index of 20 butterfly species had no significant association with historic N.

Modelled responses to the percentage change in N deposition at a site over time were also mixed, with the abundance of four species showing a negative correlation with the variable, four species showing a hump-backed relationship, three species showing a significant trend

with no clear relationship, and 6 species showing a positive correlation. The abundance index of 31 butterfly species had no significant association with historic N.

The abundance of only two species, Wall *Lasiommata megera* and Gatekeeper *Pyronia tithonus*, showed a negative correlation with both historic N and percentage change in N over time (Figures 9 and 10). The abundance index of the Marbled White *Melanargia galathea* and Speckled Wood *Pararge aegeria* both showed a hump-backed response to historic N (Figures 11 and 12).

Table 2: Table of results showing the direction ($\mathbf{1}$ = positive trend; \mathbf{I} = negative trend) and significance of relationships between abundance of individual butterfly species and deposition driver variables ($\mathbf{0}$ = humpbacked relationship; ~ = no significant trend) (*** = P < 0.001; ** = 0.001 < P < 0.01; * = 0.01 < P < 0.005; n.s. = non-significant; NA (not applicable) values are given where the model did not converge or was not run).

Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
Aglais io	Peacock	n.s.	N ***	↓ ***	-
Aglais urticae	Small Tortoiseshell	n.s.	1 ***	1 **	-
Anthocharis cardamines	Orange-tip	1 **	1 ***	n.s.	-
Apatura iris	Purple Emperor	NA	NA	NA	Insufficient data (n = 401)
Aphantopus hyperantus	Ringlet	1 ***	N *	↓ ***	-
Argynnis paphia	Silver-washed Fritillary	↑ ***	n.s.	↓ ***	-
Aricia agestis	Brown Argus	1 ***	~ **	↓ ***	-
Aricia artaxerxes	Northern Brown Argus	n.s.	n.s.	n.s.	-
Boloria euphrosyne	Pearl-bordered Fritillary	n.s.	n.s.	n.s.	-
Boloria selene	Small Pearl-bordered Fritillary	↑ **	n.s.	† *	-
Callophrys rubi	Green Hairstreak	n.s.	n.s.	n.s.	-

Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
Celastrina argiolus	Holly Blue	↓ ***	1 *	1 ***	-
Coenonympha pamphilus	Small Heath	1 ***	n.s.	↓ ***	-
Coenonympha tullia	Large Heath	NA	NA	NA	Insufficient data (n = 188)
Colias croceus	Clouded Yellow	↓ *	n.s.	n.s.	Primarily migratory
Cupido minimus	Small Blue	n.s.	n.s.	n.s.	-
Erebia aethiops	Scotch Argus	NA	NA	NA	Insufficient data (n = 285)
Erebia epiphron	Mountain Ringlet	NA	NA	NA	Insufficient data
Erynnis tages	Dingy Skipper	n.s.	n.s.	n.s.	-
Euphydryas aurinia	Marsh Fritillary	n.s.	n.s.	n.s.	-
Fabriciana adippe	High Brown Fritillary	n.s.	↓ *	n.s.	-
Favonius quercus	Purple Hairstreak	n.s.	n.s.	n.s.	-
Gonepteryx rhamni	Brimstone	1 **	n.s.	↓ ***	-
Hamearis lucina	Duke of Burgundy	n.s.	n.s.	n.s.	-
Hesperia comma	Silver-spotted Skipper	n.s.	n.s.	n.s.	-

Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
Hipparchia semele	Grayling	n.s.	† *	n.s.	-
Lasiommata megera	Wall	↓ ***	↓ ***	1 *	-
Leptidea juvernica	Cryptic Wood White	NA	NA	NA	Insufficient data (n = 64)
Leptidea sinapis	Wood White	n.s.	n.s.	n.s.	-
Limentis camilla	White Admiral	n.s.	n.s.	t *	-
Lycaena phlaeas	Small Copper	1 *	n.s.	n.s.	-
Maniola jurtina	Meadow Brown	† *	n.s.	1 ***	-
Melanargia galathea	Marbled White	N***	n.s.	↓ *	-
Melitaea athalia	Heath Fritillary	NA	NA	NA	Insufficient data (n = 267)
Melitaea cinxia	Glanville Fritillary	NA	NA	NA	Insufficient data (n = 62)
Ochlodes sylvanus	Large Skipper	1 **	n.s.	↓/U ***	-
Papilio machaon	Swallowtail	NA	NA	NA	Insufficient data (n = 101)
Pararge aegeria	Speckled Wood	N***	n.s.	1 **	-
Pieris brassicae	Large White	† ***	N ***	1 **	-

Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
Pieris napi	Green-veined White	1 **	1 ***	n.s.	-
Pieries rapae	Small White	↓ ***	N ***	1 ***	-
Plebejus argus	Silver-studded Blue	n.s.	n.s.	n.s.	-
Polygonia c-album	Comma	↓ ***	1 **	n.s.	-
Polyommatus bellargus	Adonis Blue	~*	~ **	N/~**	-
Polyommatus coridon	Chalk Hill Blue	n.s.	n.s.	n.s.	-
Polyommatus icarus	Common Blue	1 ***	n.s.	↓ ***	-
Pyrgus malvae	Grizzled Skipper	n.s.	~ *	n.s.	-
Pyronia tithonus	Gatekeeper	↓ ***	↓ **	n.s.	-
Satyrium pruni	Black Hairstreak	~*	n.s.	n.s.	-
Satyrium w-album	White-letter Hairstreak	n.s.	n.s.	n.s.	-
Speyeria aglaja	Dark Green Fritillary	1 **	n.s.	↓ **	-
Thecla betulae	Brown Hairstreak	1 *	n.s.	n.s.	-
Thymelicus lineola	Essex Skipper	↓ **	n.s.	n.s.	-

Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
Thymelicus sylvestris	Small Skipper	n.s.	1 *	n.s.	-
Vanessa atalanta	Red Admiral	† *	n.s.	↓/U ***	Primarily migratory. Recent (post-2000s) evidence of overwintering in southern England.
Vanessa cardui	Painted Lady	↓ ***	n.s.	1 ***	Primarily migratory. Larvae unable to overwinter in UK.

Figure 9a & 9b: Predicted abundance index of *Lasionmata megera* (Wall) at an average site against (a) increasing total N deposition (kg N ha⁻¹ in 1996) and (b) percentage change in N deposition 1986–2012.

Figure 10a & 10b: Predicted abundance index of *Pyronia tithonus* (Gatekeeper) at an average site against (a) increasing total N deposition (kg N ha⁻¹ in 1996) and (b) percentage change in N deposition 1986–2012.

Figure 11: Predicted abundance index of *Melanargia galathea* (Marbled White) at an average site against increasing total N deposition (kg N ha⁻¹ in 1996).

Models were fit for 473 moth species (Table 3). Of these, results for six species were inconclusive due to insufficient input data. We were unable to note where species are primarily migratory due to time constraints.

As observed for the butterflies, responses of moths to historic N were mixed. The abundance index of 31 species showed a negative correlation with historic N, eight species showed a hump-backed relationship, 11 species showed a significant trend with no clear relationship, and 64 species showed a positive correlation. The abundance index of 353 moth species had no significant association with historic N.

Modelled responses of moths to the percentage change in N deposition at a site over time were also mixed. The abundance index of 85 species showed a negative correlation with historic N, seven species showed a hump-backed relationship, four species showed a

significant trend with no clear relationship, and 10 species showed a positive correlation. The abundance index of 361 moth species had no significant association with historic N.

Overall, we found that, as expected, individual Lepidopteran species showed a wide range of relationships to N and S deposition, with some being strongly positively correlated to high deposition and some strongly negatively correlated. For individual butterfly species, in most, but not all, cases, the responses to the variables reflecting historic N and the change in N at a site over time were not conflicting.

Table 3: Full table of results showing the direction (= positive trend; \downarrow = negative trend) and significance of relationships between abundance of individual moth species and all driver variables (\cap = humpbacked relationship; ~ = no significant trend) (*** = P < 0.001; ** = 0.001 < P < 0.01; * = 0.01 < P < 0.005; n.s. = non-significant; NA (not applicable) values are given where the model did not converge or was not run).

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
80	Laothoe populi	Poplar Hawk-moth	1 **	n.s.	↓ **	n = 2,757
95	Deilephila porcellus	Small Elephant Hawk- moth	NA	NA	NA	Insufficient data (n = 90)
96	Deilephila elpenor	Elephant Hawk-moth	n.s.	n.s.	n.s.	n = 207
102	Furcula furcula	Sallow Kitten	n.s.	n.s.	n.s.	n = 164
104	Stauropus fagi	Lobster Moth	n.s.	n.s.	n.s.	n = 269
106	Drymonia dodonaea	Marbled Brown	↓ **	n.s.	1 **	n = 605
107	Drymonia ruficornis	Lunar Marbled Brown	n.s.	n.s.	n.s.	n = 541
108	Pheosia tremula	Swallow Prominent	n.s.	n.s.	n.s.	n = 588
109	Pheosia gnoma	Lesser Swallow Prominent	n.s.	n.s.	n.s.	n = 1,579
110	Notodonta ziczac	Pebble Prominent	n.s.	n.s.	n.s.	n = 1,053
111	Notodonta dromedarius	Iron Prominent	n.s.	n.s.	n.s.	n = 703
114	Peridea anceps	Great Prominent	n.s.	n.s.	n.s.	n = 566

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
117	Ptilodon capucina	Coxcomb Prominent	1 *	n.s.	n.s.	n = 2,472
118	Odontosia carmelita	Scarce Prominent	n.s.	n.s.	n.s.	n = 283
120	Pterostoma palpina	Pale Prominent	1 **	n.s.	↓ **	n = 2,028
121	Phalera bucephala	Buff-tip	1 **	n.s.	n.s.	n = 1,639
122	Clostera curtula	Chocolate-tip	n.s.	n.s.	n.s.	n = 400
125	Habrosyne pyritoides	Buff Arches	n.s.	n.s.	n.s.	n = 1,739
126	Thyatira batis	Peach Blossom	n.s.	n.s.	n.s.	n = 1,563
127	Tethea ocularis	Figure of Eighty	n.s.	n.s.	n.s.	n = 303
129	Ochropacha duplaris	Common Lutestring	n.s.	n.s.	n.s.	n = 1,018
130	Tetheella fluctuosa	Satin Lutestring	n.s.	1 ***	n.s.	n = 169
131	Cymatophorina diluta	Oak Lutestring	n.s.	n.s.	n.s.	n = 289
132	Achlya flavicornis	Yellow Horned	n.s.	n.s.	n.s.	n = 986
133	Polyploca ridens	Frosted Green	n.s.	n.s.	n.s.	n = 324

