

Please note: the content of this PDF file is taken from archive holdings, and has been rendered to produce the best possible output. However, you may experience fluctuations in quality due to these files not being created from electronic originals.

Research & survey in nature conservation

No. 19

**A botanical classification
of standing waters in
Great Britain**

and a method for the use of macrophyte flora
in assessing changes in water quality

incorporating a reworking of data,
1992

Margaret Palmer
Joint Nature Conservation Committee

Further information about JNCC publications can be obtained from:

Publications Branch
Joint Nature Conservation Committee
Monkstone House
City Road
Peterborough PE1 1JY

Copyright NCC 1989
ISBN 0 86139 541 7
Revised 1992
Copyright JNCC 1992
ISBN 1 873701 27 6
ISSN 0952 4738

Contents

	Page
Introduction	5
Methods	
Field survey	5
Analyses of data	6
Results	6
Discussion	
Factors influencing plant distribution	7
Chemical classification of water bodies	8
Water chemistry of site types	8
Geographical distribution of site types	10
Trophic requirements of individual species	11
DOME codes and Trophic Ranking Scores (TRS)	12
Assessing changes in aquatic flora and water quality	13
Acknowledgements	18
References	19
Tables	
Table 1	TWINSPAN classification of standing water sites - submergent and floating vegetation
Table 2	TWINSPAN hierarchy - submergent and floating vegetation
Table 3	Key to standing water site types (submergent and floating species)
Table 4	National Vegetation Classification communities most common in emergent fringes of standing water site types
Table 5	Physical characteristics of standing water site types
Table 6	Trophic requirements of submergent and floating species according to TWINSPAN classification
Table 7	Trophic requirements of emergent species
Figures	
Figure 1	Distribution of sampling sites throughout Great Britain
Figure 2	DECORANA plot showing the relationships between site types

Figure 3 Chemical and physical characteristics of site types

Figures 4-13 Maps showing the distribution of sites in types 1-10

Figure 14 The relationships between average Trophic Ranking Score, pH and conductivity for Galloway Lochs

Addendum Revision of DOME codes and Trophic Ranking Scores

Tables Trophic requirements of submergent and floating species
Trophic requirements of emergent species

Figures Ranges of alkalinity for site types
Ranges of conductivity for site types
Ranges of pH for site types

INTRODUCTION

In "A Nature Conservation Review" (Ratcliffe ed. 1977) standing waters are classified as dystrophic, oligotrophic, mesotrophic, eutrophic, marl or brackish, and a general description is given of the flora and fauna characteristic of each type of water. Few attempts have been made to produce a more detailed classification of the freshwaters of Great Britain using macrophyte vegetation. Holmes (1983) produced a classification of rivers for Britain as a whole, but standing waters have been classified largely on a regional basis. Pearsall (1920) described the vegetation of the Lake District, Spence (1967) investigated the distribution of freshwater plants in Scottish lochs and Seddon (1972) analysed the patterns of vegetation in 120 Welsh lakes.

For more than a decade, detailed surveys of standing waters throughout Great Britain have been carried out by Nature Conservancy Council staff, and a large amount of data on the distribution of aquatic macrophytes has been gathered. This publication describes a recent analysis of the NCC data for standing waters, and provides a classification of sites which can be applied throughout Great Britain. The work has also produced a method of monitoring changes induced by acidification or eutrophication of standing waters.

METHODS

Field survey

A standard method for surveying aquatic macrophytes in standing waters is employed by the Nature Conservancy Council. This entails walking the perimeter of the lake or other water body to record shoreline and shallow water vegetation. Deeper water is sampled by means of a grapnel thrown from the bank at frequent intervals during the perimeter walk. Where possible, a boat is used, and grapnel samples are obtained from the bottom during transects of the lake and passages parallel to the shore. All aquatic plants are recorded on a subjective "DAFOR" abundance scale - dominant; abundant; frequent; occasional; rare.

Since 1975, this method has been used to record the aquatic vegetation of over 1,100 lakes, meres, reservoirs, pools, ponds, gravel pits and canals throughout Great Britain. Data have been assembled from the following sources:

<u>Surveyor</u>	<u>% of sites in database</u>	<u>Area surveyed</u>
Elizabeth Charter (on contract to the NCC Chief Scientist Directorate, alone or leading teams)	54	Lake District and Northern Scotland
Chris Newbold (Chief Scientist Directorate)	16)
Margaret Palmer (Chief Scientist Directorate)	6) Throughout Great Britain
Combined survey by Chris Newbold and Margaret Palmer	6)
Margaret Dickson, Fiona Evans and others (on contract to NCC W Midlands Region)	5	Gloucestershire and Wiltshire
Edinburgh Botanic Gardens (on contract to NCC)	4	Outer Hebrides

England Field Unit, NCC	4	West Midlands
Susan Bell (on contract to NCC NW Scotland Region)	3	Caithness
Hazel Drewitt and Tim Smith (on contract to NCC E Midlands Region)	1	Lincolnshire
Nick Stewart and John Page (independent botanists)	1	Scotland and Worcestershire

Ditch vegetation surveys have not been incorporated in this database because the intensive management of ditch systems, their dimensions and intermittent flow, and the different survey methods employed, make the data unsuitable for inclusion. The distribution throughout Great Britain of the survey sites is shown in FIGURE 1. The concentration of sites in the Lake District and northern Scotland is testimony to the efforts of Elizabeth Charter and her teams of field workers.

At most of the sites single measurements were made of the pH and electrical conductivity of the water. For a minority of sites, water samples were analysed for a variety of parameters, including alkalinity, oxidised nitrogen, ammonium nitrogen, phosphorus, silica, chloride, potassium, calcium, magnesium, iron and aluminium. 114 measurements of alkalinity by titration were carried out by Dr Chris Newbold for sites which he surveyed.

Analyses of data

A computer file was made, containing records of all the macrophyte species, along with their DAFOR abundance ratings, for 1,124 sites. These data were then subjected to TWINSPAN (Two-way Indicator Species Analysis). This computer program was devised by Hill (1979a), and is a sophisticated method of producing an ordered matrix of sites by species, a series of end-groups of sites with similar vegetational characteristics, and a key to those end-groups, based on indicator species.

Two runs of TWINSPAN were made, one with submergent, floating and emergent vegetation, the other with only the 104 species considered to be submergent and floating. The DATAEDIT program (Singer 1980) was subsequently used to draw up species constancy tables for end-groups (ie site types) chosen for examination. The validity of this choice of site types was tested by using the DECORANA (Detrended Correspondence Analysis) program (Hill 1979b), which arranges the individual sites along a number of axes, usually related to environmental parameters.

RESULTS

The analysis based on submergent and floating species alone produced clearer results than that using all species, including emergents. There appeared to be two main reasons for this. Firstly, full records of emergent vegetation were not available for all sites. Secondly, emergent vegetation is often subject to influences (eg grazing or differences in substrate) not experienced by the open water vegetation. The TWINSPAN program was therefore producing skewed results when all the zones of vegetation were included, so it was decided that results based on full lists would be discarded in favour of those for the open water zones alone. It was possible subsequently, using the DATAEDIT program, to formulate lists of emergent species associated with open water site types.

TABLE 1 shows the species occurring at a constancy of more than 20% in the TWINSPAN end-groups finally chosen to represent ten site types. Two of these site types have variants, making a total of 12 end-groups which are recognised. The hierarchy produced by TWINSPAN is shown in TABLE 2. Site types were identified initially by comparing species constancies for groups at various levels in the TWINSPAN hierarchy, in order to decide, in the light of experience in the field, whether or not the groups were sufficiently different to form distinct site types. Use of the DECORANA program confirmed the choice of end-groups. FIGURE 2 shows the relationship between the 10 site types as discerned by DECORANA. The key to site types, produced by TWINSPAN, is given in TABLE 3.

Type 1 is a species-poor group, characterised by submerged Sphagnum, Juncus bulbosus var. fluitans and, less constantly, Potamogeton polygonifolius. Type 2 sites are typified by the last two species, along with Littorella uniflora, Lobelia dortmanna and Potamogeton natans. Type 3 is distinguished from type 2 mainly by the higher incidence of Myriophyllum alterniflorum, Isoetes lacustris and Fontinalis antipyretica. Type 4 contains elements (eg Littorella uniflora, Potamogeton natans and Myriophyllum alterniflorum) of Type 3, but in addition a number of species such as Potamogeton filiformis, P. praelongus and Chara are common. Type 5A consists of a species-rich sub-group characterised by Littorella uniflora, Myriophyllum alterniflorum, Nitella species, Potamogeton berchtoldii and Elodea canadensis. The variant 5B consists of species-poor sites dominated by Potamogeton natans and Nymphaea alba. Type 6 sites usually contain few species apart from Potamogeton pectinatus, Ruppia species and seaweeds such as Fucus ceranoides. Sites in Type 7 have distinct affinities with those of Type 4, in that they often contain Potamogeton filiformis and Chara species, but type 7 sites usually lack Nitella and Myriophyllum alterniflorum. Type 8 sites are poor in open water species, but rich in emergents, and are characterised by Lemna minor and Polygonum amphibium. Type 9 sites are dominated by the water lilies Nuphar lutea and Nymphaea alba. Type 10 has two variants, one characterised by Elodea canadensis and Lemna minor, the other by Potamogeton pectinatus and Chara species.

Indicated in TABLE 4 are emergent species which typify communities as described in National Vegetation Classification (Rodwell 1984) and are most constantly associated with open water site types 1 to 10.

Data on physical and chemical characteristics of sites in the ten types are displayed in TABLE 5 and FIGURE 3.

DISCUSSION

Factors influencing plant distribution

The distribution of aquatic plants, both within and between water bodies, is determined by a number of factors. Pearsall (1920) considered substrate and depth to be the most important factors in the Lake District. Spence (1967) and Seddon (1972) regarded water chemistry of lakes as highly significant, and drew attention to the importance of alkalinity, pH, conductivity and the ratio of Ca + Mg to Na + K in determining the distribution of plants. Ormerod *et al.* (1987) have shown that assemblages of plants in soft-water streams in Wales are related strongly to pH. Holmes and Newbold (1984) suggest that river plant communities reflect both substrate and water chemistry. Rodwell (1984, 1986-87) has brought together published data on the trophic requirements of swamp, fen and mire vegetation communities. He will be relying strongly on the TWINSPAN classification described here to produce the National Vegetation Classification for aquatic plant communities.

Chemical classifications of water bodies

Ratcliffe (1977) gives these as the characteristics of different types of water:

	Alkalinity (mg/l CaCO ₃)	Conductivity (μ mhos)	pH
Dystrophic	0-2	-	less than 6
Oligotrophic	0-10	-	6-7
Mesotrophic	10-30	-	around 7
Eutrophic	Over 30	-	over 7
Marl	Over 100	-	over 7.4
Brackish	-	Over 500	-

The upper limit of 500 μ mhos given by Ratcliffe for the conductivity of fresh water is an under-estimate. Brackish waters have a sodium chloride concentration of at least 500 mg/l, accounting for a conductivity of approximately 1000 μ mhos (U.S Department of Agriculture 1954). Other ions also contribute to conductivity, so measurements of less than 1,500 μ mhos are seldom encountered in brackish waters.

Vollenweider (1968) defined the trophic categories of waters in terms of nitrogen and phosphorus, as follows:

	Total P	mg/l Inorganic N
Ultra-oligotrophic	<0.005	<0.02
Oligo-mesotrophic	0.005-0.01	0.2-0.4
Meso-eutrophic	0.01-0.03	0.3-0.65
Eu-polytrophic	0.03-0.10	0.5-1.5
Polytrophic (hypertrophic)	>0.10	>1.5

High alkalinity is not invariably associated with eutrophic waters. The Lismore Lochs in Argyll, for instance, have alkalinites of 120-160 mg/l CaCO₃, but low levels of nitrogen and phosphorus (Ratcliffe 1977).

Water chemistry of site types

Data on nitrogen and phosphorus concentrations are sparse for the sites in the NCC standing waters database, but pH, conductivity and, to a lesser extent, alkalinity, were measured routinely when the sites were surveyed. Therefore, the last three parameters are employed as indicators of nutrient status, in the knowledge that a minority of sites will be misclassified using these criteria.

FIGURE 3 illustrates the ranges of alkalinity, conductivity and pH for waters in the ten chosen site types. It is obvious that, despite considerable overlap, there is a general trend from low alkalinity, conductivity and pH to high values, with the progression from type 1 to type 10. Type 1 sites have alkalinities below 2 mg/l CaCO₃, conductivities below 100 μ mhos, and pH generally below 6, but frequently less than 5. Sites in types 2 and 3 generally have alkalinities ranging from 2 to 30 mg/l, conductivities similar to those of type 1, and pH most often between 6 and 7. Type 4 sites encompass a wide range of alkalinities, including over 30% in the marl category. Their conductivities are similarly wide-ranging and their pH usually above neutral. The majority of type 5 sites have water with alkalinities within the 10-30 mg/l (mesotrophic) range, and their conductivities and pH tend to be slightly higher than those of types 2 and 3. Type 6 sites are obviously brackish, mostly with conductivities higher than 5,000 μ mhos, far in excess of the usual upper limit of 1,500 μ mhos for fresh waters. Some sites in type 7 are also brackish, but the majority have conductivities which are relatively high, but still within the limits for fresh waters. Sites in this group have generally high alkalinities and pH. Sites in types 8, 9 and 10 mostly have alkalinities above 30 mg/l, conductivities over 200 μ mhos and pH higher than neutral, although type 9 appears to contain a wider variation than types 8 and 10. A large proportion of type 8 sites fall into the highly alkaline marl category.