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
135	Orgyia antiqua	The Vapourer	n.s.	n.s.	n.s.	n = 243
137	Calliteara pudibunda	Pale Tussock	n.s.	n.s.	**	n = 1,404
138	Euproctis chrysorrhoea	Brown-tail	t **	n.s.	t*	n = 239
139	Euproctis similis	Yellow-tail	n.s.	n.s.	↓ ***	n = 2,132
142	Leucoma salicis	White Satin Moth	n.s.	n.s.	n.s.	n = 140
144	Lymantria monacha	Black Arches	↓ **	n.s.	1 ***	n = 721
145	Malacosoma neustria	The Lackey	↓*	n.s.	n.s.	n = 868
147	Trichiura crataegi	Pale Eggar	n.s.	1 *	n.s.	n = 809
148	Poecilocampa populi	December Moth	1*	n.s.	n.s.	n = 1,593
150	Lasiocampa quercus	Oak Eggar	1*	n.s.	n.s.	n = 346
152	Macrothylacia rubi	Fox Moth	n.s.	n.s.	n.s.	n = 524
154	Euthrix potatoria	The Drinker	n.s.	1 *	n.s.	n = 2,226
159	Saturnia pavonia	Emperor Moth	n.s.	n.s.	n.s.	n = 159

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
161	Watsonalla binaria	Oak Hook-tip	n.s.	n.s.	n.s.	n = 913
162	Watsonalla cultraria	Barred Hook-tip	n.s.	n.s.	n.s.	n = 121
163	Drepana falcataria	Pebble Hook-tip	1 *	n.s.	n.s.	n = 1,172
164	Falcaria lacertinaria	Scalloped Hook-tip	n.s.	n.s.	n.s.	n = 891
165	Cilix glaucata	Chinese Character	n.s.	n.s.	n.s.	n = 2,354
166	Nola cucullatella	Short-cloaked Moth	n.s.	n.s.	n.s.	n = 1,587
168	Meganola albula	Kent Black Arches	n.s.	n.s.	n.s.	n = 187
169	Nola confusalis	Least Black Arches	n.s.	n.s.	n.s.	n = 1,208
172	Nudaria mundana	Muslin Footman	n.s.	n.s.	n.s.	n = 851
173	Thumatha senex	Round-winged Muslin	n.s.	n.s.	n.s.	n = 467
174	Miltochrista miniata	Rosy Footman	n.s.	n.s.	1 *	n = 678
176	Cybosia mesomella	Four-dotted Footman	n.s.	n.s.	n.s.	n = 844
178	Eilema depressa	Buff Footman	1 **	1 *	† **	n = 669
179	Eilema griseola	Dingy Footman	n.s.	t **	↓ ***	n = 1,365

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
180	Eilema lurideola	Common Footman	t*	↓ **	↓ ***	n = 2,894
181	Eilema complana	Scarce Footman	~*	n.s.	n.s.	n = 855
185	Eilema sororcula	Orange Footman	n.s.	n.s.	n.s.	n = 274
191	Tyria jacobaeae	The Cinnabar	n.s.	n.s.	n.s.	n = 1,739
192	Spilosoma Iubricipeda	White Ermine	1 **	↓ ***	↓ ***	n = 3,836
194	Spilosoma lutea	Buff Ermine	N***	1 *	t ***	n = 3,096
195	Diaphora mendica	Muslin Moth	n.s.	n.s.	↓ **	n = 2,029
196	Diacrisia sannio	Clouded Buff	n.s.	n.s.	n.s.	n = 278
197	Phragmatobia fuliginosa	Ruby Tiger	n.s.	† *	t **	n = 1,620
200	Arctia caja	Garden Tiger	n.s.	n.s.	n.s.	n = 1,852
266	Hepialus humuli	Ghost Moth	n.s.	n.s.	n.s.	n = 1,557
267	Triodia sylvina	Orange Swift	n.s.	n.s.	n.s.	n = 2,189
268	Korscheltellus fusconebulosa	Map-winged Swift	n.s.	n.s.	n.s.	n = 1,388

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
269	Korscheltellus Iupulina	Common Swift	1 **	n.s.	n.s.	n = 2,525
270	Phymatopus hecta	Gold Swift	n.s.	n.s.	n.s.	n = 260
273	Euxoa nigricans	Garden Dart	n.s.	n.s.	n.s.	n = 462
274	Euxoa tritici	White-line Dart	n.s.	t*	1 *	n = 251
277	Agrotis segetum	Turnip Moth	n.s.	t *	n.s.	n = 1,229
278	Agrotis vestigialis	Archer's Dart	n.s.	n.s.	n.s.	n = 182
280	Agrotis clavis	Heart & Club	1 *	n.s.	↓ **	n = 672
282	Agrotis puta	Shuttle-shaped Dart	n.s.	n.s.	† *	n = 1,695
285	Agrotis exclamationis	Heart & Dart	n.s.	n.s.	ţ*	n = 3,604
286	Agrotis ipsilon	Dark Sword-grass	n.s.	n.s.	n.s.	n = 457
289	Lycophotia porphyrea	True Lover's Knot	n.s.	t*	n.s.	n = 1,609
292	Peridroma saucia	Pearly Underwing	n.s.	n.s.	n.s.	n = 119
297	Graphiphora augur	Double Dart	n.s.	n.s.	n.s.	n = 962

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
298	Diarsia brunnea	Purple Clay	1 /∩**	n.s.	n.s.	n = 2,030
299	Diarsia mendica	Ingrailed Clay	n.s.	†*	n.s.	n = 3,325
301	Diarsia dahlii	Barred Chestnut	n.s.	n.s.	n.s.	n = 660
302	Diarsia rubi	Small Square-spot	n.s.	n.s.	n.s.	n = 3,604
304	Ochropleura plecta	Flame Shoulder	1 ***	1 ***	↓ **	n = 3,759
305	Xestia agathina	Heath Rustic	n.s.	↓ *	n.s.	n = 268
309	Eugnorisma glareosa	Autumnal Rustic	n.s.	n.s.	n.s.	n = 1,040
310	Xestia castanea	Neglected Rustic	n.s.	n.s.	n.s.	n = 288
311	Xestia baja	Dotted Clay	n.s.	n.s.	n.s.	n = 1,738
312	Eugnorisma depuncta	Plain Clay	n.s.	↓ **	↓.	n = 138
313	Xestia c-nigrum	Setaceous Hebrew Character	n.s.	n.s.	† *	n = 2,773
314	Xestia ditrapezium	Triple-spotted Clay	n.s.	n.s.	n.s.	n = 526
315	Xestia triangulum	Double Square-spot	n.s.	n.s.	1*	n = 2,741
Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
-------------------	--------------------------	---	--------------	--------------------------	-------------	------------
317	Xestia sexstrigata	Six-striped Rustic	n.s.	n.s.	n.s.	n = 2,531
318	Xestia xanthographa	Square-spot Rustic	1 *	n.s.	n.s.	n = 3,894
319	Axylia putris	The Flame	n.s.	n.s.	1 *	n = 2,392
320	Anaplectoides prasina	Green Arches	† *	n.s.	n.s.	n = 772
321	Eurois occulta	Great Brocade	n.s.	n.s.	n.s.	n = 104
323	Cerastis rubricosa	Red Chestnut	n.s.	t **	n.s.	n = 2,073
324	Naenia typica	The Gothic	n.s.	n.s.	n.s.	n = 557
327	Noctua comes	Lesser Yellow Underwing	↓ ***	n.s.	1 **	n = 3,027
329	Noctua janthe	Lesser Broad-bordered Yellow Underwing	n.s.	n.s.	n.s.	n = 3,315
330	Noctua interjecta	Least Yellow Underwing	n.s.	n.s.	n.s.	n = 298
331	Noctua pronuba	Large Yellow Underwing	n.s.	n.s.	n.s.	n = 4,069
332	Noctua fimbriata	Broad-bordered Yellow Underwing	n.s.	n.s.	n.s.	n = 622
345	Mamestra brassicae	Cabbage Moth	n.s.	N*	n.s.	n = 1,600

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
346	Melanchra persicariae	Dot Moth	n.s.	n.s.	n.s.	n = 983
349	Polia nebulosa	Grey Arches	n.s.	n.s.	1 *	n = 510
351	Lacanobia oleracea	Bright-line Brown-eye	↓ ***	n.s.	1 ***	n = 2,873
353	Ceramica pisi	Broom Moth	n.s.	1 **	n.s.	n = 1,595
354	Hada plebeja	The Shears	n.s.	n.s.	n.s.	n = 1,300
355	Anarta trifolii	Nutmeg	n.s.	n.s.	~*	n = 561
358	Lacanobia suasa	Dog's Tooth	n.s.	n.s.	n.s.	n = 117
359	Lacanobia thalassina	Pale-shouldered Brocade	n.s.	t **	n.s.	n = 1,684
361	Papestra biren	Glaucous Shears	n.s.	n.s.	n.s.	n = 317
363	Hecatera bicolorata	Broad-barred White	n.s.	n.s.	n.s.	n = 490
366	Hadena confusa	Marbled Coronet	n.s.	n.s.	n.s.	n = 129
368	Hadena bicruris	The Lychnis	n.s.	n.s.	n.s.	n = 821
370	Sideridis rivularis	Campion	n.s.	t*	n.s.	n = 564

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
371	Hadena perplexa	Tawny Shears	~**	n.s.	n.s.	n = 178
376	Tholera decimalis	Feathered Gothic	n.s.	n.s.	n.s.	n = 1,389
377	Tholera cespitis	Hedge Rustic	n.s.	n.s.	n.s.	n = 599
378	Cerapteryx graminis	Antler Moth	1 ***	1 **	n.s.	n = 2,155
382	Orthosia gothica	Hebrew Character	1 ***	↓ **	↓ ***	n = 3,216
383	Orthosia miniosa	Blossom Underwing	~*	n.s.	n.s.	n = 127
384	Orthosia cruda	Small Quaker	1 **	n.s.	1 *	n = 2,094
385	Orthosia cerasi	Common Quaker	1 **	1×	1 *	n = 2,823
386	Orthosia populeti	Lead-coloured Drab	n.s.	n.s.	n.s.	n = 299
387	Orthosia incerta	Clouded Drab	1 **	↓*	1 *	n = 2,554
388	Anorthoa munda	Twin-spotted Quaker	1 *	n.s.	1 *	n = 1,515
390	Orthosia gracilis	Powdered Quaker	n.s.	↓ **	n.s.	n = 1,157
391	Panolis flammea	Pine Beauty	n.s.	n.s.	n.s.	n = 655
393	Mythimna pallens	Common Wainscot	n.s.	n.s.	n.s.	n = 2,744

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
395	Mythimna impura	Smoky Wainscot	n.s.	n.s.	n.s.	n = 3,935
397	Mythimna pudorina	Striped Wainscot	n.s.	n.s.	n.s.	n = 130
400	Leucania comma	Shoulder-striped Wainscot	n.s.	n.s.	n.s.	n = 1,157
406	Mythimna albipuncta	White-point	n.s.	n.s.	n.s.	n = 201
407	Mythimna ferrag	The Clay	n.s.	†*	n.s.	n = 2,838
408	Mythimna conigera	Brown-line Bright-eye	n.s.	n.s.	n.s.	n = 1,221
410	Stilbia anomala	The Anomalous	n.s.	†*	n.s.	n = 541
411	Rhizedra lutosa	Large Wainscot	n.s.	1 **	n.s.	n = 323
413	Denticucullus pygmina	Small Wainscot	† *	↓ ***	n.s.	n = 1,996
415	Photedes fluxa	Mere Wainscot	~*	t*	N**	n = 153
419	Arenostola phragmitidis	Fen Wainscot	1 *	t *	N**	n = 129
425	Archanara dissoluta	Brown-veined Wainscot	NA	NA	NA	Insufficient data (n = 98)
427	Coenobia rufa	Small Rufous	n.s.	n.s.	n.s.	n = 320

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
429	Charanyca trigrammica	Treble Lines	n.s.	n.s.	1 *	n = 1,192
430	Caradrina morpheus	Mottled Rustic	1 *	n.s.	n.s.	n = 2,609
431	Hoplodrina octogenaria	Uncertain	n.s.	n.s.	t*	n = 2,678
432	Hoplodrina blanda	The Rustic	n.s.	n.s.	n.s.	n = 2,054
433	Hoplodrina ambigua	Vine's Rustic	1 ***	n.s.	n.s.	n = 839
435	Caradrina clavipalpis	Pale Mottled Willow	n.s.	n.s.	1 ***	n = 672
438	Dypterygia scabriuscula	Bird's Wing	n.s.	n.s.	n.s.	n = 134
441	Apamea lithoxylaea	Light Arches	1 *	n.s.	n.s.	n = 1,813
444	Apamea monoglypha	Dark Arches	1 /U*	↓ ***	n.s.	n = 4,188
446	Apamea epomidion	Clouded Brindle	n.s.	n.s.	n.s.	n = 174
447	Apamea crenata	Clouded-bordered Brindle	n.s.	n.s.	n.s.	n = 1,649
448	Apamea sordens	Rustic Shoulder-knot	n.s.	n.s.	n.s.	n = 1,619

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
449	Apamea unanimis	Small Clouded Brindle	n.s.	n.s.	n.s.	n = 244
452	Apamea anceps	Large Nutmeg	n.s.	n.s.	n.s.	n = 434
454	Apamea remissa	Dusky Brocade	n.s.	n.s.	n.s.	n = 1,213
455	Apamea scolopacina	Slender Brindle	n.s.	n.s.	n.s.	n = 787
457	Lateroligia ophiogramma	Double Lobed	n.s.	n.s.	n.s.	n = 240
458	Apterogenum ypsillon	Dingy Shears	n.s.	t*	n.s.	n = 183
461	Eremobia ochroleuca	Dusky Sallow	n.s.	n.s.	n.s.	n = 777
462	Oligia strigilis	Marbled Minor	n.s.	↓ **	n.s.	n = 2,184
463	Oligia latruncula	Tawny Marbled Minor	n.s.	n.s.	n.s.	n = 1,898
464	Oligia versicolor	Rufous Minor	n.s.	n.s.	n.s.	n = 1,033
465	Oligia fasciuncula	Middle-barred Minor	n.s.	n.s.	n.s.	n = 3,387
466	Litoligia literosa	Rosy Minor	n.s.	n.s.	n.s.	n = 860
467	Mesoligia furuncula	Cloaked Minor	↓*	n.s.	1 **	n = 1,908

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
469	Luperina testacea	Flounced Rustic	↓ ***	n.s.	n.s.	n = 3,469
472	Euplexia lucipara	Small Angle Shades	~*	↓*	n.s.	n = 1,711
473	Phlogophora meticulosa	Angle Shades	n.s.	n.s.	n.s.	n = 2,878
475	Hyppa rectilinea	The Saxon	~*	n.s.	∩/↓*	n = 157
476	Thalpophila matura	Straw Underwing	n.s.	n.s.	n.s.	n = 1,587
478	Photedes minima	Small Dotted Buff	1 ***	n.s.	n.s.	n = 2,794
481	Celaena haworthii	Haworth's Minor	n.s.	n.s.	n.s.	n = 400
482	Helotropha Ieucostigma	Crescent	† **	n.s.	1 **	n = 311
484	Amphipoea oculea	Ear Moth	n.s.	1 **	n.s.	n = 659
486	Amphipoea lucens	Large Ear	n.s.	n.s.	n.s.	n = 479
487	Amphipoea crinanensis	Crinan Ear	n.s.	n.s.	n.s.	n = 303
488	Hydraecia micacea	Rosy Rustic	n.s.	n.s.	n.s.	n = 3,462
490	Gortyna flavago	Frosted Orange	1 *	n.s.	n.s.	n = 1,773

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
493	Cosmia pyralina	Lunar-spotted Pinion	n.s.	N**	n.s.	n = 425
494	Cosmia affinis	Lesser-spotted Pinion	n.s.	N**	n.s.	n = 184
496	Cosmia trapezina	The Dun-bar	n.s.	n.s.	n.s.	n = 2,574
500	lpimorpha subtusa	The Olive	n.s.	N*	n.s.	n = 324
502	Amphipyra pyramidea	Copper Underwing	n.s.	n.s.	n.s.	n = 461
503	Amphipyra tragopoginis	Mouse Moth	n.s.	† *	n.s.	n = 1,958
504	Rusina ferruginea	Brown Rustic	n.s.	↓ ***	n.s.	n = 3,012
505	Mormo maura	Old Lady	n.s.	n.s.	n.s.	n = 104
506	Bryophila domestica	Marbled Beauty	n.s.	N*	n.s.	n = 1,474
512	Acronicta leporina	The Miller	NA	NA	NA	Insufficient data (n = 81)
514	Subacronicta megacephala	Poplar Grey	n.s.	† *	n.s.	n = 236
517	Acronicta tridens	Dark Dagger	n.s.	n.s.	n.s.	n = 113
518	Acronicta psi	Grey Dagger	n.s.	n.s.	n.s.	n = 601

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
523	Acronicta rumicis	Knot Grass	n.s.	n.s.	n.s.	n = 844
524	Craniophora ligustri	The Coronet	n.s.	n.s.	n.s.	n = 301
527	Cucullia umbratica	The Shark	n.s.	n.s.	n.s.	n = 174
539	Lithophane socia	Pale Pinion	n.s.	n.s.	n.s.	n = 241
540	Lithophane leautieri	Blair's Shoulder-Knot	n.s.	n.s.	n.s.	n = 491
543	Lithophane ornitopus	Grey Shoulder-knot	n.s.	n.s.	n.s.	n = 441
545	Xylena vetusta	Red Sword-grass	1 *	n.s.	n.s.	n = 370
546	Xylocampa areola	Early Grey	1*	n.s.	n.s.	n = 1,352
550	Asteroscopus sphinx	The Sprawler	n.s.	n.s.	n.s.	n = 983
552	Brachylomia viminalis	Minor Shoulder-knot	t **	↓ *	† *	n = 1,017
553	Aporophyla lutulenta	Deep-brown Dart	n.s.	n.s.	n.s.	n = 634
554	Aporophyla Iueneburgensis	Northern Deep-brown Dart	n.s.	n.s.	n.s.	n = 108
555	Aporophyla nigra	Black Rustic	n.s.	n.s.	n.s.	n = 1,155

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
557	Allophyes oxyacanthae	Green-brindled Crescent	n.s.	n.s.	1 **	n = 2,782
559	Griposia aprilina	Merveille du Jour	n.s.	n.s.	n.s.	n = 628
562	Mniotype adusta	Dark Brocade	1 **	n.s.	n.s.	n = 510
563	Polymixis lichenea	Feathered Ranunculus	1 *	n.s.	n.s.	n = 381
564	Parastichtis suspecta	The Suspected	NA	NA	NA	Insufficient data (n = 94)
565	Dryobotodes eremita	Brindled Green	n.s.	n.s.	n.s.	n = 954
567	Dasypolia templi	Brindled Ochre	n.s.	n.s.	n.s.	n = 264
568	Polymixis flavicincta	Large Ranunculus	n.s.	n.s.	n.s.	n = 175
569	Antitype chi	Grey Chi	n.s.	n.s.	n.s.	n = 493
571	Eupsilia transversa	The Satellite	n.s.	n.s.	n.s.	n = 1,286
573	Conistra rubiginea	Dotted Chestnut	n.s.	n.s.	n.s.	n = 194
574	Omphaloscelis Iunosa	Lunar Underwing	n.s.	n.s.	1 ***	n = 2,906
575	Agrochola lota	Red-line Quaker	n.s.	n.s.	n.s.	n = 2,132

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
576	Agrochola macilenta	Yellow-line Quaker	1 *	t*	n.s.	n = 2,465
577	Agrochola circellaris	The Brick	1 *	n.s.	n.s.	n = 1,610
578	Agrochola lychnidis	Beaded Chestnut	n.s.	n.s.	↓ **	n = 1,985
579	Agrochola helvola	Flounced Chestnut	n.s.	n.s.	n.s.	n = 515
580	Agrochola litura	Brown-spot Pinion	n.s.	n.s.	n.s.	n = 1,897
581	Atethmia centrago	Centre-barred Sallow	n.s.	t*	n.s.	n = 1,253
582	Tiliacea citrago	Orange Sallow	n.s.	n.s.	n.s.	n = 326
583	Tiliacea aurago	Barred Sallow	n.s.	n.s.	n.s.	n = 895
584	Xanthia togata	Pink-barred Sallow	1 **	n.s.	† *	n = 1,914
585	Cirrhia icteritia	Sallow	1*	n.s.	† *	n = 2,025
586	Cirrhia gilvago	Dusky-lemon Sallow	n.s.	n.s.	n.s.	n = 235
590	Conistra vaccinii	The Chestnut	n.s.	n.s.	n.s.	n = 1,239
591	Conistra ligula	Dark Chestnut	n.s.	n.s.	n.s.	n = 556
592	Pseudoips prasinana	Green Silver-lines	n.s.	n.s.	n.s.	n = 563

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
595	Nycteola revayana	Oak Nycteoline	n.s.	n.s.	n.s.	n = 352
603	Deltote pygarga	Marbled White Spot	n.s.	n.s.	n.s.	n = 581
606	Deltote uncula	Silver Hook	n.s.	n.s.	n.s.	n = 118
610	Catocala nupta	Red Underwing	n.s.	n.s.	n.s.	n = 192
617	Colocasia coryli	Nut-tree Tussock	n.s.	n.s.	n.s.	n = 1,699
619	Diloba caeruleocephala	Figure of Eight	n.s.	n.s.	n.s.	n = 828
621	Polychrysia moneta	Golden Plusia	NA	NA	NA	Insufficient data (n = 90)
623	Diachrysia chrysitis	Burnished Brass	1 *	n.s.	1 *	n = 2,784
626	Autographa bractea	Gold Spangle	n.s.	†*	n.s.	n = 665
627	Plusia festucae	Gold Spot	n.s.	n.s.	n.s.	n = 580
630	Autographa jota	Plain Golden Y	n.s.	n.s.	n.s.	n = 1,077
631	Autographa pulchrina	Beautiful Golden Y	n.s.	↓ **	n.s.	n = 1,907
635	Autographa gamma	Silver Y	1*	n.s.	n.s.	n = 3,652