It seems reasonable, on this evidence, to allocate the following trophic states to waters of the 10 site types:

Type 1	-	dystrophic
Types 2 and 3	-	oligotrophic
Type 4	-	wide range
Type 5	-	mesotrophic
Type 6	-	brackish
Types 7, 8 and 10	-	eutrophic
Type 9	-	mainly eutrophic, but with some mesotrophic sites.

Marl waters and those which are only slightly saline are not well differentiated in this classification. The former are mainly incorporated into type 7 and the latter are dispersed amongst types 4, 7, 8, 9 and 10. The variety of conditions evident in type 4 sites, which nevertheless form a recognisable group as defined by vegetational characteristics, can be explained by the fact that many of the sites in this group lie in calcareous basins fed by water from acid catchments.

The output from DECORANA (FIGURE 2) shows a clear progression along axis 1 from dystrophic waters (type 1), through oligotrophic lakes (types 2 and 3) to mesotrophic and "mixed" sites (types 5 and 4). The eutrophic types (7, 8, 9, 10) are clumped together next, and the brackish sites (type 6) are placed at the opposite end from the dystrophic ones. The arrangement along axis 4 separates-out the series of eutrophic sites. Axis 1 defines variation in conductivity and pH. The trend on axis 4 is difficult to interpret, but may be associated with the ratio between certain ions.

Data on phosphorus concentrations for a series of lochs in the Central Region of Scotland, surveyed during September 1981, bear out the trophic classification of the site types. Ten of these lochs are classified by their macrophytes as types 2 and 3. The total phosphorus concentrations in water from these lochs lay around or below the level of detection (0.02 mg/l). The mean concentration of this nutrient in the two sites categorised as type 5 was 0.035 mg/l. The remaining site falls into type 10a, and the total phosphorus level of its water was 0.2 mg/l. The mean alkalinities were as follows:

Type 2 (3 sites)	-	4.9 mg/l CaCO ₃
Type 3 (7 sites)	-	9.7 mg/l CaCO ₃
Type 5 (2 sites)	-	34 mg/l CaCO ₃
Type 10a (1 site)	-	97 mg/l CaCO ₃

The alkalinity values are very close to those suggested for oligotrophic, mesotrophic and eutrophic sites by Ratcliffe (1977), but the total phosphorus levels are slightly higher than the equivalents suggested by Vollenweider (1968).

Geographical distribution of site types

The distribution of sites in types 1-10 is illustrated in FIGURES 3-13. It can be seen that types 1-7 lie predominantly in the north and west of Britain; types 8 and 10 are mainly southern and eastern, and type 9 sites are widespread in England and Wales. Sites characteristic of the ten types are:

- Type 1 Smaller lochs on blanket bog in Sutherland
Heathland ponds in Woolmer Forest, Hampshire
- Type 2 Upland tarns in the Lake District
"Blackland" lochs in the Outer Hebrides
Peaty lochs in Caithness and Sutherland
Pools on the Lizard in Cornwall
- Type 3 Large lochs in the Trossachs
Lochs on igneous and metamorphic rock in Caithness and Sutherland
Wastwater, Buttermere, Coniston Water in the Lake District
Loch Lomond
Llyn Idwal and Llyn Ogwen, Snowdonia
Oak Mere in Cheshire
- Type 4 Coastal freshwater lochs in northern Scotland, including many machair lochs in the Outer Hebrides
- Type 5 Bassenthwaite Lake, Windermere and Esthwaite Water in the Lake District
The Lake of Menteith, Central Region of Scotland
Greenlee and Broomlee Loughs, Northumberland
- Type 6 Brackish sea-lochs in Orkney and Shetland
Loch Obisary, Outer Hebrides
- Type 7 Machair lochs with strong marine influence in the Outer Hebrides
Lochs on Durness Limestone, Sutherland
Lochs on Old Red Sandstone in Caithness and on Orkney
- Type 8 Meres in Shropshire, Cheshire and Staffordshire
Llyn Coron, Anglesey
Fleet Pond, Surrey
- Type 9 Calthorpe Broad, Norfolk
Haweswater, Lancashire
Llanbwchlyn, mid Wales

Type 10a Little-used canals throughout Britain
Semerwater, Yorkshire
Gravel pits in eastern England and elsewhere.

Type 10b Gravel pits in the Cotswolds
Malham Tarn, Yorkshire.

Trophic requirements of individual species

It is obvious (TABLE 1) that some floating and submergent macrophyte species are restricted to nutrient-poor waters, some are typical of nutrient-rich sites, but many are more catholic in their requirements. Species most characteristic of nutrient-poor waters of types 1 to 3 include Juncus bulbosus var. fluitans, Potamogeton polygonifolius, Lobelia dortmanna, Sparganium angustifolium and Myriophyllum alterniflorum. Species strongly associated with the eutrophic types 7 to 10 are Lemna species, Myriophyllum spicatum, Potamogeton pectinatus and, in Scotland, Potamogeton filiformis. The assemblage of species usually found in type 4 sites is drawn from both ends of the spectrum, as might be expected in sites subject to an unusual combination of influences.

Spence (1967), Seddon (1972), Haslam *et al.* (1975), Ratcliffe (1977) and Newbold & Palmer (1979) all attempted to categorise aquatic plants according to their trophic requirements. The first two authors confined their attention to Scotland and Wales, whereas the others attempted a more general approach. On the basis of experience in the field, and without benefit of sophisticated vegetation analysis, Newbold and Palmer allocated aquatic plants to trophic categories, and devised a system of trophic ranking numbers (TRN). These numbers were not meant to be scores, but were intended as an aid to finding the position of plants within broad bands of alphabetically arranged species, allotted to particular trophic levels. Thus, sites containing plants with TRNs mainly below 22 would be oligotrophic and sites with plants ranked above about 110 would be eutrophic or hypertrophic. Intermediate numbers were allotted to plants thought to be ubiquitous or associated mainly with mesotrophic waters.

TABLE 6 lists all the species in the NCC database which occurred at 5% constancy or more in the TWINSPAN classification for site types 1 (dystrophic), 2 and 3 (oligotrophic), 5 (mesotrophic), 7 ("northern" eutrophic) and 8 and 10 ("southern" eutrophic). Types 4 and 9 are omitted because of their mixture of affinities, and brackish sites (type 6) are excluded because there are so few in the database. The species are ordered, giving a progression from dystrophic to eutrophic, and the strength of the association of each species with each trophic state is indicated. Beside this list are the opinions of the previously-mentioned workers regarding the requirements of each species.

TABLE 7 was drawn up by extracting site-based lists of emergent plants from the database and fitting these to the classification of floating and submergent species constructed by TWINSPAN. Only species occurring at a constancy of 10% or more for each site type are listed in TABLE 7, as the associations are one step removed from the original analysis and so must be treated with caution. Again, the list is annotated with previous opinions.

There is a fair amount of agreement between the various opinions expressed, with some notable exceptions. For instance, Seddon associated Elodea canadensis and Sparganium erectum in Wales mainly with oligotrophic conditions and thought Sparganium minimum was probably confined to eutrophic sites - a very different picture from that given in the analysis for Great Britain.

The general impression given in TABLES 6 and 7 is of a number of obligate eutrophic species grading into a series of species with gradually wider tolerance. Some of these tolerant species may be excluded from eutrophic situations by competition. As Seddon (1972) states:

"....groups tolerant of eu-, meso- and oligotrophic waters comprise a continuous series of species with progressively greater ecological range. No groups are mutually exclusive and there are few pairs of species whose ranges do not overlap at their extremes".

DOME codes and Trophic Ranking Scores (TRS)

The "DOME codes" in TABLES 6 and 7 show the range of tolerance (dystrophic to eutrophic) of each species, as indicated by the TWINSPAN classification. An upper case letter in the code signifies greater confidence than a lower case one. The right hand columns of TABLES 6 and 7 list the "Trophic Ranking Score" (TRS) for each species. TRS is calculated in the following way. The "units" of the DOME code are allotted values of 1 to 10, according to their position in the trophic scale:-

D	1	m	6
d	2	M	7
o	3	m	8
O	4	e	9
o	5	E	10

where D and d = dystrophic
O and o = oligotrophic
M and m = mesotrophic
E and e = eutrophic

Lower case "o" and "m" are allotted two values each. The value chosen in individual cases depends on the upper case symbol or symbols also present in the particular DOME code.

Each species is given a TRS by dividing the total value of the units in the DOME code by the number of the units, to give the mean value. Examples of TRS are:

$$DO \quad \frac{5}{2} = 2.5 \quad (\text{the lowest value possible without } \underline{Sphagna} \text{ being determined to species})$$

$$Om \quad \frac{10}{2} = 5.0$$

$$DOMe \quad \frac{21}{4} = 5.3$$

$$oME \quad \frac{22}{3} = 7.3$$

$$mE \quad \frac{18}{2} = 9.0$$

$$E \quad \frac{10}{1} = 10 \quad (\text{the highest value possible})$$

The average TRS for a whole site is calculated by adding the individual scores and dividing by the number of scoring species. For a hypothetical site containing the following seven species, the average TRS is worked out thus:

	DOME code	TRS
<i>Potamogeton perfoliatus</i>	oME	7.3
<i>P. natans</i>	OME	7.0
<i>Callitricha hamulata</i>	Ome	6.3
<i>Littorella uniflora</i>	OMe	6.7
<i>Isoetes lacustris</i>	Om	5.0
<i>I. setacea</i>	-	-
<i>Juncus bulbosus</i>	DOME	5.3
Average TRS	= $\frac{37.6}{6}$	= 6.3

The average TRS gives a more subtle assessment of the trophic status of a site than would be obtained by keying-out a plant assemblage to site type.

Because brackish waters encompass a range of trophic states, salinity tolerance is not included in this scheme.

ASSESSING CHANGES IN AQUATIC FLORA AND WATER QUALITY

A change in trophic state of a site is usually accompanied by a change in macrophyte species composition. If there were a gross change, the site would key-out to a different site type, but smaller shifts caused by acidification or nutrient enrichment can be identified by using the average TRS. As open water plants are more reliable indicators of water chemistry than emergent species, it is best to use only floating and submergent species in calculating average TRS, when looking for indications of a change in water quality. The following examples illustrate the use of this method.

Alpnachersee Lake (Switzerland)

Transects of Alpnachersee Lake, carried out in 1933 and 1983, are illustrated by Harding (Department of the Environment 1987). The submerged and floating species recorded on the two occasions, with their DOME codes and TRS, are as follows:-

Species recorded in 1933	DOME code	TRS	Species recorded in 1983	DOME code	TRS
Chara species	oME	7.3	Nuphar lutea	ME	8.5
Myriophyllum spicatum	mE	9.0	Potamogeton nodosus	-	-
Nuphar lutea	ME	8.5	P. pectinatus	E	10.0
Nymphaea alba	OMe	6.7	P. pusillus	mE	9.0
Potamogeton crispus	mE	9.0	Average TRS		9.2
P. lucens	E	10.0			
P. nodosus	-	-			
P. pectinatus	E	10.0			
Utricularia vulgaris	Om	5.0			
Average TRS		8.2			

The difference is clear, illustrating the eutrophication which has occurred in this polluted lake. The average TRS has increased, despite the fact that the site keys-out to type 10 for both sampling dates. What is not evident from the average TRS is the decline in vegetation cover and the loss of species.

Galloway Lochs

Raven (1985) compared his recent records of the aquatic flora of 23 Galloway lochs with lists compiled by West in 1904/5 (West 1910). Using Seddon's suggestions (Seddon 1972) for the trophic tolerance of aquatic species, he concluded that eutrophication may have occurred in three of the lochs and that ten of them had apparently been subject to various degrees of acidification. In detecting changes, great emphasis was placed on the few species with extreme requirements, including Potamogeton lucens and P. pusillus.

In order to compare Raven's method with the use of average TRS, the scores derived from the early and recent lists of floating and submergent plants were compared (see below). Emergent species were not included in the calculations of average TRS because changes in the substrate of many of the lakes, caused by artificially raised water levels, may have affected the species composition regardless of changes in water quality. Raven carried out two surveys of Loch Fleet, the first by walking around the loch shore (the method used to survey the rest of the Galloway lochs), the other by sampling from a boat. The presence of abundant submerged Sphagnum was revealed only during the second survey. More comprehensive surveys of the other lochs might show a widespread distribution of Sphagnum, which would obviously reduce average TRS.

<u>Loch</u>	<u>Submergent and floating vegetation - average Trophic Ranking Score</u>		<u>Suggested change in trophic state</u>	
	1904/5	1983/4	Raven	Palmer
Fleet	5.7	5.2	*No change	Acidification
Enoch	5.2	5.5	No change	?Slight eutrophication
Long) Lochs of	5.2	5.3	No change	Little change
Round) Glenhead	5.2	5.2	No change	No change
Macaterick	5.4	5.6	No change	Little change
Riecawr	5.3 (9)	5.9 (11)	Slight eutrophication	Eutrophication
Skae	6.0	6.35	Strong acidification	?Slight eutrophication
Finlas	5.4	5.8	Eutrophication	?Slight eutrophication
Harrow	5.4	5.25	No change	Little change
Howie	6.0	6.1	Strong acidification	Little change
Lochinvar	6.8	7.0	Slight acidification	Little change
Dee	5.1 (11)	5.6 (10)	No change	Eutrophication
Whinyeon	6.8 (6)	6.3 (9)	Acidification	Acidification
Lochenbreck	5.2 (7)	6.15 (11)	Eutrophication	Strong eutrophication
Skirrow	6.1	6.5	No change	?Slight eutrophication
Maberry	6.6	6.3	Acidification	?Slight acidification
Ronald	6.3	6.5	Acidification	Little change
Trool	6.0	6.25	Strong acidification	Little change
Stroan	5.5 (11)	6.0 (12)	Slight acidification	Eutrophication
Woodhill	6.8	6.5	Acidification	?Slight acidification
White	7.2	7.05	Slight acidification	Little change
Clonyard	5.9	6.1	No change	Little change
Minnoch	3.5	**	No change	-

* No change was inferred by using Seddon's indicator species, but the presence of Sphagnum implied acidification.

** No open water vegetation was recorded in 1983.

! Lochs which show marked change, as indicated by TRS. The numbers of scoring species are shown in parenthesis.

FIGURE 14 shows the relationships between average TRS (for the 1983/4 data) and both pH and conductivity, for 22 lochs surveyed by West and Raven. Although all these lochs would be classified as type 3, there is obviously a range of trophic states represented. It is not yet possible to be certain how much of a shift in average TRS is a significant indication of a change in trophic state, but 0.5 is taken as a provisional threshold.

Palaeolimnological studies of diatoms in lake sediments (Flower *et al.* 1987 and Anderson *et al.* 1986) have shown that acidification has been going on in both Loch Enoch and Round Loch of Glenhead throughout the twentieth century, but that Loch Fleet has become acidified only since the mid 1970s. Loch Dee and Loch Skirrow have shown long-term mild tendencies towards acidification, but there has been a rise in pH in Loch Skirrow since 1940 (Flower *et al.* 1987). The primary cause of acidification in Galloway lochs is thought to be atmospheric deposition, but forestry operations have been implicated in the recent acidification of Loch Fleet (Anderson *et al.* 1986).

Comparisons of average TRS for 1904/5 and 1983/4 data suggest marked acidification in Loch Fleet and Loch Whinnyeon, both considered by Raven to have become more acidic. The average TRS imply considerable eutrophication in four Lochs - Riecawr, Dee, Lochenbreck and Stroan. Raven considered that Lochs Riecawr and Lochenbreck had been subject to enrichment, but he regarded Loch Stroan as slightly acidified. Neither Raven's method nor the TRS method suggests acidification in Loch Enoch or Round Loch of Glenhead. This implies either that phytoplankton is more sensitive than macrophytic vegetation to changes in water quality, or that the macrophyte lists for the Galloway Lochs are incomplete, possibly lacking Sphagnum for some sites. Liming of inflows to Loch Dee has been practised in recent years (Raven 1985), which may account for the rise in average TRS. The greatest rise in average TRS - 0.95 units - is shown by Lochenbreck Loch, which has an extensive hay meadow on its shores and may be receiving nutrients from fertilizer application (Raven 1985).

Lakes in Wales

Two of the Welsh lakes whose flora was recorded in the 1960s (Seddon 1972) were re-surveyed some years later by Newbold and Palmer. There was very little difference in average TRS for the two dates for Llyn Fanod (see below), but a considerable decrease for Llyn Fach, whose catchment has recently been afforested. At the latter site, in 1988, Sphagnum auriculatum and Juncus bulbosus were abundant in the open water, but neither of these species is mentioned by Seddon for this site. Unfortunately, Seddon's lists do not include bryophytes, so it is impossible to tell whether or not Sphagnum is a newcomer. The possibility remains that Llyn Fach has become acidified as a result of the planting of conifers around its shores.

Llyn Fanod (grid ref. SN 6064)

Open water species	DOME code	TRS	Seddon (1972)	Newbold (survey 1977)
<i>Callitricha stagnalis</i>	oME	7.7	NR	/
<i>Elatine hexandra</i>	M	7.0	/	NR
<i>Fontinalis antipyretica</i>	Ome	6.3	NR	/
<i>Isoetes setacea</i>	-	-	/	NR
<i>Juncus bulbosus</i>	DOMe	5.3	NR	/
<i>Littorella uniflora</i>	OMe	6.7	/	/
<i>Lobelia dortmanna</i>	Om	5.0	/	/
<i>Nitella</i> sp.	OMe	6.7	NR	/
<i>Nuphar lutea</i>	ME	8.5	/	/
<i>Nymphaea alba</i>	OMe	6.7	/	/
<i>Potamogeton natans</i>	OME	7.0	/	/
<i>P. polygonifolius</i>	DOm	3.7	/	/
<i>Scirpus fluittans</i>	dOm	4.0	/	NR
<i>Subularia aquatica</i>	O	4.0	NR	/
<i>Utricularia minor</i>	dOm	4.0	NR	/
Number of scoring species			8	12
Average TRS			6.1	6.0

Llyn Fach (grid ref. SN 9003)

Open water species	DOME code	TRS	Seddon (1972)	Palmer (survey 1988)
<i>Isoetes lacustris</i>	Om	5.0	/	NR
<i>Isoetes setacea</i>	-	-	/	/
<i>Juncus bulbosus</i>	DOMe	5.3	NR	/
<i>Littorella uniflora</i>	OMe	6.7	/	/
<i>Lobelia dortmanna</i>	Om	5.0	/	/
<i>Myriophyllum alterniflorum</i>	OMe	6.7	/	NR
<i>Potamogeton polygonifolius</i>	DOm	3.7	/	/
<i>Scirpus fluittans</i>	dOm	4.0	/	/
<i>Sparganium angustifolium</i>	dOm	4.0	/	/
<i>Sphagnum auriculatum</i>	DO	2.5	NR	/
Number of scoring species			7	7
Average TRS			5.0	4.5

NR = not recorded

/ = present

A number of problems, some common to most surveillance and monitoring exercises, arise when using the average TRS to indicate change. A major difficulty is that of ensuring that the sampling and recording techniques used on different occasions are consistent. Another problem arises because of the lack of information about natural fluctuations in the abundance and distribution of species. The loss of Elodea, for instance, may be due to cyclical population changes rather than changes in water chemistry. Physical change in water bodies is seldom documented while it is occurring, so it is often very difficult to account for changes in flora. Loss or gain of species may be due to hydroseral progression or changes in factors such as water depth, substrate or management practice, rather than water chemistry. No account is taken in the average TRS of the relative abundance of species, nor of the presence of filamentous algae or blooms of phytoplankton, and these are all important considerations. Flowing waters have not been included in this scheme, and DOME codes are lacking for many aquatic plants. Nevertheless, use of the DOME code and average TRS appears to be useful for surveillance and monitoring, perhaps because this uses the whole macrophyte community, rather than relying on a few "indicator" species. What remains to be done is the refining and thorough testing of this method on sites where palaeolimnology or studies of phytoplankton or water chemistry indicate change.

ACKNOWLEDGEMENTS

This analysis could not have been accomplished without the large volume of data collected by NCC staff, particularly Liz Charter and her teams of surveyors, and Chris Newbold who conceived the idea of a Great Britain analysis of aquatic vegetation. I am grateful to John Riggall for running the computer programs, to Lynda Davis for patient work in producing maps and collating data and to Stefa Birkenhead for her constructive checking of proofs.

REFERENCES

ANDERSON, N.J., BATTARBEE, R.W., APPLEBY, P.G., STEVENSON, A.C., OLDFIELD, F., DARLEY, J., & GLOVER, G. 1986. Palaeoecological evidence for the acidification of Loch Fleet. Palaeoecology Research Unit, Department of Geography, University College London (Working Papers No. 17).

DEPARTMENT OF THE ENVIRONMENT, STANDING COMMITTEE OF ANALYSTS 1987. Methods for the use of aquatic macrophytes for assessing water quality 1985-86. London, HMSO.

FLOWER, R.J., BATTARBEE, R.W., & APPLEBY, P.G. 1987. The recent palaeolimnology of acid lakes in Galloway, south-west Scotland: diatom analysis, pH trends and the role of afforestation. Journal of Ecology, 75, 797-824.

HASLAM, S.M., SINKER, C.A., & WOLSELEY, P.A. 1975. British water plants. Field Studies, 4, 243-351.

HILL, M.O. 1979a. TWINSPAN - a FORTRAN programme for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ecology and Systematics.

HILL, M.O. 1979b. DECORANA - a FORTRAN program for Detrended Correspondence Analysis and Reciprocal Averaging. Cornell University, Ecology and Systematics.

HOLMES, N. 1983. Typing rivers according to their flora. Peterborough, Nature Conservancy Council (Focus on nature conservation No. 4).

HOLMES, N., & NEWBOLD, C. 1984. River plant communities - reflectors of water and substrate chemistry. Peterborough, Nature Conservancy Council. (Focus on nature conservation No. 9.)

NEWBOLD, C., & PALMER, M.A. 1979. Trophic adaptations of aquatic plants. Peterborough, Nature Conservancy Council (CST Notes No. 18).

ORMEROD, S.J., WADE, K.R., & GEE, A.S. 1987. Macro-floral assemblages in upland Welsh streams in relation to acidity, and their importance to invertebrates. Freshwater Biology, 18, 545-557.

PEARSALL, W.H. 1920. The aquatic vegetation of the English Lakes. Journal of Ecology, 8, 163-201.

RATCLIFFE, D.A. ed. 1977. A Nature Conservation Review. Cambridge, Cambridge University Press.

RAVEN, P.J. 1985. The use of aquatic macrophytes to assess water quality changes in some Galloway Lochs: an exploratory study. Working Papers No. 9. Palaeoecology Research Unit, Department of Geography, University College London.

RODWELL, J. 1984. National Vegetation Classification. Swamps and tall-herb fens. University of Lancaster, unpublished report to the Nature Conservancy Council.

RODWELL, J. 1986-1987. National Vegetation Classification. Mires. University of Lancaster, unpublished report to the Nature Conservancy Council.

SEDDON, B. 1972. Aquatic macrophytes as limnological indicators. Freshwater Biology, 2, 107-130.

SPENCE, D.H.N. 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. Journal of Ecology, 55, 147-170.

SINGER, S.E. 1980. DATAEDIT - a FORTRAN programme for editing data matrices. Cornell University, Ecology and Systematics.

VOLLENWEIDER, R.A. 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus factors in eutrophication. OECD Water Management Research Group.

UNITED STATES DEPARTMENT OF AGRICULTURE. 1954. Diagnosis and improvements of saline and alkaline soils. Agriculture handbook No. 60.

WEST, G. 1910. A further contribution to a comparative study of the dominant phanerogamic and higher cryptogamic flora of aquatic habitat in Scottish lakes. Proceedings of the Royal Society of Edinburgh, 30, 65-81.

TABLE 1 TWINSPLAN CLASSIFICATION OF STANDING WATER SITES - SUBMERGENT AND FLOATING VEGETATION

Site type	1	2	3	4	A	5	B	6	7	8	9	A	10	B
<i>Potamogeton polygonifolius</i>	II	IV	III											
<i>Utricularia intermedia</i>		II												
<i>Lobelia dortmanna</i>		IV	III				II							
<i>Sparganium angustifolium</i>		II	III											
<i>Isoetes lacustris</i>			III											
<i>Subularia aquatica</i>			II											
<i>Myriophyllum alterniflorum</i>		III	IV	IV		V*								
<i>Sparganium minimum</i>							II							
<i>Juncus bulbosus</i>	V*	IV	V*	II		III								
<i>Scirpus fluviatilis</i>		II												
<i>Sphagnum spp.</i>	IV													
<i>Nymphaea alba</i>		III				III	V*						IV	
<i>Potamogeton alpinus</i>						II								
<i>Nitella spp.</i>			II			IV*								
<i>Callitricha hamulata</i>			II			II								
<i>Littorella uniflora</i>		IV	V*	V*	V*			II	III					
<i>Apium inundatum</i>				II										
<i>Potamogeton natans</i>	IV	III	III	III	IV*			II		II			III	
<i>Glyceria fluviatilis</i>		III	II					II		II				
<i>Potamogeton gramineus</i>			III	III										
<i>Fontinalis antipyretica</i>		III	II	II										
<i>Potamogeton perfoliatus</i>		II	IV	III										
<i>Potamogeton obtusifolius</i>					III									
<i>Potamogeton berchtoldii</i>				II	IV									
<i>Callitricha stagnalis</i>			II	II				II		IV	II		II	
<i>Elodea canadensis</i>						IV*				II			V*	II
<i>Nuphar lutea</i>					II					III	V*	II		
<i>Lemna minor</i>										IV	III	IV		
<i>Lemna trisulca</i>										III				
<i>Elodea nuttallii</i>														III
<i>Potamogeton lucens</i>														II
<i>Sparganium emersum</i>						II				II	IV	II	III	II
<i>Polygonum amphibium</i>										III	III			
<i>Zannichellia palustris</i>														
<i>Enteromorpha spp.</i>								II						
<i>Myriophyllum spicatum</i>				II						III				
<i>Potamogeton crispus</i>				II						II				
<i>Potamogeton pectinatus</i>				II		IV*				III				
<i>Potamogeton pusillus</i>				II						II				
<i>Callitricha hermaphroditica</i>				II						II				
<i>Chara spp.</i>				III	III*				III		II	II		IV
<i>Fucoids</i>								III						
<i>Ranunculus baudotii</i>				II						III				
<i>Ruppia spp.</i>								IV*		III				
<i>Hippuris vulgaris</i>				II						IV				
<i>Potamogeton filiformis</i>				III						III				
No. of sites in group	48	192	322	72	52	34	15	127	70	28	73	85		
Av. no. spp. per site (submergent & floating)	3	7	9	10	13	4	3	8	7	7	10	6		
Av. no. spp. per site (submergent, floating + emergent)	7	14	17	19	24	11	6	16	24	19	22	15		

Constancy classes

V = 80+ to 100%

IV = 60+ to 80%

III = 40+ to 60%

II = 20+ to 40%

* = cover value high
(frequent to abundant)'Species' numbers include
bryophytes and algae
determined to genus only.**Note**

Ultra-oligotrophic, high altitude lakes, containing only bryophytes, are not included.