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
636	Syngrapha interrogationis	Scarce Silver Y	1 **	↓ ***	t.	n = 218
638	Abrostola triplasia	Dark Spectacle	n.s.	n.s.	n.s.	n = 293
639	Abrostola tripartita	The Spectacle	1 *	n.s.	n.s.	n = 2,375
644	Lygephila pastinum	The Blackneck	n.s.	n.s.	n.s.	n = 188
648	Rivula sericealis	Straw Dot	n.s.	t*	n.s.	n = 2,350
650	Parascotia fuliginaria	Waved Black	n.s.	n.s.	n.s.	n = 426
651	Scoliopteryx libatrix	The Herald	n.s.	n.s.	n.s.	n = 287
652	Hypena crassalis	Beautiful Snout	n.s.	n.s.	n.s.	n = 235
653	Hypena proboscidalis	The Snout	† *	n.s.	t*	n = 3,880
658	Schrankia costaestrigalis	Pinion-streaked Snout	~/U*	↓ *	n.s.	n = 338
659	Hypenodes humidalis	Marsh Oblique-barred	n.s.	~***	1 ***	n = 110
661	Herminia tarsipennalis	The Fan-foot	† **	n.s.	t **	n = 2,224

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
662	Herminia grisealis	Small Fan-foot	1 **	n.s.	↓*	n = 2,043
666	Laspeyria flexula	Beautiful Hook-tip	1 **	N*	n.s.	n = 872
669	Alsophila aescularia	March Moth	n.s.	n.s.	n.s.	n = 1,500
671	Pseudoterpna pruinata	Grass Emerald	~**	n.s.	n.s.	n = 444
672	Geometra papilionaria	Large Emerald	n.s.	n.s.	n.s.	n = 1,257
673	Comibaena bajularia	Blotched Emerald	n.s.	n.s.	n.s.	n = 364
674	Hemithea aestivaria	Common Emerald	1 **	n.s.	n.s.	n = 2,173
679	Hemistola chrysoprasaria	Small Emerald	n.s.	n.s.	n.s.	n = 501
680	Jodis lactearia	Little Emerald	1 ***	n.s.	n.s.	n = 741
681	Timandra comae	Blood-vein	1 *	n.s.	↓ ***	n = 2,272
682	Cyclophora albipunctata	Birch Mocha	n.s.	n.s.	n.s.	n = 342
687	Cyclophora punctaria	Maiden's Blush	n.s.	n.s.	n.s.	n = 555

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
688	Cyclophora linearia	Clay Triple-lines	n.s.	~*	n.s.	n = 364
689	Scopula ternata	Smoky Wave	n.s.	n.s.	n.s.	n = 313
692	Scopula marginepunctata	Mullein Wave	↓*	n.s.	n.s.	n = 241
694	Scopula imitaria	Small Blood-vein	n.s.	1 *	† *	n = 1,773
698	Scopula immutata	Lesser Cream Wave	n.s.	n.s.	n.s.	n = 338
699	Scopula floslactata	Cream Wave	~/U***	n.s.	1 *	n = 718
701	Idaea rusticata	Least Carpet	↓ **	n.s.	∩/ 1 *	n = 515
702	Idaea fuscovenosa	Dwarf Cream Wave	1 *	n.s.	n.s.	n = 1,192
707	Idaea dimidiata	Single-dotted Wave	n.s.	n.s.	n.s.	n = 3,030
710	Idaea seriata	Small Dusty Wave	n.s.	n.s.	n.s.	n = 1,871
711	Idaea subsericeata	Satin Wave	1*	n.s.	↓ .	n = 648
716	Idaea straminata	Plain Wave	n.s.	n.s.	n.s.	n = 277
717	ldaea aversata	Riband Wave	† *	n.s.	↓ ***	n = 3,937
718	Idaea trigeminata	Treble Brown Spot	n.s.	n.s.	n.s.	n = 939

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
719	ldaea biselata	Small Fan-footed Wave	n.s.	n.s.	↓ *	n = 3,295
720	Idaea emarginata	Small Scallop	n.s.	n.s.	n.s.	n = 1,218
721	Rhodometra sacraria	The Vestal	n.s.	n.s.	n.s.	n = 347
723	Xanthorhoe quadrifasiata	Large Twin-spot Carpet	n.s.	n.s.	n.s.	n = 667
724	Xanthorhoe decoloraria	Red Carpet	1 **	n.s.	n.s.	n = 537
725	Xanthorhoe ferrugata	Dark-barred Twin-spot Carpet	n.s.	n.s.	1 **	n = 2,351
726	Xanthorhoe spadicearia	Red Twin-spot Carpet	n.s.	↓*	t*	n = 2,461
728	Xanthorhoe designata	Flame Carpet	1 /∩***	↓*	n.s.	n = 2,341
729	Xanthorhoe montanata	Silver-ground Carpet	1 ***	↓ **	1 **	n = 3,931
730	Xanthorhoe fluctuata	Garden Carpet	↓ *	N*	n.s.	n = 3,824
731	Nycterosea obstipata	Gem	n.s.	n.s.	n.s.	n = 169

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
732	Colostygia olivata	Beech-green Carpet	n.s.	t*	n.s.	n = 204
733	Colostygia pectinataria	Green Carpet	† *	↓ *	1 *	n = 3,069
734	Coenotephria salicata	Striped Twin-spot Carpet	n.s.	n.s.	† **	n = 476
735	Colostygia multistrigaria	Mottled Grey	n.s.	↓ ***	n.s.	n = 1,154
736	Mesotype didymata	Twin-spot Carpet	n.s.	↓*	n.s.	n = 1,779
738	Earophila badiata	Shoulder-stripe	n.s.	n.s.	n.s.	n = 1,958
739	Anticlea derivata	The Streamer	n.s.	t*	n.s.	n = 2,246
740	Mesoleuca albicillata	Beautiful Carpet	n.s.	n.s.	n.s.	n = 521
741	Entephria caesiata	Grey Mountain Carpet	n.s.	† **	n.s.	n = 372
744	Perizoma blandiata	Pretty Pinion	n.s.	n.s.	n.s.	n = 128
746	Perizoma affinitata	The Rivulet	1 *	n.s.	↓ **	n = 1,454
747	Perizoma alchemillata	Small Rivulet	1 ***	n.s.	1 **	n = 3,217

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
748	Perizoma flavofasciata	Sandy Carpet	n.s.	n.s.	n.s.	n = 1,917
749	Perizoma albulata	Grass Rivulet	n.s.	n.s.	n.s.	n = 547
750	Perizoma bifaciata	Barred Rivulet	n.s.	n.s.	n.s.	n = 284
752	Euphyia unangulata	Sharp-angled Carpet	n.s.	n.s.	n.s.	n = 519
754	Euphyia biangulata	Cloaked Carpet	n.s.	t*	~**	n = 245
756	Catarhoe rubidata	Ruddy Carpet	n.s.	n.s.	n.s.	n = 163
758	Camptogramma bilineata	Yellow Shell	n.s.	n.s.	n.s.	n = 2,067
759	Melanthia procellata	Pretty Chalk Carpet	n.s.	n.s.	n.s.	n = 449
761	Cosmorhoe ocellata	Purple Bar	n.s.	↓ ***	1/~*	n = 2,375
762	Lampropteryx suffumata	Water Carpet	n.s.	n.s.	n.s.	n = 1,920
763	Lampropteryx otregiata	Devon Carpet	n.s.	n.s.	n.s.	n = 306
764	Electrophaes corylata	Broken-barred Carpet	n.s.	n.s.	n.s.	n = 1,231

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
765	Ecliptopera silaceata	Small Phoenix	n.s.	n.s.	n.s.	n = 2,508
767	Eulithis prunata	The Phoenix	n.s.	n.s.	n.s.	n = 1,104
768	Eulithis testata	The Chevron	n.s.	U**	n.s.	n = 1,622
769	Eulithis populata	Northern Spinach	1 ***	1 **	n.s.	n = 1,383
770	Eulithis mellinata	The Spinach	n.s.	n.s.	n.s.	n = 405
771	Gandaritis pyraliata	Barred Straw	n.s.	t *	n.s.	n = 3,572
772	Cidaria fulvata	Barred Yellow	n.s.	t*	n.s.	n = 2,645
773	Plemyria rubiginata	Blue-bordered Carpet	n.s.	n.s.	n.s.	n = 706
774	Chloroclysta siterata	Red-green Carpet	1 *	↓ ***	↓ ***	n = 1,651
775	Chloroclysta miata	Autumn Green Carpet	n.s.	t *	n.s.	n = 1,055
776	Dysstroma truncata	Common Marbled Carpet	n.s.	n.s.	n.s.	n = 3,698
778	Dysstroma citrata	Dark Marbled Carpet	n.s.	↓ **	n.s.	n = 1,733
779	Thera obeliscata	Grey Pine Carpet	n.s.	1 ***	n.s.	n = 2,061
780	Thera britannica	Spruce Carpet	n.s.	t **	1 *	n = 944

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
782	Pennithera firmata	Pine Carpet	n.s.	n.s.	n.s.	n = 792
783	Thera juniperata	Juniper Carpet	n.s.	n.s.	n.s.	n = 361
784	Hydriomena furcata	July Highflyer	1 ***	↓*	↓ **	n = 3,513
785	Hydriomena impluviata	May Highflyer	t*	n.s.	↓.	n = 787
786	Hydriomena ruberata	Ruddy Highflyer	n.s.	n.s.	n.s.	n = 157
787	Philereme vetulata	Brown Scallop	n.s.	n.s.	n.s.	n = 140
788	Philereme transversata	Dark Umber	n.s.	n.s.	n.s.	n = 559
789	Triphosa dubitata	The Tissue	n.s.	n.s.	n.s.	n = 168
790	Hydria cervinalis	Scarce Tissue	n.s.	n.s.	n.s.	n = 144
791	Hydria undulata	Scallop Shell	n.s.	n.s.	n.s.	n = 575
794	Epirrhoe rivata	Wood Carpet	N*	n.s.	n.s.	n = 394
795	Epirrhoe alternata	Common Carpet	1 /∩*	n.s.	1 **	n = 3,640
797	Epirrhoe galiata	Galium Carpet	n.s.	n.s.	n.s.	n = 231

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
800	Chesias legatella	The Streak	n.s.	n.s.	n.s.	n = 1,108
801	Chesias rufata	Broom-tip	n.s.	n.s.	1 **	n = 171
803	Aplocera plagiata	Treble-bar	n.s.	n.s.	n.s.	n = 766
804	Aplocera efformata	Lesser Treble-bar	n.s.	n.s.	n.s.	n = 250
807	Horisme vitalbata	Small Waved Umbe	n.s.	n.s.	n.s.	n = 493
809	Horisme tersata	The Fern	n.s.	n.s.	n.s.	n = 474
810	Lobophora halterata	The Seraphim	n.s.	n.s.	n.s.	n = 157
811	Pterapherapteryx sexalata	Small Seraphim	n.s.	n.s.	n.s.	n = 359
812	Acasis viretata	Yellow-barred Brindle	n.s.	n.s.	n.s.	n = 1,245
814	Trichopteryx carpinata	Early Tooth-striped	n.s.	n.s.	n.s.	n = 1,045
815	Orthonama vittata	Oblique Carpet	n.s.	n.s.	n.s.	n = 504
816	Scotopteryx mucronata	Lead Belle	n.s.	n.s.	n.s.	n = 292
817	Scotopteryx luridata	July Belle	1 **	n.s.	n.s.	n = 415