TABLE 2 TWINSPAN HIERARCHY - SUBMERGENT AND FLOATING VEGETATION

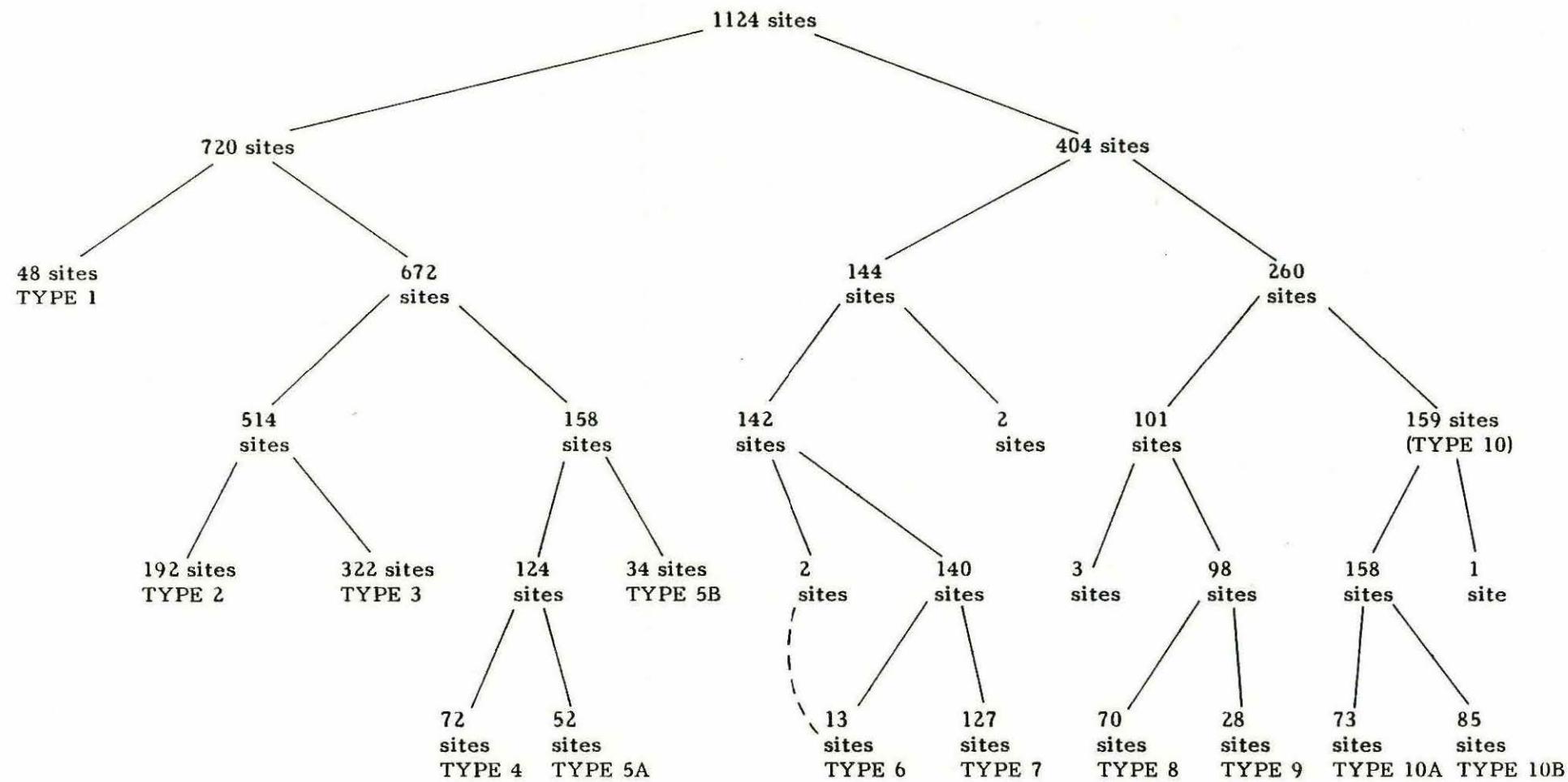


TABLE 3 KEY TO STANDING WATER SITE TYPES (SUBMERGENT AND FLOATING SPECIES)

Indications of minimum abundance levels are given in the key, according to the DAFOR scale:

	Dominant (never a requirement)	Abundant (never a requirement)	Frequent	Occasional	Rare (minimum abundance level required, unless stipulated otherwise)	
	-1		+1		<u>Score</u>	
1	<i>Juncus bulbosus</i>		<i>Potamogeton pectinatus</i>		-1 or less	go to 2
	<i>Myriophyllum alterniflorum</i>		<i>Polygonum amphibium</i>		0 or more	go to 3
	<i>Littorella uniflora</i>					
	<i>Lobelia dortmanna</i>					
	<i>Potamogeton polygonifolius</i>					
2	<i>Sphagnum</i>		<i>Littorella uniflora</i>		-1 or less	Type 1
	(at least occasional)		<i>Myriophyllum alterniflorum</i>		0 or more	go to 4
			(at least occasional)			
			<i>Potamogeton natans</i>			
3	<i>Potamogeton filiformis</i>		<i>Elodea canadensis</i>		-1 or less	go to 5
	<i>Hippuris vulgaris</i>		<i>Lemna minor</i>		0 or more	go to 6
	<i>Ranunculus baudotii</i>		<i>Nuphar lutea</i>			
	<i>Littorella uniflora</i>					
	(at least occasional)					
4	<i>Juncus bulbosus</i>		<i>Potamogeton gramineus</i>		-1 or less	go to 7
	(at least occasional)		<i>Potamogeton perfoliatus</i>		0 or more	go to 8
	<i>Lobelia dortmanna</i>		(at least occasional)			
	(at least occasional)					
	<i>Potamogeton polygonifolius</i>					
	<i>Isoetes lacustris</i>					
	<i>Sparganium angustifolium</i>					
5	<i>Ruppia</i> species		<i>Chara</i> species		0 or less	Type 6
	<i>Fucoid</i> species		<i>Hippuris vulgaris</i>		1 or more	Type 7
	(at least occasional)		<i>Myriophyllum spicatum</i>			
			<i>Potamogeton filiformis</i>			
			<i>Ranunculus baudotii</i>			
			<i>Polygonum amphibium</i>			
6	<i>Nuphar lutea</i>		<i>Myriophyllum spicatum</i>		0 or less	go to 9
	<i>Callitricha stagnalis</i>		<i>Chara</i> species		1 or more	go to 10 (Type 10)
			<i>Potamogeton pectinatus</i>			
			<i>Potamogeton pusillus</i>			
			<i>Elodea nuttallii</i>			
7	<i>Nymphaea alba</i>		<i>Fontinalis antipyretica</i>		0 or less	Type 2
	(at least occasional)		<i>Isoetes lacustris</i>		1 or more	Type 3
			<i>Glyceria fluitans</i>			
			(at least occasional)			
			<i>Callitricha hamulata</i>			

	-1	+1	<u>Score</u>
8	<i>Littorella uniflora</i> <i>Myriophyllum alterniflorum</i> <i>Potamogeton perfoliatus</i> <i>Potamogeton gramineus</i> <i>Chara species</i> <i>Potamogeton berchtoldii</i>	<i>Nymphaea alba</i> (at least occasional)	-1 or less go to 11 0 or more Type 5B
9	<i>Callitricha stagnalis</i> <i>Zannichellia palustris</i> <i>Polygonum amphibium</i>	<i>Nymphaea alba</i> (at least occasional) <i>Nuphar lutea</i> (at least frequent) <i>Lemna trisulca</i> (at least frequent) <i>Hippuris vulgaris</i>	0 or less Type 8 1 or more Type 9
10	<i>Lemna minor</i> <i>Elodea canadensis</i> (at least frequent) <i>Potamogeton crispus</i> <i>Potamogeton berchtoldii</i> <i>Potamogeton natans</i>	<i>Chara species</i> (at least occasional) <i>Elodea nuttallii</i> (at least occasional)	-1 or less Type 10A 0 or more Type 10B
11	<i>Potamogeton filiformis</i> (at least occasional)	<i>Elodea canadensis</i> <i>Nitella species</i>	0 or less Type 4 1 or more Type 5A

TABLE 4

NATIONAL VEGETATION CLASSIFICATION COMMUNITIES MOST COMMON IN EMERGENT FRINGES OF STANDING WATER SITE TYPES

<u>Site type</u>	1	2	3	4	A	5	B	6	7	8	9	A	10	B	<u>Codes of likely NVC communities</u>
<u>Emergent species</u>															
<i>Eriophorum angustifolium</i>	III	III	II												Many mire communities
<i>Juncus effusus</i>	IV	III	IV	III	IV	III		II	IV	II	IV	IV	III		M5/M6c
<i>Carex rostrata</i>	III	IV	IV	II	V	IV			II	II	II	II			M4/M5/M8/M9/S9/S27
<i>Menyanthes trifoliata</i>	II	IV	III	III	III	III		II) M1/M5/M9/S27
<i>Potentilla palustris</i>	II	II	II	III	III	III			II	II					
<i>Equisetum fluviatile</i>	III	III	III	IV	III			III	II	II	III	III			S10
<i>Eleocharis palustris</i>	II	III	IV	IV	II		II	V	II		III	III			S19
<i>Phragmites australis</i>	II		II	III	III				IV	IV	II	II			S4/S25/S26
<i>Iris pseudacorus</i>			III		II			II	IV	III	III	II			M28
<i>Phalaris arundinacea</i>					III				IV	II	III	II			S28
<i>Scirpus lacustris</i>					II	III				III	II	III			S20
<i>Carex paniculata</i>									III	II					S3
<i>Carex acutiformis</i>									III	II			II		S7
<i>Typha latifolia</i>									III	III	III	IV			S12
<i>Carex elata</i>									II						S1
<i>Typha angustifolia</i>									II	II					S13
<i>Carex riparia</i>									II	II	II				S6
<i>Sparganium erectum</i>										III	III	II			S14
<i>Glyceria maxima</i>											II				S5
<u>Site category</u>	Dys-trophic	Oligotrophic		Oligo/ eutrophic	Mesotrophic			Brackish				Eutrophic			

Constancy classes

V = 80+ to 100%

IV = 60+ to 80%

III = 40+ to 60%

II = 20+ to 40%

TABLE 5 PHYSICAL CHARACTERISTICS OF STANDING WATER SITE TYPES

Site type	Water			Category	Substrate	Geology/soil	Altitude (m) Percentages are of sites in NCC database	Distribution in GB	Comments
	Usual pH	Usual conductivity (μ mhos)	Usual alkalinity (mg/l CaCO_3)						
1	3.5-5.5	50-200 (mostly <100)	Negative to 2	Dystrophic	Peat; rarely sand	Bogs on acid rock or soil	Mostly below 200	Mainly northern	Typical of blanket bog, but can occur on lowland heath.
2	5-7.5 (mostly <7)	10-200	0-25	Oligotrophic	Fine to coarse; often peat	Base-poor rocks (e.g. gneiss, granite)	c. 40% above 200	North and west	Oligotrophic sites heavily influenced by peat. Often small.
3	5-7.5 (mostly <7)	10-200	0-25	Oligotrophic	Predominantly coarse (stones, boulders) but some peat	Base-poor rocks (e.g. gneiss, granite)	c. 40% above 200	Mainly north and west	Oligotrophic sites less heavily influenced by peat than type 2.
4	7-9	100-700	25-200	Oligotrophic with eutrophic influence	Fine to coarse	Usually sedimentary rock; substrate often base-rich (e.g. Old Red Sandstone, machair sand)	c. 25% above 200	Mainly coastal Scotland, especially Northern & Western Isles	Often coastal water bodies, in calcareous basins with acid inflows.
5	6-8 (mostly around 7)	50-300	10-50	Mesotrophic	Fine to coarse	Wide variety; often slightly base-rich	c. 30% above 200	Mainly north and west	An uncommon type, over-represented in the NCC database.
6	8-9	5,000-35,000	-	Brackish (oligohaline to mesohaline)	Fine to coarse	Wide variety	Sea level	Northern & Western Isles of Scotland	This type probably also occurs on the mainland of Scotland.
7	7.5-9.5	300-750 occasionally up to 15,000	50-200	Eutrophic; often marl; sometimes oligohaline	Fine to coarse	Usually sedimentary rock; substrate base-rich (e.g. Old Red Sandstone, limestone, machair sand)	Mostly below 200	Mainly coastal Scotland, especially Northern & Western Isles	Similar to type 4, but with less influence from acid inflows.

<u>Site type</u>	<u>Water</u>			<u>Category</u>	<u>Substrate</u>	<u>Geology/soil</u>	<u>Altitude (m)</u>	<u>Distribution in GB</u>	<u>Comments</u>
	<u>Usual pH</u>	<u>Usual conductivity (µmhos)</u>	<u>Usual alkalinity (mg/l CaCO₃)</u>						
8	7-8.5	200-750	50-250	Eutrophic; often marl	Predominantly fine	Mainly base-rich rocks or glacial drift	Below 200	Lowlands throughout Britain	Open water, often species-poor, but emergent fringe typically rich.
9	6.5-8.5	100-750	10-200	Mainly eutrophic; sometimes marl	Predominantly fine	Mainly sedimentary rocks	Mostly below 200	Mainly England and Wales	Floating-leaved communities dominant. Water-lilies may be introduced.
10	6.5-8.5	100-750	25-200	Eutrophic, sometimes marl	Predominantly fine	Sedimentary rocks, often limestone	Mostly below 200	Lowlands throughout Britain	Submergent communities well developed. Includes a number of canals and gravel-pits.

TABLE 6 TROPHIC REQUIREMENTS OF SUBMERGENT AND FLOATING SPECIES ACCORDING TO TWINSPLAN CLASSIFICATION

Site type	Dystrophic	Oligotrophic	Mesotrophic	'Northern' eutrophic	'Southern' eutrophic	DOME code	Trophic requirements according to:				Trophic ranking score (TRS)
	1	2+3	5	7	8+10		Spence	Seddon	Haslam et al.	Ratcliffe	
No. of sites	48	514	86	127	228						
<i>Sphagnum</i> species*	—	—	—	—	—	DO	Poor	—	—	—	2.5
<i>Potamogeton polygonifolius</i>	—	—	—	—	—	DOM	—	?DO	O	D	4
<i>Scirpus fluviatilis</i> *	—	—	—	—	—	dOm	Poor	—	DO	D Base-poor	6
<i>Sparganium angustifolium</i>	—	—	—	—	—	dOm	—	?DO	DO	D Base-poor	7
<i>Utricularia minor</i> *	—	—	—	—	—	dOm	—	—	DO	D	10
<i>Subularia aquatica</i> *	—	—	—	—	—	O	Poor	U	O	Base-poor	8
<i>Utricularia intermedia</i> *	—	—	—	—	—	O	—	—	DO	D Base-poor	9
<i>Lobelia dortmanna</i>	—	—	—	—	—	Om	Poor	?DO	DO(E)	DM Base-poor	11
<i>Isoetes lacustris</i>	—	—	—	—	—	Om	Poor	?DO	DO	D Base-poor	3
<i>Utricularia vulgaris</i> agg.*	—	—	—	—	—	Om	—	—	M	?U	41
<i>Juncus bulbosus</i> var. <i>fluitans</i>	—	—	—	—	—	DOME	Poor	?DO	DO(E)	U	44
<i>Sparganium minimum</i> *	—	—	—	—	—	OM	—	?E	M	D	29
<i>Potamogeton alpinus</i> *	—	—	—	—	—	OM	—	?DO	OME	?U	73
<i>Pilularia globulifera</i> *	—	—	—	—	—	om	—	—	M	M	35
<i>Apium inundatum</i> *	—	—	—	—	—	Ome	—	O	OM	U	20
<i>Callitricha hamulata</i>	—	—	—	—	—	Ome	—	U	—	U	23
<i>Fontinalis antipyretica</i>	—	—	—	—	—	Ome	U	—	—	—	6.3
<i>Myriophyllum alterniflorum</i>	—	—	—	—	—	OMe	U	U	O(M)	DM Base-poor	18
<i>Littorella uniflora</i>	—	—	—	—	—	OMe	U	U	OME	U	6.7
<i>Nymphaea alba</i>	—	—	—	—	—	OMe	—	U	(O)E	U	61
<i>Nitella</i> species	—	—	—	—	—	OMe	—	—	—	OM	49
<i>Potamogeton natans</i>	—	—	—	—	—	OME	—	U	OME	U	6.7
<i>Glyceria fluitans</i>	—	—	—	—	—	OmE	—	U	(O)M(E)	U	74
<i>Potamogeton gramineus</i>	—	—	—	—	—	oMe	U	?ME	OME	U	7.0
<i>Ranunculus peltatus</i> *	—	—	—	—	—	oMe	—	—	(O)ME	U	47
<i>Nuphar pumila</i> *	—	—	—	—	—	M	—	—	OM(E)	D Base-poor	24
<i>Elatine hexandra</i> *	—	—	—	—	—	M	Poor	—	M	M Base-poor	33
<i>Potamogeton perfoliatus</i>	—	—	—	—	—	oME	U	O	M(E)	U	135
<i>Chara</i> species	—	—	—	—	—	oME	U	—	—	—	7.3
<i>Elodea canadensis</i>	—	—	—	—	—	oME	—	O	ME	U	71
<i>Potamogeton berchtoldii</i>	—	—	—	—	—	oME	—	O	ME	U	27
<i>Callitricha stagnalis</i>	—	—	—	—	—	ome	—	?ME	ME	U	142
<i>Hippuris vulgaris</i>	—	—	—	—	—	ome	—	?E	ME	Base-rich	7.7
<i>Potamogeton obtusifolius</i> *	—	—	—	—	—	Me	—	ME	(O)M(E)	U	25
<i>Potamogeton praelongus</i> *	—	—	—	—	—	ME	Mod. rich	—	ME	M Base-rich	94
<i>Ranunculus trichophyllum</i> *	—	—	—	—	—	ME	—	?E	ME	Base-rich ?M	75
<i>Callitricha hermaphroditica</i> *	—	—	—	—	—	ME	—	—	ME	DM Base-poor	38
<i>Nuphar lutea</i>	—	—	—	—	—	ME	—	U	(M)E	U	143
<i>Myriophyllum spicatum</i>	—	—	—	—	—	ME	Rich	E	ME	Base-rich	8.0
<i>Polygonum amphibium</i>	—	—	—	—	—	ME	—	ME	(O)ME	?U	140
<i>Potamogeton crispus</i> *	—	—	—	—	—	ME	—	E	(O)ME	M Base-rich	139
<i>Potamogeton pusillus</i>	—	—	—	—	—	ME	—	?E	MEB	Base-rich B	95
<i>Lemna minor</i>	—	—	—	—	—	ME	—	ME	OME	Base-rich	137
<i>Ranunculus aquatilis</i> *	—	—	—	—	—	ME	—	O	(O)ME	U	9.0
<i>Potamogeton filiformis</i> *	—	—	—	—	—	E	Mod. rich	—	EB	M Base-rich B	122
<i>Potamogeton friesii</i> *	—	—	—	—	—	E	—	—	E	Base-rich	123
<i>Ranunculus baudotii</i> *	—	—	—	—	—	E	—	—	EB	B	133
<i>Ruppia</i> species*	—	—	—	—	—	E	—	—	—	B	10.0
<i>Potamogeton pectinatus</i>	—	—	—	—	—	E	Mod. rich	E	(M)EB	Base-rich B	149
<i>Zannichellia palustris</i> *	—	—	—	—	—	E	—	—	EB	Base-rich B	150
<i>Ceratophyllum demersum</i> *	—	—	—	—	—	E	Rich	ME	MEB	Base-rich B	144
<i>Elodea nuttallii</i> *	—	—	—	—	—	E	—	—	—	U	72
<i>Lemna trisulca</i> *	—	—	—	—	—	E	—	E	M	Base-rich	10.0
<i>Potamogeton lucens</i> *	—	—	—	—	—	E	Rich	?E	E	Base-rich	124
<i>Potamogeton trichoides</i> *	—	—	—	—	—	E	—	—	M(E)	Base-rich	96
<i>Ranunculus circinatus</i> *	—	—	—	—	—	E	—	ME	ME	Base-rich	98
<i>Ranunculus hederaceus</i> *	—	—	—	—	—	E	—	—	OME	M	65
<i>Sparganium emersum</i> *	—	—	—	—	—	E	—	—	(O)ME	Base-rich	102

— = strongly associated with trophic category (20% or more constancy within category or 5-19% constancy but 20% or more of the occurrences of species with fewer than 100 records)

— = weakly associated with trophic category (5-19% constancy and less than 20% of the occurrences of species with fewer than 100 records. For species with 150 or more records, at least 5 must be within the category)

? = borderline

D = dystrophic

M = mesotrophic

B = brackish

O = oligotrophic

E = eutrophic

U = ubiquitous or occupying a broad range of nutrient requirements

* = species with fewer than 100 records

! = species which may occur as emergents

TABLE 7 TROPHIC REQUIREMENTS OF EMERGENT SPECIES

Site types No. of sites	Dys-trophic	Oligo-trophic	Meso-trophic	'Northern' eu-trophic	'Southern' eu-trophic	DOME code	Trophic requirements according to:			Trophic ranking score (TRS) Newbold & Palmer (TRN shown)
	1 48	2 + 3 514	5 86	7 127	8+10 228	Seddon et al.	Ratcliffe	Newbold & Palmer (TRN shown)		
Sphagnum species	====					DO	-	-	-	2.5
<i>Eriophorum angustifolium</i>	====					DO	-	(DO(M))	-	2.5
<i>Carex lasiocarpa*</i>	====					O	-	-	U	55
<i>Carex limosa*</i>	====					O	-	OME	-	4.0
<i>Carex nigra</i>	====	---?	====			DOME	-	-	O	14
<i>Carex rostrata</i>	====		====			DOME	U	OM	-	5.0
<i>Potentilla palustris</i>	====		====			DOME	-	OM	OM	22
<i>Menyanthes trifoliata</i>	====		====			DOME	-	DO	DM Base-poor	28
<i>Veronica scutellata</i>	====		====			DOME	-	U	U	5.3
<i>Juncus effusus</i>	====		====			DOME	-	OM	-	5.3
<i>Ranunculus flammula</i>	====		====			DOME	-	DOME	U	52
<i>Agrostis stolonifera</i>	====		====			DOME	-	OME	-	5.3
<i>Hydrocotyle vulgaris</i>	====		====			DOME	-	OME	U	53
<i>Equisetum fluviatile</i>	====		====			dOME	-	OME	D Base-poor	59
<i>Eleocharis palustris</i>	====		====			dOME	U	OME	M Base-poor	5.8
<i>Caltha palustris</i>	====		====			dOME	U	(OM(E))	U	56
<i>Phragmites australis</i>	====		====			OME	-	OME	U	5.8
<i>Mentha aquatica</i>	====		====			OME	U	OME	U	7.0
<i>Iris pseudacorus</i>	====		====			OME	-	UB	U	138
<i>Scirpus lacustris</i>	====		====			OME	-	ME	U	7.3
<i>Myosotis laxa</i>	====		====			OME	-	variable	U	7.3
<i>Phalaris arundinacea</i>	====		====			OME	-	OME	U	141
<i>Typha latifolia</i>	====		====			OME	-	-	ME	7.7
<i>Sparganium erectum</i>	====		====			ME	-	ME	UB	8.5
<i>Myosotis scorpioides</i>	====		====			ME	?ME	ME	M Base-rich	146
<i>Alisma plantago-aquatica</i>	====		====			ME	?O	ME	Base-rich	8.5
<i>Nasturtium officinale agg.*</i>	====		====			mE	-	(OM(E))	U	103
<i>Solanum dulcamara</i>	====		====			mE	?ME	?(ME)	U	9.0
<i>Ranunculus sceleratus*</i>	====		====			E	-	(OM(E))	M Base-rich	109
<i>Typha angustifolia*</i>	====		====			E	-	-	U	97
<i>Veronica beccabunga*</i>	====		====			E	-	EB	-	10.0
<i>Apium nodiflorum*</i>	====		====			E	?E	ME	M Base-rich	111
<i>Berula erecta*</i>	====		====			E	-	(OM(E))	ME	145
<i>Carex acutiformis*</i>	====		====			E	-	ME	U	10.0
<i>Carex elata*</i>	====		====			E	-	ME	Base-rich	76
<i>Carex paniculata*</i>	====		====			E	-	ME	U	10.0
<i>Carex pseudocyperus*</i>	====		====			E	-	ME	Base-rich	106
<i>Carex riparia*</i>	====		====			E	-	ME	U	81
<i>Glyceria maxima*</i>	====		====			E	-	E	U	10.0
<i>Polygonum hydropiper*</i>	====		====			E	-	E	E	113
<i>Rumex hydrolapathum*</i>	====		====			E	-	ME	E	85
						E	-	E	U	114
						E	-	E	E	10.0
						E	-	-	U	116
						E	-	-	U	68
						E	-	E	U	100

— = strongly associated with trophic category (20% or more constancy within the group or 10-19% constancy but 20% or more of the occurrences of species with fewer than 100 records)

--- = weakly associated with trophic category (10-19% constancy and less than 20% of the occurrences of species with fewer than 100 records)