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
818	Scotopteryx chenopodiata	Shaded Broad-bar	n.s.	n.s.	t*	n = 2,369
822	Larentia clavaria	The Mallow	n.s.	n.s.	n.s.	n = 660
823	Pelurga comitata	Dark Spinach	1 *	n.s.	1 *	n = 408
824	Epirrita autumnata	Autumnal Moth	~*	n.s.	n.s.	n = 1,196
825	Epirrita filigrammaria	Small Autumnal Moth	n.s.	n.s.	n.s.	n = 628
826	Epirrita dilutata	November Moth	1 *	n.s.	n.s.	n = 2,637
827	Epirrita christyi	Pale November Moth	n.s.	n.s.	n.s.	n = 1,199
828	Operophtera brumata	Winter Moth	n.s.	1 **	† *	n = 629
829	Operophtera fagata	Northern Winter Moth	n.s.	n.s.	n.s.	n = 933
830	Asthena albulata	Small White Wave	n.s.	n.s.	n.s.	n = 353
832	Hydrelia flammeolaria	Small Yellow Wave	n.s.	n.s.	n.s.	n = 372
834	Euchoeca nebulata	Dingy Shell	n.s.	n.s.	n.s.	n = 291
835	Venusia cambrica	Welsh Wave	n.s.	t *	n.s.	n = 491

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
839	Eupithecia subumbrata	Shaded Pug	NA	NA	NA	Insufficient data (n = 79)
840	Eupithecia simpliciata	Plain Pug	n.s.	n.s.	n.s.	n = 138
843	Eupithecia tenuiata	Slender Pug	n.s.	n.s.	n.s.	n = 468
844	Eupithecia inturbata	Maple Pug	n.s.	n.s.	n.s.	n = 320
845	Eupithecia haworthiata	Haworth's Pug	n.s.	n.s.	n.s.	n = 341
847	Eupithecia linariata	Toadflax Pug	n.s.	n.s.	n.s.	n = 439
848	Eupithecia pulchellata	Foxglove Pug	n.s.	↓ ***	n.s.	n = 1,476
850	Eupithecia exiguata	Mottled Pug	n.s.	↓*	n.s.	n = 1,281
854	Eupithecia venosata	Netted Pug	n.s.	n.s.	n.s.	n = 196
855	Eupithecia centaureata	Lime-speck Pug	n.s.	n.s.	n.s.	n = 1,391
857	Eupithecia intricata	Freyer's Pug	↓*	1 ***	1 *	n = 737
858	Eupithecia satyrata	Satyr Pug	† *	n.s.	n.s.	n = 363

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
859	Eupithecia tripunctaria	White-spotted Pug	n.s.	n.s.	n.s.	n = 863
860	Eupithecia absinthiata	Wormwood Pug	n.s.	↓ **	n.s.	n = 1,282
863	Eupithecia assimilata	Currant Pug	n.s.	n.s.	n.s.	n = 950
864	Eupithecia vulgata	Common Pug	n.s.	n.s.	n.s.	n = 2,228
866	Eupithecia subfuscata	Grey Pug	n.s.	↓ *	n.s.	n = 1,478
867	Eupithecia icterata	Tawny Speckled Pug	n.s.	↓*	n.s.	n = 1,649
868	Eupithecia succenturiata	Bordered Pug	n.s.	n.s.	n.s.	n = 812
869	Eupithecia indigata	Ochreous Pug	n.s.	n.s.	n.s.	n = 201
872	Eupithecia nanata	Narrow-winged Pug	n.s.	U**	n.s.	n = 1,207
873	Eupithecia innotata	Angle-barred Pug	n.s.	n.s.	n.s.	n = 231
876	Eupithecia virgaureata	Golden-rod Pug	n.s.	n.s.	n.s.	n = 489

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
877	Eupithecia abbreviata	Brindled Pug	n.s.	↓*	n.s.	n = 1,183
878	Eupithecia dodoneata	Oak-tree Pug	n.s.	n.s.	n.s.	n = 647
879	Eupithecia phoeniceata	Cypress Pug	t*	† **	† *	n = 135
880	Eupithecia pusillata	Juniper Pug	n.s.	n.s.	n.s.	n = 727
882	Eupithecia lariciata	Larch Pug	n.s.	n.s.	n.s.	n = 392
883	Eupithecia tantillaria	Dwarf Pug	n.s.	n.s.	n.s.	n = 291
884	Chloroclystis v-ata	The V-Pug	n.s.	1 **	n.s.	n = 1,013
886	Pasiphila rectangulata	Green Pug	n.s.	n.s.	n.s.	n = 2,129
887	Gymnoscelis rufifasciata	Double-striped Pug	n.s.	↓ ***	n.s.	n = 1,621
888	Abraxas sylvata	Clouded Magpie	1 *	n.s.	n.s.	n = 126
889	Abraxas grossulariata	The Magpie	n.s.	n.s.	n.s.	n = 2,447

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
891	Lomaspilis marginata	Clouded Border	1 ***	n.s.	1 **	n = 3,176
892	Ligdia adustata	Scorched Carpet	n.s.	n.s.	n.s.	n = 1,033
894	Lomographa bimaculata	White-pinion Spotted	n.s.	n.s.	n.s.	n = 671
895	Lomographa temerata	Clouded Silver	n.s.	n.s.	n.s.	n = 1,867
896	Cabera pusaria	Common White Wave	1 ***	1×	↓ **	n = 3,073
897	Cabera exanthemata	Common Wave	1 *	n.s.	n.s.	n = 2,997
898	Hylaea fasciaria	Barred Red	n.s.	↓*	n.s.	n = 1,602
899	Campaea margaritaria	Light Emerald	N*	↓*	t*	n = 3,318
901	Macaria notata	Peacock Moth	n.s.	n.s.	n.s.	n = 404
902	Macaria alternata	Sharp-angled Peacock	~**	n.s.	N**	n = 455
903	Macaria liturata	Tawny-barred Angle	n.s.	1 **	↓ **	n = 1,133
904	Theria primaria	Early Moth	n.s.	n.s.	n.s.	n = 374

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
905	Agriopis Ieucophaearia	Spring Usher	1*	n.s.	1 **	n = 422
906	Agriopis aurantiaria	Scarce Umber	n.s.	n.s.	n.s.	n = 1,473
907	Agriopis marginaria	Dotted Border	n.s.	n.s.	n.s.	n = 1,496
908	Erannis defoliaria	Mottled Umber	n.s.	n.s.	n.s.	n = 839
909	Plagodis pulveraria	Barred Umber	n.s.	n.s.	1*	n = 700
910	Ennomos autumnaria	Large Thorn	n.s.	↓ **	n.s.	n = 107
911	Ennomos quercinaria	August Thorn	n.s.	n.s.	n.s.	n = 786
912	Ennomos alniaria	Canary-shouldered Thorn	n.s.	n.s.	n.s.	n = 2,448
913	Ennomos fuscantaria	Dusky Thorn	n.s.	† *	n.s.	n = 1,098
914	Ennomos erosaria	September Thorn	n.s.	n.s.	n.s.	n = 799
915	Selenia dentaria	Early Thorn	N***	n.s.	t **	n = 3,546
916	Selenia lunularia	Lunar Thorn	n.s.	n.s.	n.s.	n = 961

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
917	Selenia tetralunaria	Purple Thorn	n.s.	n.s.	n.s.	n = 1,359
918	Apeira syringaria	Lilac Beauty	n.s.	n.s.	n.s.	n = 1,258
919	Odontopera bidentata	Scalloped Hazel	N***	1 *	n.s.	n = 2,851
920	Colotois pennaria	Feathered Thorn	n.s.	n.s.	n.s.	n = 2,635
921	Crocallis elinguaria	Scalloped Oak	∩/↓*	n.s.	n.s.	n = 3,470
922	Plagodis dolabraria	Scorched Wing	n.s.	n.s.	n.s.	n = 1,253
923	Opisthograptis Iuteolata	Brimstone Moth	∩/ 1 **	n.s.	↓ ***	n = 3,993
924	Epione repandaria	Bordered Beauty	n.s.	n.s.	n.s.	n = 1,365
928	Ourapteryx sambucaria	Swallow-tailed Moth	† *	n.s.	n.s.	n = 2,033
930	Apocheima hispidaria	Small Brindled Beauty	n.s.	n.s.	n.s.	n = 315
933	Lycia hirtaria	Brindled Beauty	n.s.	n.s.	n.s.	n = 1,352
934	Biston strataria	Oak Beauty	n.s.	n.s.	n.s.	n = 1,009

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
935	Biston betularia	Peppered Moth	n.s.	n.s.	n.s.	n = 1,419
936	Menophra abruptaria	Waved Umber	1/~*	n.s.	n.s.	n = 967
938	Peribatodes rhomboidaria	Willow Beauty	n.s.	n.s.	n.s.	n = 2,696
939	Cleorodes lichenaria	Brussels Lace	n.s.	n.s.	n.s.	n = 442
940	Deileptenia ribeata	Satin Beauty	n.s.	n.s.	n.s.	n = 493
941	Alcis repandata	Mottled Beauty	n.s.	t **	n.s.	n = 3,132
943	Alcis jubata	Dotted Carpet	n.s.	n.s.	n.s.	n = 432
944	Hypomecis roboraria	Great Oak Beauty	n.s.	n.s.	n.s.	n = 160
945	Hypomecis punctinalis	Pale Oak Beauty	n.s.	n.s.	n.s.	n = 483
946	Ectropis bistortata	The Engrailed	n.s.	↓*	n.s.	n = 2,537
948	Paradarisa consonaria	Square Spot	n.s.	n.s.	n.s.	n = 175
949	Parectropis similaria	Brindled White-spot	1 **	n.s.	1 **	n = 303
950	Aethalura punctulata	Grey Birch	1 *	n.s.	n.s.	n = 471

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
952	Pachycnemia hippocastanaria	Horse Chestnut	n.s.	n.s.	n.s.	n = 194
959	Bupalus piniaria	Bordered White	n.s.	t*	n.s.	n = 451
961	Macaria wauaria	The V-Moth	n.s.	n.s.	n.s.	n = 514
963	Petrophora chlorosata	Brown Silver-line	† **	↓ ***	t*	n = 2,097
964	Chiasmia clathrata	Latticed Heath	1 **	n.s.	1 **	n = 1,420
965	Dyscia fagaria	Grey Scalloped Bar	n.s.	t*	↓/~*	n = 181
968	Aspitates ochrearia	Yellow Belle	n.s.	n.s.	n.s.	n = 183
969	Perconia strigillaria	Grass Wave	n.s.	n.s.	n.s.	n = 144
1001	Nomophila noctuella	Rush Veneer	n.s.	↓ **	n.s.	n = 639
1015	Udea ferrugalis	Rusty Dot Pearl	n.s.	1*	n.s.	n = 1,002
2178	Plutella xylostella	Diamond-back Moth	1 **	n.s.	n.s.	n = 2,357
2452	Phigalia pilosaria	Pale Brindled Beauty	n.s.	n.s.	n.s.	n = 631
2510	Plusia putnami	Lempke's Gold Spot	N**	n.s.	1 ***	n = 185