? = borderline

D = dystrophic

O = oligotrophic

M = mesotrophic

E = eutrophic

B = brackish

U = ubiquitous or occupying a broad range of nutrient requirements

* = species with fewer than 100 records

Fig. 1 Distribution of sampling sites
throughout Great Britain

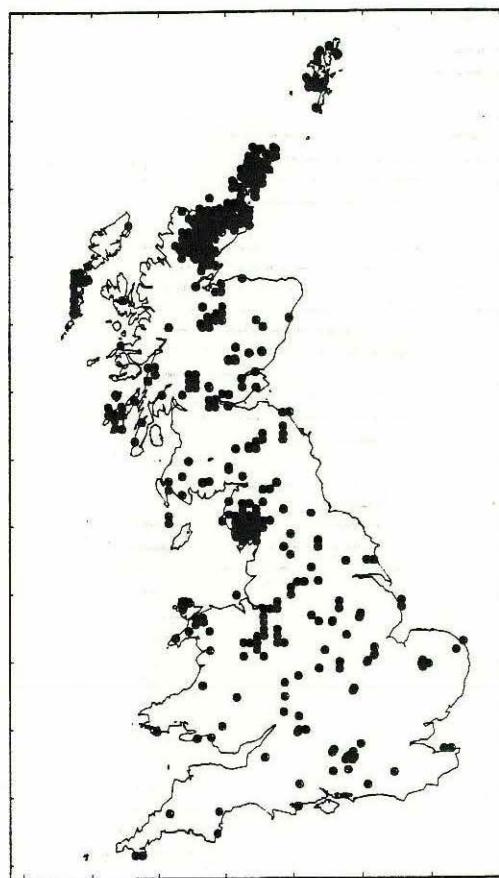


Fig. 2 DECORANA plot showing relationships between site types

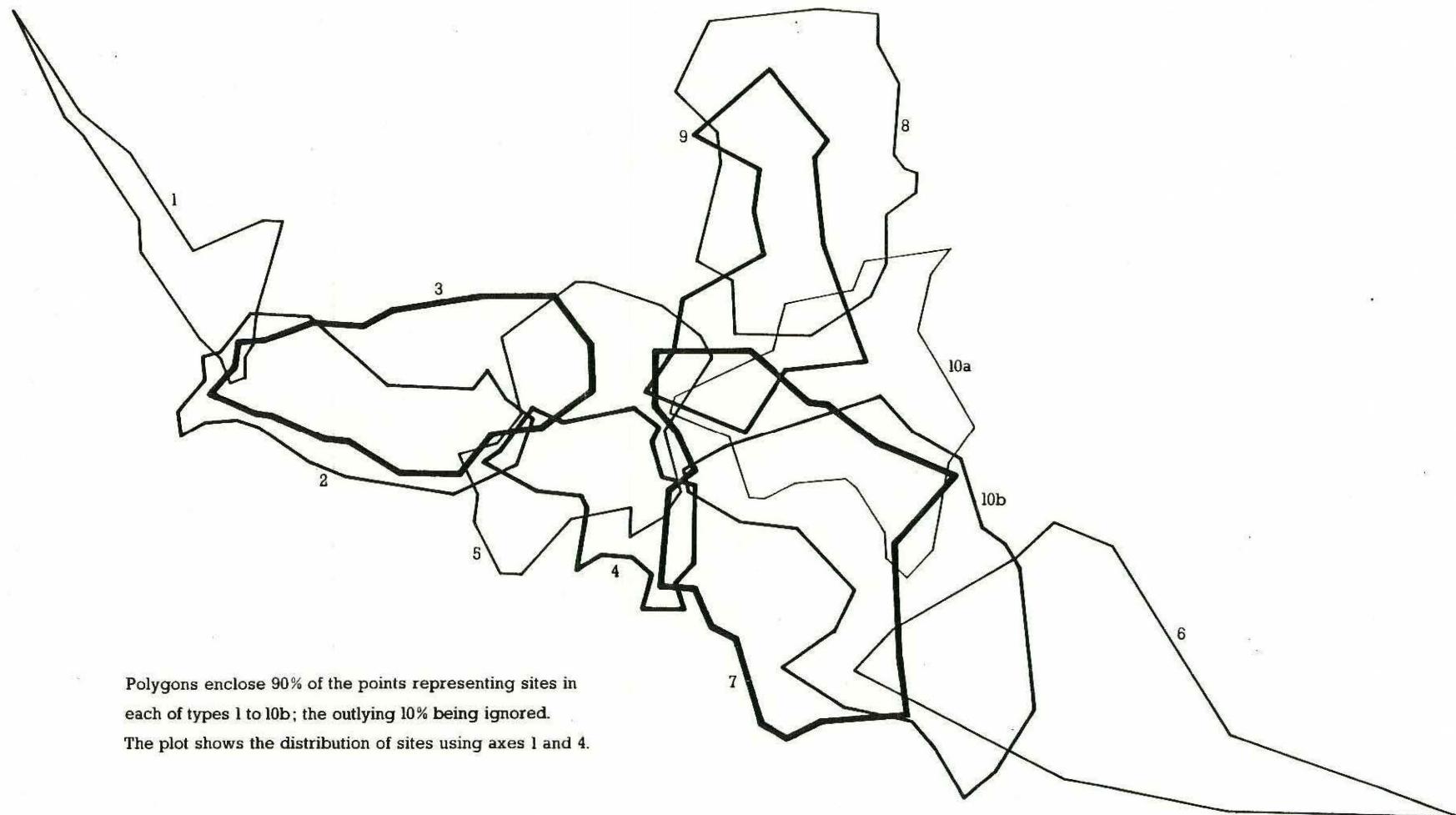


Fig. 3 Chemical and physical characteristics of site types

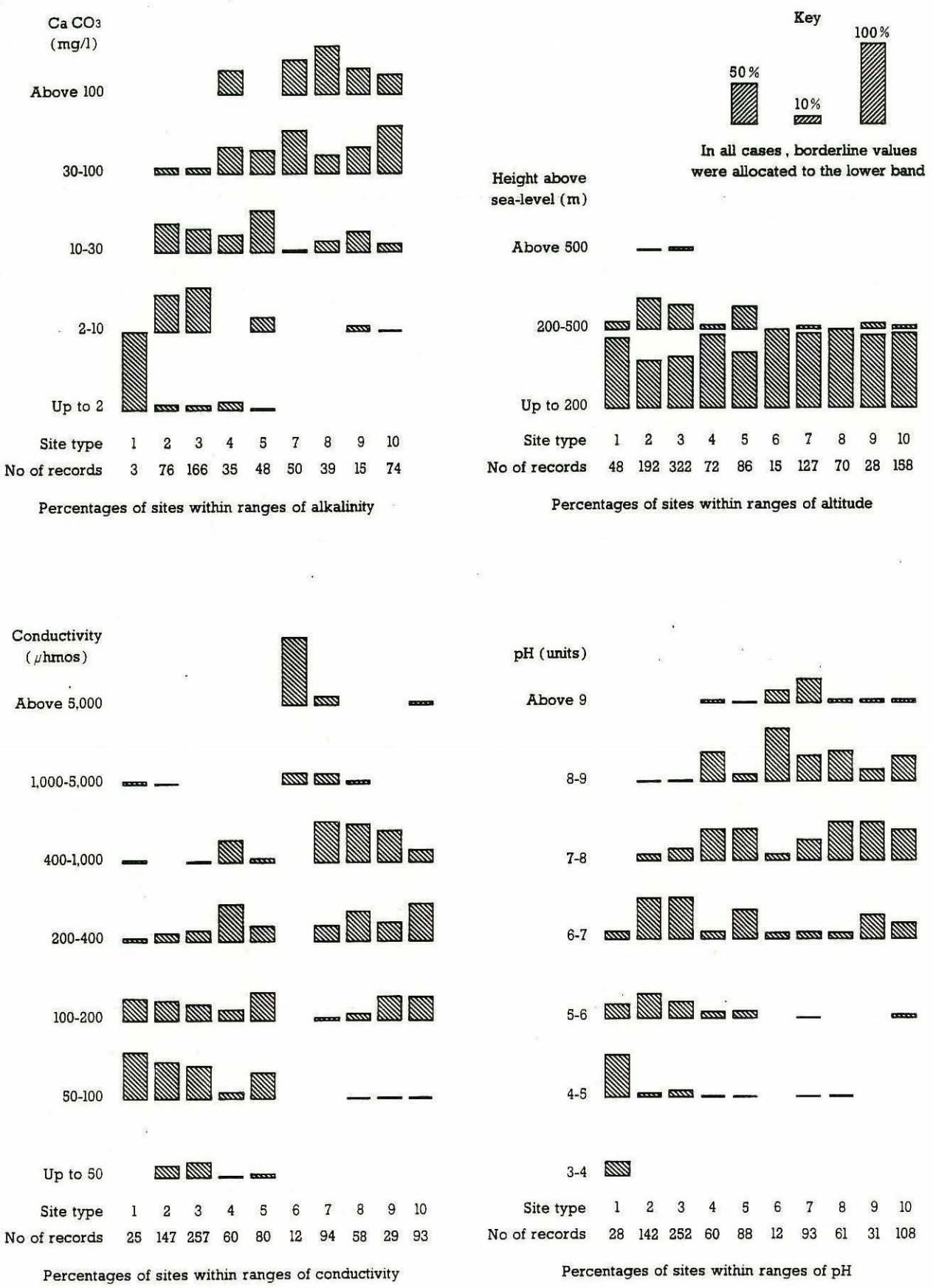


Fig. 4 Distribution of sites in type 1

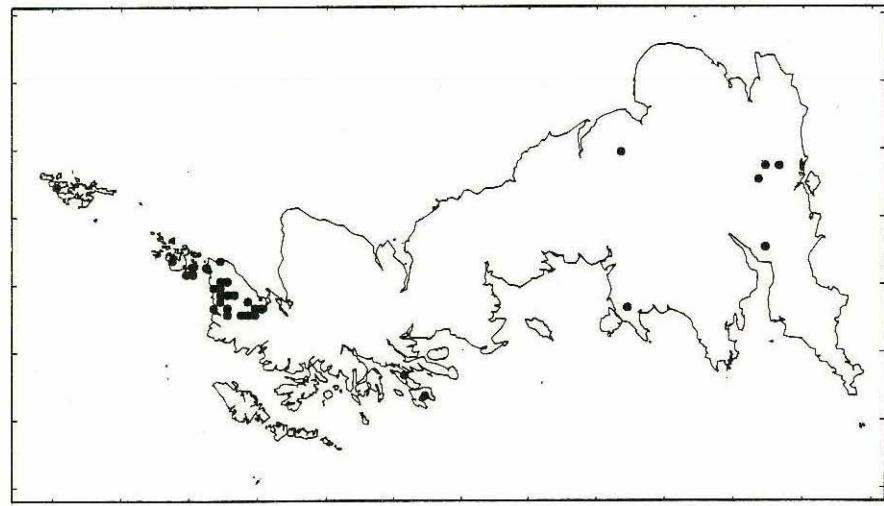


Fig. 5 Distribution of sites in type 2

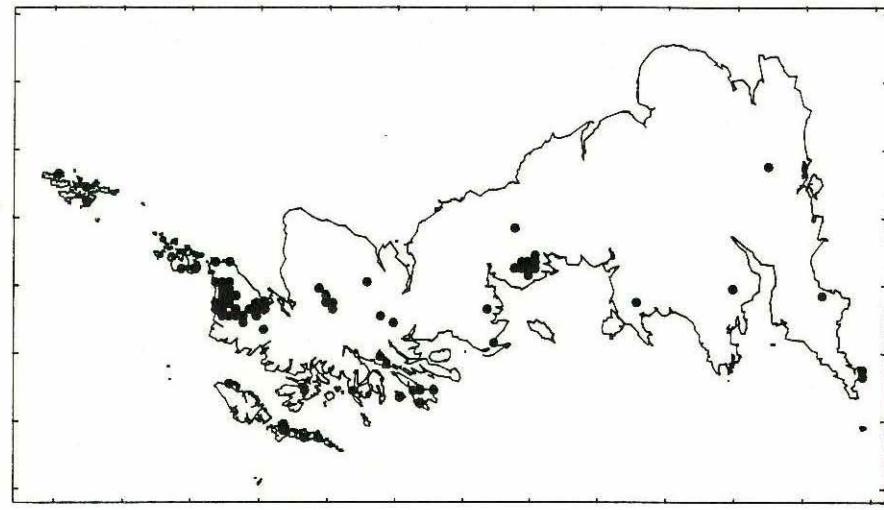


Fig. 6 Distribution of sites in type 3

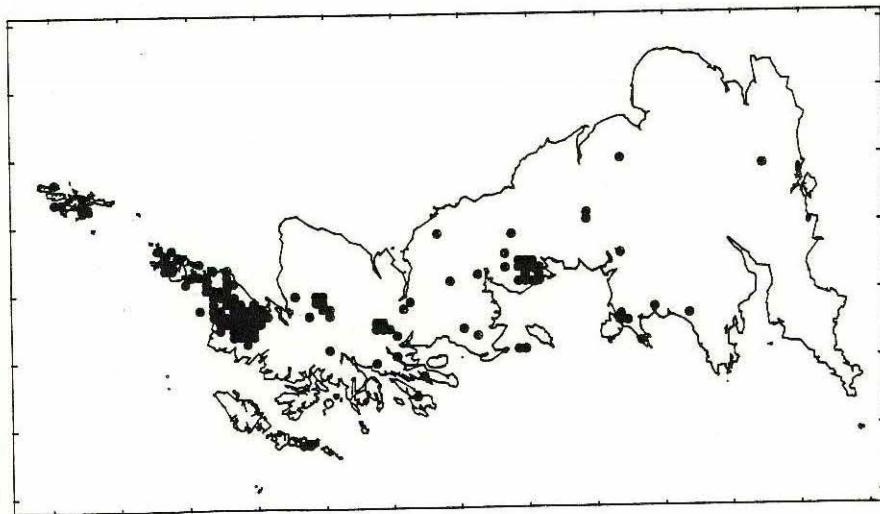


Fig. 7 Distribution of sites in type 4

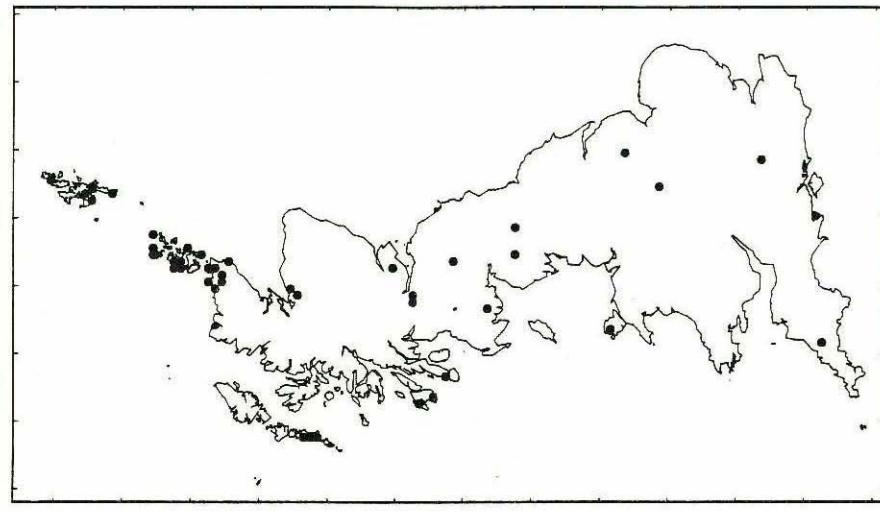


Fig. 8 Distribution of sites in type 5

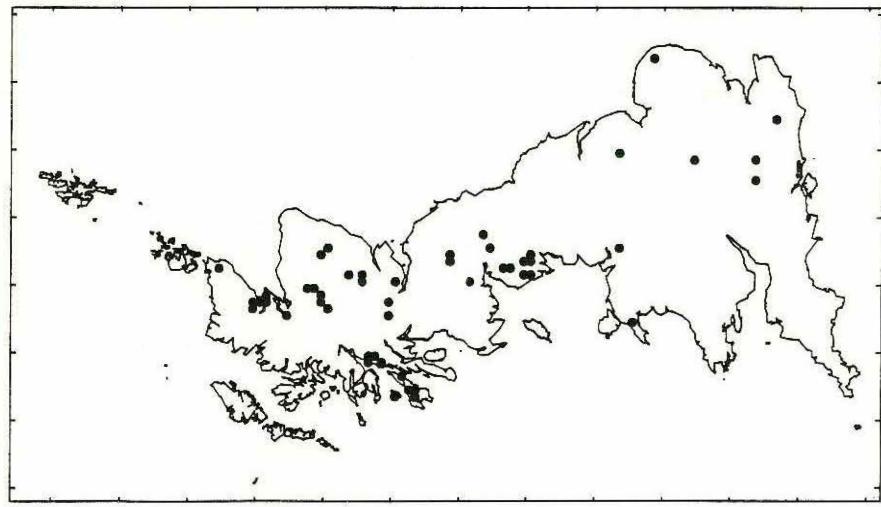


Fig. 9 Distribution of sites in type 6

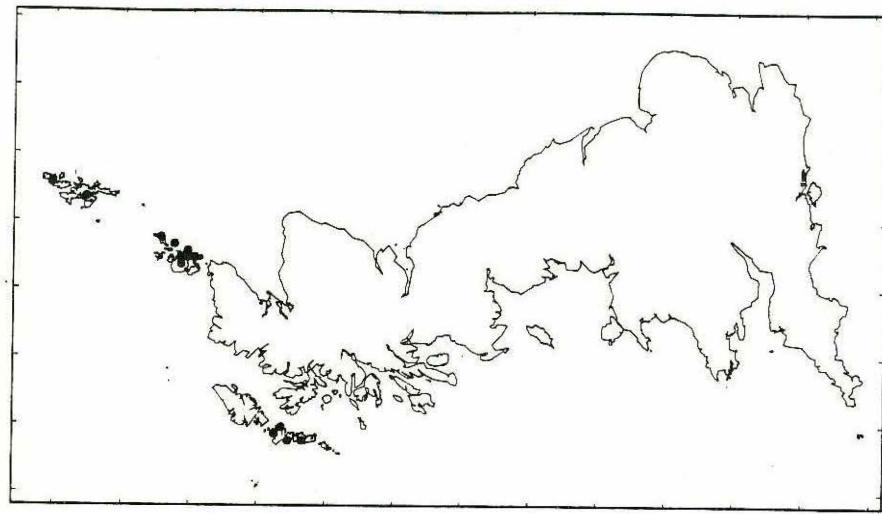


Fig.10 Distribution of sites in type 7

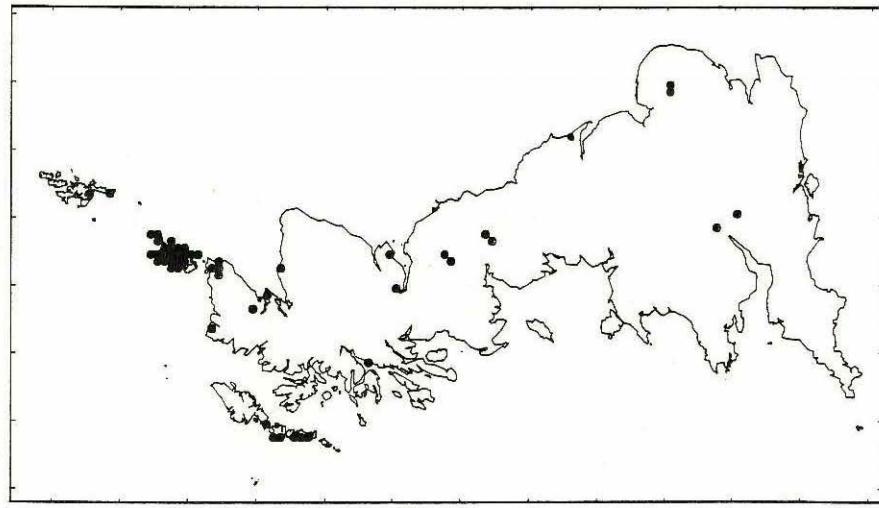


Fig.11 Distribution of sites in type 8

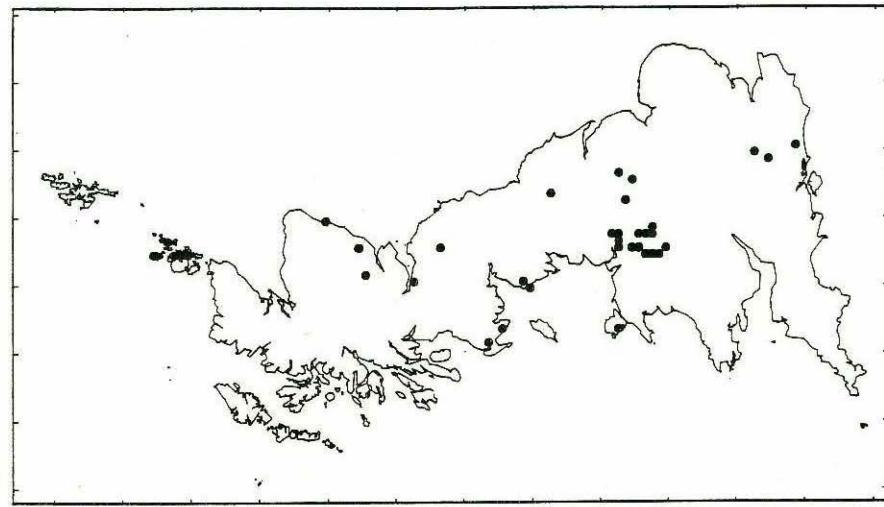


Fig. 12 Distribution of sites in type 9

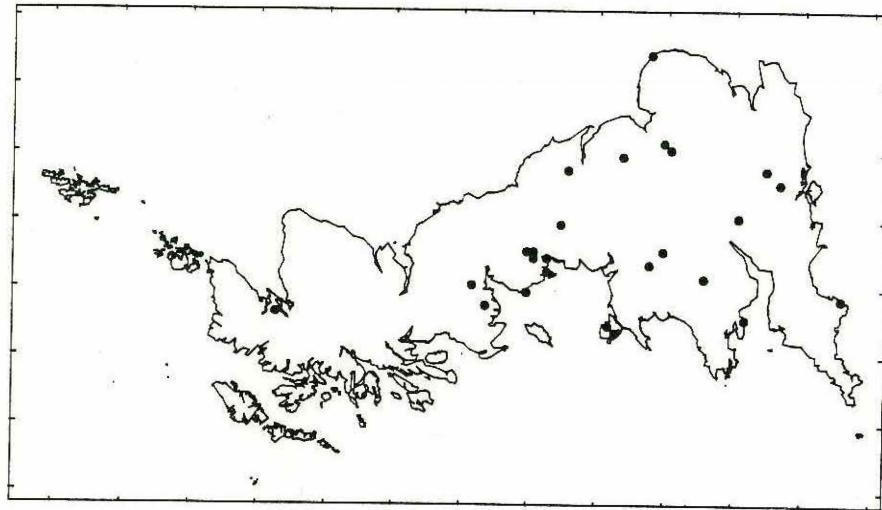


Fig. 13 Distribution of sites in type 10

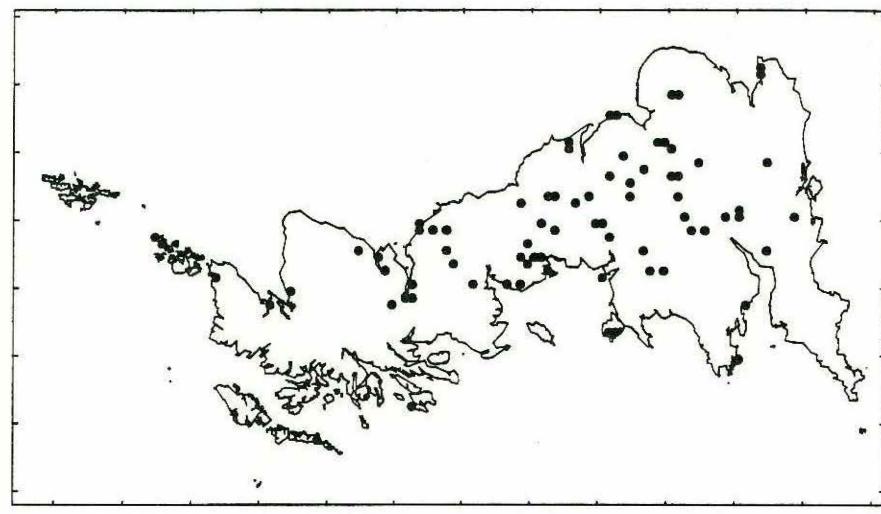
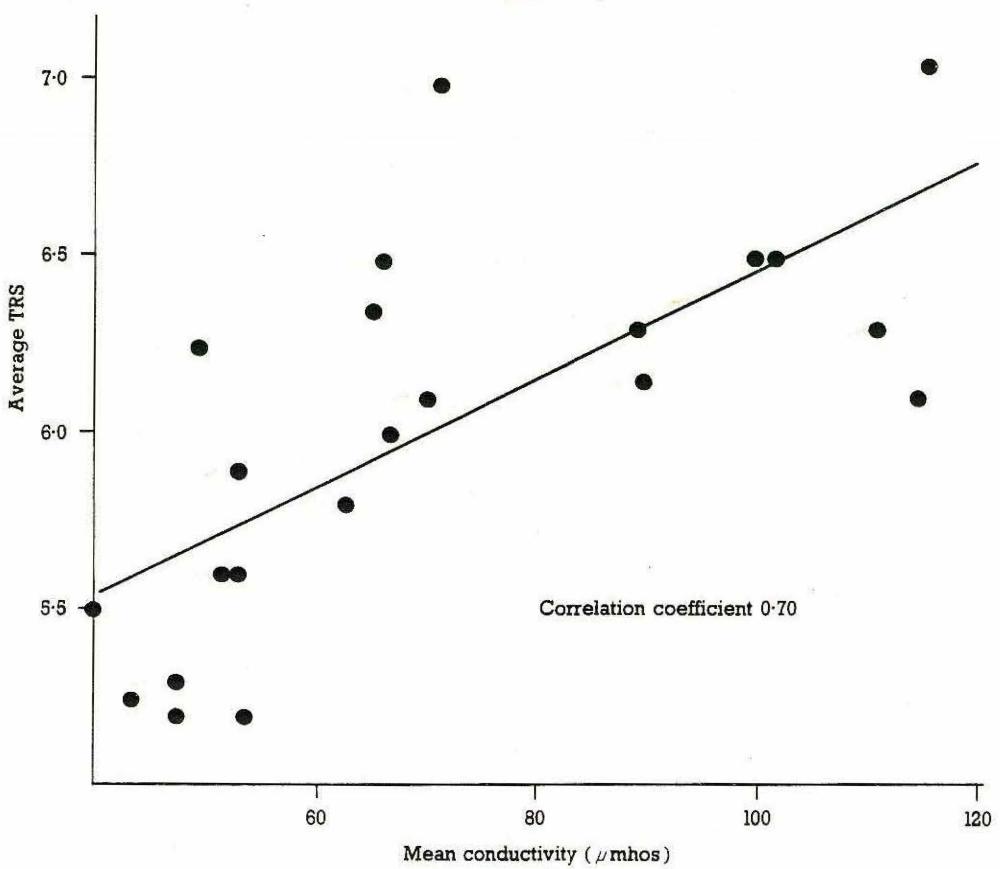
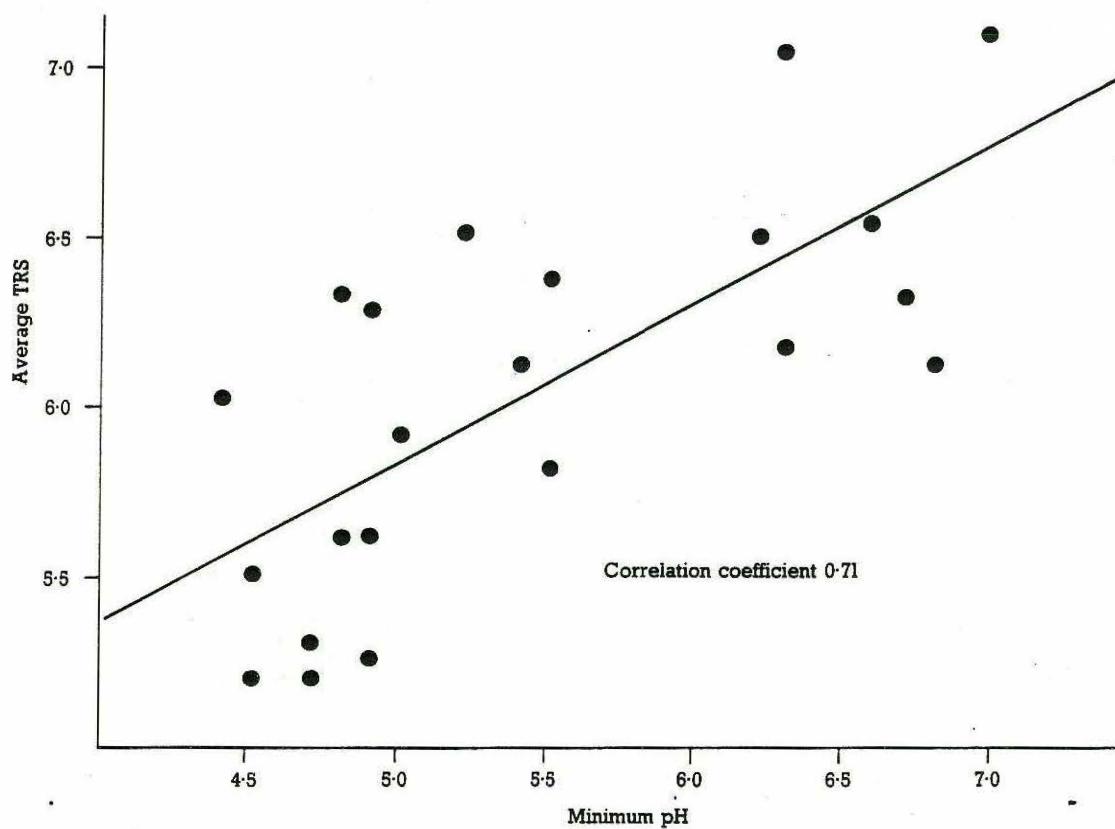