Species number	Latin name	Common name	Historic N	Change in N 1986–2012	Historic S	Data issue
2513	Amphipoea fucosa	Saltern Ear	↓ **	n.s.	1 *	n = 160
3392	Mesapamea secalis/didyma	Common Rustic/Lesser Common Rustic	n.s.	t*	n.s.	n = 4,081
3394	Amphipyra berbera	Svensson's Copper Underwing	n.s.	n.s.	n.s.	n = 421

3.2.3. Combined species metric modelling

We also tested the response of the total abundance of richness of butterflies and moths to nitrogen and other driver variables. These models test whether the Lepidopteran community responds to historic N deposition, percentage change in N between 1986–2012, and historic S deposition, as well as the other driver variables detailed in section 3.1. Neither historic N nor change in N over time at a site were significant drivers of total butterfly abundance (Table 4). We found strong evidence that butterfly richness was negatively correlated with historic N (Figures 13a and 13b). We observed similar responses of moth richness and total abundance to the nitrogen driver variables, with responses positively correlated with historic N (Figures 14a, 14b, 16a and 16b) but negatively correlated with percentage change in N between 1986–2012 N (Figures 15a, 15b, 17a and 17b). We also found very strong evidence that all four combined species metric responses tested were negatively correlated with historic S deposition (Table 4).

Table 4: Table of results showing the direction ($\mathbf{1}$ = positive trend; $\mathbf{\downarrow}$ = negative trend) and significance of relationships between richness and abundance of Lepidoptera and nitrogen driver variables (*** = P < 0.001; ** = 0.001 < P < 0.01; * = 0.01 < P < 0.005; n.s. = non-significant).

Trait	Response	Historic N	Change in N 1986–2012	Historic S
Butterflies	Abundance	n.s.	n.s.	↓ ***
	Richness	↓ **	n.s.	↓ ***
Moths	Abundance	1 ***	↓ ***	↓ ***
	Richness	1 ***	↓ **	↓ ***

(b)

Figure 13a & 13b: Predicted butterfly richness at an average site against increasing total N deposition (kg N ha⁻¹ in 1996) without (a) and with (b) raw data.

Figure 14a & 14b: Predicted moth abundance at an average site against increasing total N deposition (kg N ha⁻¹ in 1996) without (a) and with (b) raw data.

Figure 15a & 15b: Predicted moth abundance at an average site against percentage change in N deposition 1986–2012 without (a) and with (b) raw data.

Figure 16a & 16b: Predicted moth richness at an average site against increasing total N deposition (kg N ha⁻¹ in 1996) without (a) and with (b) raw data.

(a)

(b)

Figure 17a & 17b: Predicted moth richness at an average site against percentage change in N deposition 1986–2012 without (a) and with (b) raw data.

3.2.4. Trait modelling

Models were fit for 19 individual butterfly trait groupings to understand whether traits could be used as good predictors of responses to deposition variables (Table 5). Responses to both historic N and percentage change in N at a site over time were mixed and to some extent varied by trait. However, trait grouping responses to N were often conflicting when comparing the species richness to the total abundance. For example, we found very strong evidence that the abundance of late butterflies was positively correlated with historic N, but also found strong evidence that the species richness of late butterflies was negatively correlated with historic N. Most of the significant responses to historic S deposition were negative, as observed in the combined species analysis.

Overall, the total abundance of two trait groups were negatively correlated with historic N, the abundance of two were hump-backed, five were positive, one showed a significant relationship with N but in no clear direction, and six showed no significant relationship with historic N. Modelled abundance responses of butterfly trait groups to the percentage change in N deposition at a site over time were also mixed. The abundance index of five groups showed a negative correlation with historic N, two groups showed a hump-backed relationship, and two groups showed a positive correlation. The total abundance index of seven trait groups had no significant association with historic N.

Table 5: Table of results showing the direction ($\mathbf{1}$ = positive trend; $\mathbf{1}$ = negative trend) and significance of relationships between richness and abundance of butterflies (filtered by traits) and deposition driver variables (\mathbf{n} = humpbacked relationship; ~ = no significant trend) (*** = $\mathbf{P} < 0.001$; ** = 0.001 < $\mathbf{P} < 0.01$; * = 0.01 < $\mathbf{P} < 0.005$; n.s. = non-significant).

Trait grouping	Trait	Response	Historic N	Change in N 1986–2012	Historic S
Flight season	Early	Abundance	n.s.	1 ***	n.s.
		Richness	↓ **	n.s.	↓ ***
	Late	Abundance	1 ***	.*** n.s.	
		Richness	↓ **	n.s.	↓ ***
Habitat	Acid grassland	Abundance	n.s.	↓ **	↓ ***
		Richness	↓ ***	↓ ***	↓ ***
	Bog	Abundance	1 **	t *	↓ **
		Richness	↓ **	n.s.	↓ ***
	Calcareous grassland	Abundance	n.s.	† *	↓ ***
		Richness	↓ **	n.s.	↓ ***
	Heathland	Abundance	~ *	↓ **	↓ ***
		Richness	↓ **	↓ ***	↓ ***
	Moorland	Abundance	1 ***	↓ **	↓ ***
		Richness	N ***	↓ ***	1 ***

Trait grouping	Trait	Response	Historic N	Change in N 1986–2012	Historic S
Host plant category	Forbs	Abundance	n.s.	N *	† **
		Richness	N ***	n.s.	t ***
	Grasses	Abundance	n.s.	n.s.	↓ ***
		Richness	↓ ***	1 **	t ***
Larval host specificity	Monophagous	Abundance	1 **	n.s.	↓ ***
		Richness	1 /∩ ***	n.s.	↓ ***
	Oligophagous	Abundance	N **	n.s.	↓ ***
		Richness	N **	n.s.	t ***
	Polyphagous	Abundance	↓ ***	n.s.	1 **
		Richness	† *	1 ***	n.s.
Voltinism	Univoltine	Abundance	Π *	n.s.	↓ ***
		Richness	N ***	n.s.	t ***
	Multivoltine	Abundance	n.s.	N *	n.s.
		Richness	↓ ***	N **	U *
Overwintering stage	Egg	Abundance	n.s.	↓ ***	↓ **
		Richness	↓ **	n.s.	t ***
	Larva	Abundance	1 *	n.s.	1 ***
		Richness	N ***	↓ ***	↓ ***
	Pupa	Abundance	↓ **	∩/ 1 ***	1 **
		Richness	N ***	1 ***	1 /U ***
	Adult	Abundance	1*	∩/ 1 ***	1 ***
		Richness	N ***	1 ***	1 ***
The richness response of 11 trait groups was negatively correlated with historic between 1986–2012, seven hump-backed, and one positive. None of the richness responses of the trait groupings tested showed no significant relationship with historic N. Modelled richness responses of butterfly trait groups to the percentage change in N deposition at a site over time were also mixed. The richness response of five groups showed a negative correlation with change in N, one group showed a hump-backed relationship, and three groups showed a positive correlation. The richness response of nine trait groups had no significant association with percentage change in N.

For moths the trait analysis demonstrated that filtering by traits group does not change the overall direction of the trend with any of the atmospheric pollution variables (Table 6). For all trait groupings, the response to historic N was still positive, the response to change in N negative, and the response to historic S negative. There were some changes in the significance levels for some trends within trait groupings, but none that changed the overall direction of the trend.

Table 6: Table of results showing the direction ($\mathbf{1}$ = positive trend; \mathbf{I} = negative trend) and significance of relationships between richness and abundance of moths (filtered by traits) and deposition driver variables (*** = P < 0.001; ** = 0.001 < P < 0.01; * = 0.01 < P < 0.05; n.s. = non-significant).

Trait grouping	Trait	Response	Historic N	Change in N 1986–2012	Historic S
Flight season	Early	Abundance	1 ***	t ***	↓ ***
		Richness	1 ***	t ***	↓ ***
	Late	Abundance	1 ***	t ***	↓ ***
		Richness	1 ***	↓ **	↓ ***
Habitat	Acid grassland	Abundance	1 ***	↓ ***	↓ ***
		Richness	1 ***	↓ ***	↓ ***
	Bog	Abundance	1 ***	t ***	↓ ***
		Richness	1 ***	↓ ***	↓ ***
	Calcareous grassland	Abundance	1 ***	↓ ***	↓ ***
		Richness	1 ***	↓ **	↓ ***
	Heathland	Abundance	1 ***	↓ ***	↓ ***
		Richness	1 ***	↓ ***	↓ ***

Trait grouping	Trait	Response	Historic N	Change in N 1986–2012	Historic S
Habitat	Moorland	Abundance	1 ***	t ***	↓ ***
		Richness	1 ***	↓ ***	↓ ***
Host plant category	Forbs	Abundance	1 ***	↓ ***	↓ ***
		Richness	1 ***	↓ **	↓ ***
	Grasses	Abundance	1 **	↓ ***	↓ ***
		Richness	n.s.	↓ **	↓ ***
	Lichens	Abundance	1 ***	↓ ***	t ***
		Richness	1 ***	t ***	t ***
Larval host specificity	Monophagous	Abundance	1 ***	↓ ***	↓ ***
		Richness	1 ***	↓ ***	t ***
	Oligophagous	Abundance	1 ***	↓ ***	t ***
		Richness	1 ***	t ***	t ***
	Polyphagous	Abundance	1 ***	↓ ***	t ***
		Richness	1 ***	↓ **	t ***
Voltinism	Univoltine	Abundance	1 ***	↓ ***	t ***
		Richness	1 ***	↓ **	↓ ***
	Multivoltine	Abundance	1 ***	↓ ***	t ***
		Richness	1 ***	↓ **	t ***
Overwintering stage	Egg	Abundance	1 ***	↓ ***	↓ ***
		Richness	1 ***	t ***	↓ ***
	Larva	Abundance	1 ***	t ***	↓ ***
		Richness	1 ***	t ***	↓ ***

Trait grouping	Trait	Response	Historic N	Change in N 1986–2012	Historic S
Overwintering stage	Pupa	Abundance	1 ***	t ***	t ***
		Richness	1 ***	t ***	t ***
	Adult	Abundance	1 ***	t ***	t **
		Richness	1 ***	↓ ***	t ***

Overall, the responses of Lepidopteran trait groupings to N are somewhat unclear. Several of the responses of butterfly richness within trait groupings to historic N were hump-backed rather than negative, as we found in the combined species analysis. Additionally, several of the responses of butterfly richness within trait groupings to change in N over time were significantly negative, whereas this relationship was non-significant in the combined species analysis. The total abundance responses of different trait groupings to both N variables were unclear and sometimes conflicting.

4. Discussion

4.1. Single species

The strength and direction of responses of individual butterfly species to the different drivers were varied and complex, as seen in Table 2. Of the species tested, the relationship between historic N and the butterfly abundance index was negative for 10 and hump-backed for two. The modelled relationship between percentage change in N at a site between 1986–2012 and the butterfly abundance index was negative for four, and hump-backed for four. These results suggest that atmospheric nitrogen pollution may have a negative effect on certain butterflies in the UK. They also suggest potential evidence that certain species respond positively to N up to a point above which the response become negative. This fits in with the theory of critical loads and levels of N whereby significant harmful effects of N are not expected to cause damage to sensitive habitats or species until they reach a certain threshold. The results from this single species butterfly analysis largely reflect the trends found by Risser (2023).

Two species, Lasiommata megera (Wall) and Pyronia Tithonus (Gatekeeper) demonstrated negative relationships with both historic N and percentage change in N (Figures 8a, 8b, 9a) and 9b). Both species are found in the family Nymphalidae within the subfamily Satyrinae, more commonly known as the satyrids or browns. They share some trait similarities, with both being oligophagous, feeding on grasses as larva, and overwintering primarily as larva. There are however many differences between them, including in their flight periods and voltinism. L. megera is listed as Near Threatened in GB and is a Section 41 species under the NERC Act in England, whereas P. tithonus has much lower conservation status, being listed as Least Concern in GB but Near Threatened in Ireland. There is strong evidence that declines in L. megera in the Netherlands are correlated with levels of N deposition (Klop et al. 2015) as well as climate change (Van Dyck et al. 2015). It is thought that the main pathway by which N affects L. megera is through microclimatic cooling during larval development of the early-spring emerging generation of adults. It seems somewhat unlikely that this is the same mechanism by which N affects P. tithonus because its single generation of adults emerges in the warmer summer months and therefore larval development occurs later, and thus in generally warmer conditions, than in *L. megera*. Further work is needed to understand the potential causes of this negative effect of N on P. tithonus that we found in this study.

A GAM approach was used in this analysis to allow for non-linear responses to drivers, given the expectation that some species may respond to N in a hump-backed way. We observed some evidence of this hump-backed response to historic N in two species, *Melanargia galathea* (Marbled White) and *Pararge aegeria* (Speckled Wood) (Figures 10 and 11, Section 3.2.2), although the confidence intervals on the predictions were wide.

The relationship between historic S and the butterfly abundance index was also mixed. Both temperature variables were consistently statistically significant drivers of change in the abundance index of individual species. This consistently statistically significant effect of temperature on abundance supports the findings of many other studies (e.g. Fourcade *et al.* 2017; Isaac *et al.* 2011; Roy *et al.* 2001). We found that the direction of the temperature effects varies between species.

Management intervention and intensity are important drivers of many butterfly species, particularly habitat specialists. Management was not included as a term in the models due to insufficient data being available. Further research into the potential effects of N on specific species, particularly those with limited ranges and high intensity targeted management

interventions such as *Boloria euphrosyne* (Pearl-bordered Fritillary), should consider including the type and duration of management in their analyses.

As observed for the butterflies, responses of individual moth species to atmospheric N pollution varied. The abundance index of 30 moth species showed a negative correlation with historic N, whilst five species showed a hump-backed relationship. The abundance index of 80 moth species showed a negative correlation with historic N, whilst seven species showed a negative correlation with historic N, whilst seven species showed a negative correlation with historic N, whilst seven species showed a hump-backed relationship. The GAI of only two moth species, *Brachylomia viminalis* (Minor Shoulder-knot) and *Syngrapha interrogationis* (Scarce Silver Y) exhibited a negative correlation with both metrics of N pollution tested. *S. interrogationis* was recently highlighted as one of the UK's larger moths with the highest rate of decline in distribution over an average 10-year period (Fox *et al.* 2021). *B viminalis* has also experienced significant declines in both abundance and distribution over the past half century (Cook *et al.* 2024). Both moth species are characteristic of nutrient-poor habitats and therefore are expected to be sensitive to N addition.

4.2. Combined species metrics

We found strong effects of atmospheric nitrogen pollution on butterfly richness, moth richness, and moth abundance. No significant trends were seen with total butterfly abundance. We found that historic N was negatively correlated with butterfly richness, whereas it was positively correlated with both moth abundance and moth richness.

Despite the positive correlation between moth metrics and historic N, we observed a significant negative relationship between both moth metrics and the percentage change in N at the site over time. This suggests that moth richness is highest at sites with higher "historic" N loading, while moth richness is also highest at sites that have shown a decline in N pressure, and lowest at sites that have experienced an increase in N pressure. This is an unexpected result and requires further investigation to understand the causes of these opposing trends. We expect that this slightly counterintuitive result could be explained should the modelling methods be tailored to better reflect variables that are likely to impact moths, such as light pollution.

The overall abundance and richness of both butterflies and moths were significantly negatively correlated with sulphur deposition. Little research has been done on the direct effects of S on Lepidoptera and therefore more research is needed to begin to explore the full causal reasoning behind this. A recent study of Lepidoptera communities along a gradient of sulphur dioxide and metal-containing particulate matter exposure in Russia found that the abundance of many species increased with distance from the source (Kozlov et al. 2022). This effect of pollution on Lepidoptera varied by trait groupings such as hostplant specificity, feeding mechanism, and overwintering stage. They also found that reductions in emissions over time led to an increase in the diversity, but not the overall abundance, of Lepidoptera species present in the most heavily polluted areas. However, more work needs to be done to disentangle the potentially differing effects of sulphur dioxide and metal dust. as well as to move towards a more mechanistic understanding of how S pollution might be affecting Lepidoptera. A recent study demonstrated that plant community composition is gradually showing a recovery from sulphur deposition in seminatural habitats across GB (Seaton et al. 2023). Whilst associated recovery from S in Lepidoptera may take longer, it seems possible that this long-term decline in S deposition will have already had or will start to influence Lepidoptera given their reliance on vegetation for food sources, shelter, and other key parts of their life cycles.

4.3. Traits

We found that traits do not explain moth responses to atmospheric N pollution. For moths, almost all the trait groupings we tested did not differ in their responses to N and S when compared to the combined species model. However, we did observe differing responses in the single species moth analysis. This suggests that the responses of moths to atmospheric pollution are incredibly complex, and the complexity of responses is not captured by such broad trait groupings. It is possible that we might see trait responses if we filtered to much more specific groupings. The only real differing trend observed within the moth trait grouping analysis was for the richness of moths with grasses as their larval hosts, where there was no significant effect of historic N on the abundance index. This differs from the positive effect of historic N seen in the combined species analysis.

Previous studies have shown that trait analyses can have inconclusive and sometimes contradictory results. For example, a recent study of British moth abundance and distribution trends found that, despite there being strong associations for several traits, outcomes differed between the abundance and distribution trends with no trait being significant for both (Tordoff *et al.* 2022). Our results contribute to this evidence base suggesting that drivers of change in moth populations are incredibly complex and are not easily explained by broad trait groupings. We also have an incomplete knowledge of moth traits, particularly for rarer or more elusive species.

The RIS Light Trap Network may not provide data on certain moths due to the methodological nature of the trap placement. Their traps run on mains energy, and therefore need to be placed within reasonable distance of a power source. This means that we have less data from truly remote locations. This is a potentially key issue and a potential reason why we saw no interesting moth responses to N when filtered by trait grouping. Studies on the effects of N on plants highlight the negative impact on plants of nutrient-poor habitats such as heaths and bogs, which may be under-sampled due to this moth trapping methodology. Additionally, the moth traps may have been affected by artificial light pollution from surrounding urban developments, which was not accounted for in our analysis.

Several of the responses of butterfly richness within trait groupings to historic N were humpbacked rather than negative, as we found in the combined species analysis. This was the case for moorland butterflies, univoltine butterflies, oligophagous butterflies, butterflies whose larva feed on forbs, and butterflies who overwinter as larva, pupa, or adults. This is interesting and could suggest potential evidence of a critical load for butterflies in some cases. Additionally, several of the responses of butterfly richness within trait groupings to the variable representing change in N over time were significantly negative, whereas this relationship was non-significant in the combined species analysis. Both findings warrant further investigation. The total abundance responses of different trait groupings to both N variables were unclear and often conflicted with the richness trends. This might indicate that the positive abundance trends are being driven by a few common species which are nitrophilic.

4.4. Further work and indicator development

4.4.1. Introduction

Based on the results from this modelling study, we suggest that an indicator of recovery from nitrogen pollution be based on a group of selected butterfly and moth species, rather than total richness or abundance of all species or of species within specific trait groupings. This indicator should be informed by this study, further analysis of Lepidoptera data with co-located atmospheric and vegetation data, as well as expert input from taxonomic specialists.

Now that we established the evidence base of potential N impacts on Lepidoptera in the UK, we could undertake further analysis of ecological metrics on different sets of sites, representing areas that have recovered from air pollution, areas where deposition has remained static, and areas where deposition has increased (as briefly highlighted in Figures 6 and 7, Section 3.2.1). Within this analysis, the direction of change in the different forms of N, oxidized nitrogen (NOx) and reduced nitrogen (NHx), could also be considered. Due to uncertainties in our ability to accurately detect spatial change in N pollution due to modelling constraints mentioned above, we could use sites with co-located atmospheric nitrogen monitoring stations to enable us to sense-check the modelled data. We propose that a viable route forward would be to undertake further analysis work on Lepidoptera data from Environmental Change Network sites, which is co-located with atmospheric and vegetation monitoring data. In these case study areas, we could model Lepidoptera abundance and richness in relation to N and other drivers at the individual site level and assess whether any evidence of recovery from N can be detected at this fine scale. In addition, we feel that further targeted analysis of the impacts of N on uncommon bog specialist butterfly species not covered in this report due to insufficient data availability would be beneficial.

From here, we would identify a list of candidate species for inclusion in an indicator. This list could be taken to a group of taxonomic experts for guided discussion which species to use in the indicator. From this work we can identify two potential candidate indicator butterfly species: the Wall *Lasiommata megera* and Gatekeeper *Pyronia tithonus*. Further analysis as discussed in Section 4.4.3 would enable us to understand whether other nutrient-poor habitat specialist species not covered in this analysis could be included as candidate species. This indicator of recovery from nitrogen pollution could be similar to UK Biodiversity Indicator 'Insects of the wider countryside (butterflies)' and detail the percentage of species undergoing change in the short- and long-term. Alternatively, it could take the form of a Community Nitrogen Index indicator as proposed by WallisDeVries and van Swaay (2017). Further scoping work is needed to identify the best route forward given the data we have available.

4.4.2. Nitrogen datasets

Further work is needed to understand the extent to which potential issues with the nitrogen driver datasets impact our ability to accurately detect spatial trends in pollutant impacts in the UK over time.

4.4.3. Additional analyses

Due to the tight time constraints on this project, follow-on work could involve more in-depth consideration of the results with regards to the potential ecological reasons behind the observed modelled responses, particularly for the moths. In addition, we would suggest further involvement from taxonomic experts in interpreting the moth results with relation to potential conservation implications. Future analytical work may also wish to incorporate a broader range of moth datasets, such as from the National Moth Recording Scheme, to increase spatial and taxonomic coverage of the moth analysis. Further analysis could also account for potential additional drivers of change in moths, such as the degree of artificial light at night (ALAN).

As mentioned in Section 4.4.1, further targeted analysis of the effects of N on individual bog specialist species that were not covered in this report should be considered. We were unable to run the complex single species models for the Large Heath *Coenonympha tullia* and Scotch Argus *Erebia aethiops*, both of which are specialists of nutrient-poor habitats and could potentially be important indicators of recovery from N. Further analysis of UKBMS data using less spatially complex models is highly recommended to understand this potential link.

The models used in the single species, combined species, and traits analyses did not consider the potential impact of habitat type. We expect that N enrichment will impact the metrics differently depending on which habitat the site is in. Further work could therefore test the potential effect of N on richness and total abundance whilst directly accounting for the habitat sampled, for example by including the dominant land cover in the surrounding area as a term in the models.

We tested the response of individual trait groupings to N pollution. Given the complexity of our findings, especially for the butterflies, it seems possible that there may be interactive effects of traits on Lepidopteran abundance and richness. Further work could take a much more complex approach to this trait modelling whereby multiple traits and their interactions can be included in the same model. This would allow us to understand whether it is a combination of traits, rather than the individual traits on their own that drive responses to N. This could perhaps be achieved using a joint species distribution modelling (jSDM) approach.

4.4.4. Developing a causal understanding of N impacts on Lepidoptera

Inherently, the results of this analysis only give us an understanding of the potential correlative links between N and Lepidoptera. Further work is needed to understand the causal mechanisms behind these responses. Co-located atmospheric pollutant, Lepidoptera, and plant monitoring data would allow us to have more confidence in our understanding of the causal effects of N on Lepidoptera and their hostplants and surrounding habitats. Such co-located data are currently limited to the few terrestrial Environmental Change Network (ECN) sites. Greater connectivity between monitoring networks would be hugely beneficial to further research into this type of question. Recent innovations in automatic monitoring of biodiversity provide a potential low-cost solution. For example, placement of UKCEH AMI-traps at vegetation and atmospheric monitoring sites would offer a low-cost, low-effort solution to increase the amount of co-located data. Placing AMI-traps at ECN sites where RIS traps are already located would allow us to test the effectiveness in terms of detection and quantification of species richness of AMI traps compared to the high-effort, high-cost RIS light traps.

There is also a need for controlled laboratory and field-based studies, for example to test whether the nutritional composition of N-enriched plants impacts survival and fecundity in UK Lepidoptera. Field-based gradient studies could also be used to detect potential impacts of point sources of ammonia on Lepidoptera by placing low-powered moth traps along a gradient of exposure, similar to how researchers would undergo a study over an elevation gradient.

References

Bates, A.J., *et al.* (2014) Garden and Landscape-Scale Correlates of Moths of Differing Conservation Status: Significant Effects of Urbanization and Habitat Diversity. *PLOS ONE*, 9(1), e86925. Public Library of Science.

Betzholtz, P.-E., *et al.* (2013) With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. *Proceedings of the Royal Society B: Biological Sciences*, 280(1750), 20122305. Royal Society.

Botham, M.S., *et al.* (2023) United Kingdom Butterfly Monitoring Scheme: site indices 2022. NERC EDS Environmental Information Data Centre.

Cook, P.M., *et al.* (2024) Traits data for the butterflies and macro-moths of Great Britain and Ireland, 2023. NERC EDS Environmental Information Data Centre.

Dennis, E.B., *et al.* (2016) A generalized abundance index for seasonal invertebrates. *Biometrics*, 72(4), 1305–1314.

Dennis, E.B., *et al.* (2017) Using citizen science butterfly counts to predict species population trends. *Conservation Biology*, 31(6), 1350–1361.

Fourcade, Y., *et al.* (2017) Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly. *Journal of Animal Ecology*, 86(6), 1339–1351.

Fox, R., *et al.* (2015) The state of the UK's butterflies 2015. Wareham, Dorset: Butterfly Conservation. Available at: <u>http://butterfly-conservation.org/files/soukb-2015.pdf</u>

Fox, R., *et al.* (2021) The state of Britain's larger moths 2021. Wareham, Dorset, UK: Butterfly Conservation, Rothamsted Research and UK Centre for Ecology & Hydrology. Available at: <u>https://butterfly-conservation.org/sites/default/files/2021-</u>03/StateofMothsReport2021.pdf

Henrys, P.A., *et al.* (2011) Impacts of nitrogen deposition on vascular plants in Britain: an analysis of two national observation networks. *Biogeosciences*, 8(12), 3501–3518. Copernicus GmbH.

Henwood, B., *et al.* (2020) Field Guide to the Caterpillars of Great Britain and Ireland. Bloomsbury Wildlife, London, UK.

Howell, K.A., *et al.* (2023) Trait data for 925 species of macro- and micro-moths recorded in six regions of England 2017-2021. NERC EDS Environmental Information Data Centre.

Isaac, N.J.B., *et al.* (2011) Butterfly abundance in a warming climate: patterns in space and time are not congruent. *Journal of Insect Conservation*, 15(1), 233–240.

Klop, E., *et al.* (2015) Impact of nitrogen deposition on larval habitats: the case of the Wall Brown butterfly *Lasionmata megera*. *Journal of Insect Conservation*, 19(2), 393–402.

Kozlov, M.V., *et al.* (2022) Recovery of moth and butterfly (Lepidoptera) communities in a polluted region following emission decline. *Science of The Total Environment*, 838, 155800.

Levy, P.E., *et al.* (2020) Deposition of nitrogen, sulphur and base cations to the UK (1986-2012). NERC Environmental Information Data Centre.

Lüdecke, D. (2018) ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. *Journal of Open Source Software*, 3(26), 772.

Met Office, *et al.* (2023) HadUK-Grid Gridded Climate Observations on a 1 km grid over the UK, v1.2.0.ceda (1836-2022). NERC EDS Centre for Environmental Data Analysis.

Öckinger, E., *et al.* (2006) The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. *Biological Conservation*, 128(4), 564–573.

Perring, M.P., *et al.* (2024) JNCC Report 757: Scoping Future Research for Air Pollution Recovery Indicators (APRI). JNCC.

Randle, Z., *et al.* (2019) Atlas of Britain & Ireland's Larger Moths. Newbury, UK: Pisces Publications.

Risser, H. (2023) Assessing spatiotemporal relationships between atmospheric nitrogen deposition and butterfly species records through statistical modelling. Lancaster Environment Centre: Lancaster University.

Roth, T., *et al.* (2021) Negative effects of nitrogen deposition on Swiss butterflies. *Conservation Biology*, 35(6), 1766–1776.

Rowland, C.S., *et al.* (2017a) Land Cover Map 2015 (1 km percentage target class, GB). NERC Environmental Information Data Centre.

Rowland, C.S., *et al.* (2017b) Land Cover Map 2015 (1 km percentage target class, N. Ireland). NERC Environmental Information Data Centre.

Rowland, C.S., et al. (2020a) Land Cover Map 1990 (1 km percentage target class, GB) v2.

Rowland, C.S., *et al.* (2020b) Land Cover Map 1990 (1 km percentage target class, N. Ireland). NERC Environmental Information Data Centre.

Roy, D.B. *et al.*, (2001) Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. *Journal of Animal Ecology*, 70(2), 201–217.

Scheffler, J., *et al.* (2024) Heavy metal, nitrogen, and sulphur atmospheric deposition from the European Monitoring and Evaluation Program Model for the UK (EMEP4UK) for 1750-2018. NERC EDS Environmental Information Data Centre.

Scheffler, J. & Vieno, M. (2022) European Monitoring and Evaluation Program Model for the UK (EMEP4UK) daily atmospheric composition for 2002-2021. NERC EDS Environmental Information Data Centre.

Seaton, F.M., *et al.* (2023) Fifty years of reduction in sulphur deposition drives recovery in soil pH and plant communities. *Journal of Ecology*, 111(2), 464–478.

Staley, J.T., *et al.* (2022) Landscape-scale species monitoring of agri-environment schemes (LandSpAES project). Final project report, 2022. London: Department for Environment, Food & Rural Affairs.

Stewart, A.J.A., *et al.* (2007) Monitoring biodiversity: measuring long-term changes in insect abundance. In: CABI Insect Conservation Biology. Wallingford, UK: CABI.

Tomlinson, S.J., *et al.* (2020) Nitrogen deposition in the UK at 1 km resolution, 1990-2017. NERC Environmental Information Data Centre.

Tordoff, G.M., *et al.* (2022) Inconsistent results from trait-based analyses of moth trends point to complex drivers of change. *Biodiversity and Conservation*, 31(12), 2999–3018.

Van de Schoot, E., *et al.* (2024) Evolutionary change in flight-to-light response in urban moths comes with changes in wing morphology. *Biology Letters*, 20(3), 20230486. Royal Society.

Van Dyck, H., *et al.* (2015) The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? *Oikos*, 124(1), 54–61.

Wallisdevries, M. & Swaay, C. (2013) Effects of local variation in nitrogen deposition on butterfly trends in The Netherlands. In: Dec 13, 2013.

WallisDeVries, M.F. & van Swaay, C.A.M. (2017) A nitrogen index to track changes in butterfly species assemblages under nitrogen deposition. *Biological Conservation*, 212, 448–453.

Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis. [Online]. New York, NY: Springer.

Wilson, J.F., *et al.* (2018) A role for artificial night-time lighting in long-term changes in populations of 100 widespread macro-moths in UK and Ireland: a citizen-science study. *Journal of Insect Conservation*, 22(2), 189–196.

Wood, S.N. (2017) Generalized Additive Models: An Introduction with R, Second Edition. 2nd ed. [Online]. Boca Raton: Chapman and Hall/CRC.

Glossary

Table 7. Glossary of terms.

Term	Definition
ALAN	Artificial light at night
AMI system	Automated Monitoring of Insects
BBC	Big Butterfly Count
CBED	Concentration Based Estimated Deposition
ECN	Environmental Change Network
EMEP	European Monitoring and Evaluation Program
FRAME	Fine Resolution Multi-pollutant Exchange
GAI	Generalised Abundance Index
GAM	Generalised Additive model is a model in which the linear response variable depends on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions.
GBS	Garden Butterfly Survey
GMS	Garden Moth Scheme
JASMIN	The UK's data analysis facility for environmental Science
JSDM	Joint Species Distribution Modelling
LCM	Land Cover Map
Lepidoptera	An order of insects that includes butterflies and moths.
LUI	Land Use Intensity
mgcv	Mixed GAM Computation Vehicle
N	Nitrogen
NA	Not Applicable.
Nitrogen Deposition	The input of reactive nitrogen from the atmosphere to the biosphere, both as a gas (dry deposition) and precipitation (wet deposition).
NMRS	National Moth Recording Scheme
RIS	Rothamsted Insect Survey
UKBMS	United Kingdom Butterfly Monitoring Scheme
UKCEH	United Kingdom Centre for Ecology and Hydrology
WCBS	Wider Countryside Butterfly Survey