Fig. 14 The relationships between average trophic ranking score (TRS), pH and conductivity for Galloway Lochs

Addendum

Revision of DOME codes and Trophic Ranking Scores

Information from the classification of standing water vegetation was reworked in 1992. As a result, DOME codes and Trophic Ranking Scores for submergent, floating and emergent plant species have been revised, as shown in the following tables (cf. Tables 6 and 7). Also, the relationship of site types to water chemistry was refined, as illustrated in the following figures (cf. Fig. 3).

These tables and figures (Copyright John Wiley & Sons, Ltd 1992) are from:

Palmer, M.A., Bell, S.L., & Butterfield, I. 1992. A botanical classification of standing waters in Britain: applications for conservation and monitoring. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 2: 125-143.

They are reprinted by permission of John Wiley & Sons, Ltd.

Margaret Palmer
Head, Species Conservation Branch
Joint Nature Conservation Committee

4 September 1992

Trophic requirements of submergent and floating species

	Dystrophic Type 1 (48 sites)	Oligotrophic Types 2 & 3 (514 sites)	Mesotrophic Type 5 (85 sites)	Eutrophic- northern Type 7 (127 sites)	Eutrophic- southern Types 8,9,10 (256 sites)	No. of records	DOME code	TRS
<i>Sphagnum</i> spp.	++	++	?			79	DO	2.5
<i>Potamogeton polygonifolius</i>	+	++				320	do	3.0
<i>Sparganium angustifolium</i>	+	++				247	do	3.0
<i>Juncus bulbosus</i>	++	++	+			512	DOM	3.7
<i>Scirpus fluviatilis</i>	+	++	+			86	DOM	4.0
<i>Utricularia minor</i>	++	++	++			57	DOM	4.0
<i>Subularia aquatica</i>		++				83	0	4.0
<i>Utricularia intermedia</i>		++	?			81	0	4.0
<i>Lobelia dortmanna</i>		++	+			304	0m	5.0
<i>Isoetes lacustris</i>		++	+			212	0m	5.0
<i>Callitricha hamulata</i>		++	+			156	0m	5.0
<i>Myriophyllum alterniflorum</i>		++	++			404	0M	5.5
<i>Nitella</i> spp.	++	++				165	0M	5.5
<i>Utricularia vulgaris</i> agg.	++	++				88	0M	5.5
<i>Sparganium minimum</i>	++	++				70	0M	5.5
<i>Potamogeton alpinus</i>	++	++				61	0M	5.5
<i>Nuphar pumila</i>	+	++				28	0M	6.0
<i>Elatine hexandra</i>	+	++			?	23	0M	6.0
<i>Fontinalis antipyretica</i>	++	+	+			243	0me	6.3
<i>Glyceria fluviatilis</i>	++	+	+		+	264	0me	6.3
<i>Littorella uniflora</i>	++	++	+			496	0Me	6.7
<i>Potamogeton natans</i>	++	++	+		+	434	0Me	6.7
<i>Nymphaea alba</i>	++	++			+	228	0Me	6.7
<i>Apium inundatum</i>	++	++	++			62	0ME	7.0
<i>Potamogeton obtusifolius</i>	+	++	+	++		81	0ME	7.3
<i>Potamogeton paelongatus</i>	+	++	++			27	0ME	7.3
<i>Potamogeton perfoliatus</i>	+	++	++		+	194	0ME	7.3
<i>Potamogeton berchtoldii</i>	+	++	++	++		170	0ME	7.3
<i>Potamogeton gramineus</i>	+	++	++			120	0ME	7.3
<i>Hippuris vulgaris</i>	+	+	++			156	0mE	7.7
<i>Callitricha stagnalis</i>	+	+	++		++	188	0mE	7.7
<i>Ranunculus peltatus</i>	?	++	++	?		26	ME	8.5
<i>Callitricha hermaphroditica</i>		++	++	+		69	ME	8.5
<i>Chara</i> spp.		++	++	++		244	ME	8.5
<i>Potamogeton pusillus</i>		++	++	++		125	ME	8.5
<i>Potamogeton crispus</i>		++	++	++		99	ME	8.5
<i>Ranunculus trichophyllum</i>		++	++	++		30	ME	8.5
<i>Ranunculus aquatilis</i>		++	++	++		28	ME	8.5
<i>Ranunculus hederaceus</i>		++	?	++		18	ME	8.5
<i>Callitricha obtusangula</i>		++	?	++		13	ME	8.5
<i>Elodea canadensis</i>		++		++		180	ME	8.5
<i>Nuphar lutea</i>		++		++		129	ME	8.5
<i>Eleocharis acicularis</i>		++		++		16	ME	8.5
<i>Polygonum amphibium</i>	+		++	++		202	mE	9.0
<i>Lemna minor</i>	+			++		140	mE	9.0
<i>Sparganium emersum</i>	?			++		56	E	10.0
<i>Elodea nuttallii</i>	?			++		56	E	10.0
<i>Lemna trisulca</i>	?			++		53	E	10.0
<i>Ranunculus circinatus</i>	?			++		42	E	10.0
<i>Potamogeton lucens</i>	?			++		40	E	10.0
<i>Ceratophyllum demersum</i>			?	++		28	E	10.0
<i>Potamogeton filiformis</i>				++		75	E	10.0
<i>Ranunculus baudotii</i>				++		67	E	10.0
<i>Potamogeton pectinatus</i>				++	++	169	E	10.0
<i>Myriophyllum spicatum</i>				++	++	165	E	10.0
<i>Zannichellia palustris</i>				++	++	76	E	10.0
<i>Potamogeton friesii</i>				++	++	27	E	10.0
<i>Oenanthe aquatica</i>			?	++		12	E	10.0
<i>Potamogeton trichoides</i>				++		17	E	10.0

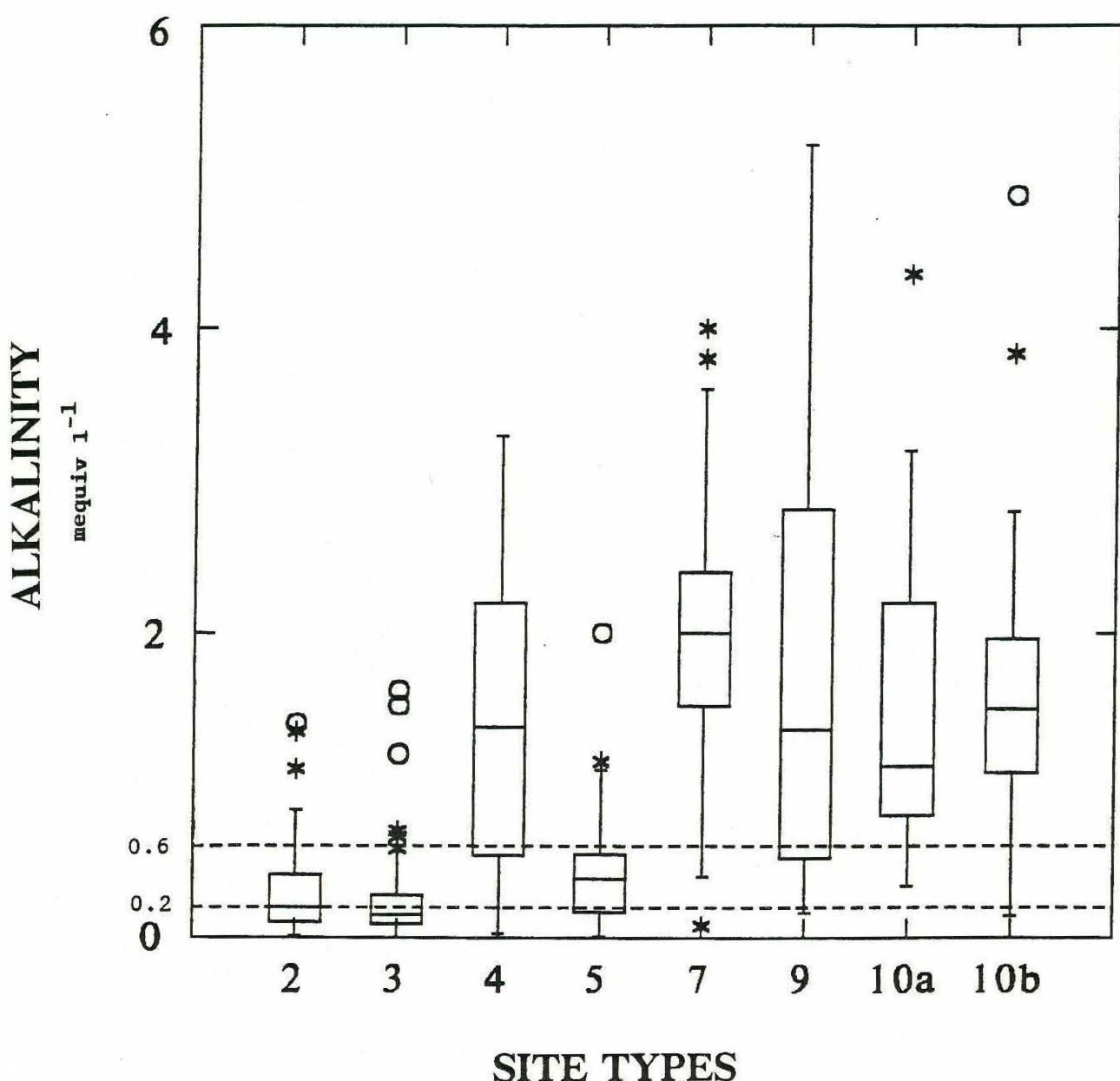
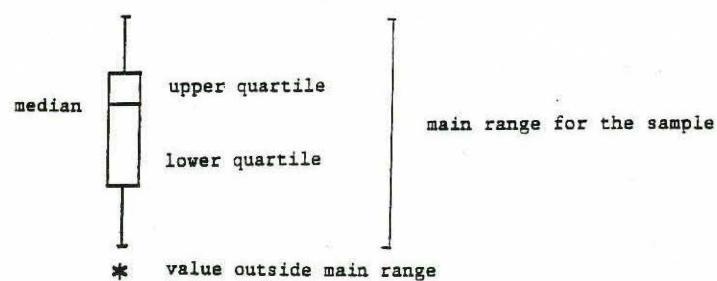
++ records more than expected number - strong association

+ records 50-100% of expected number - weak association

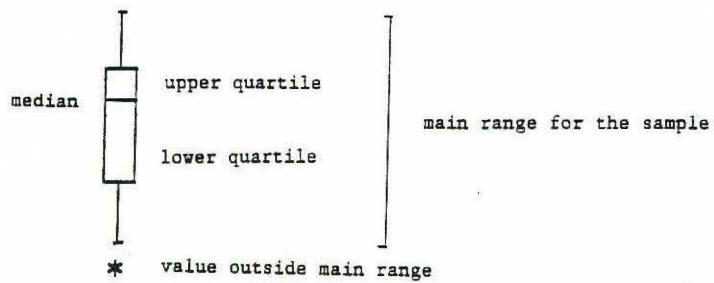
? fewer than 5 records, so weak association not confirmed

Trophic requirements of emergent species

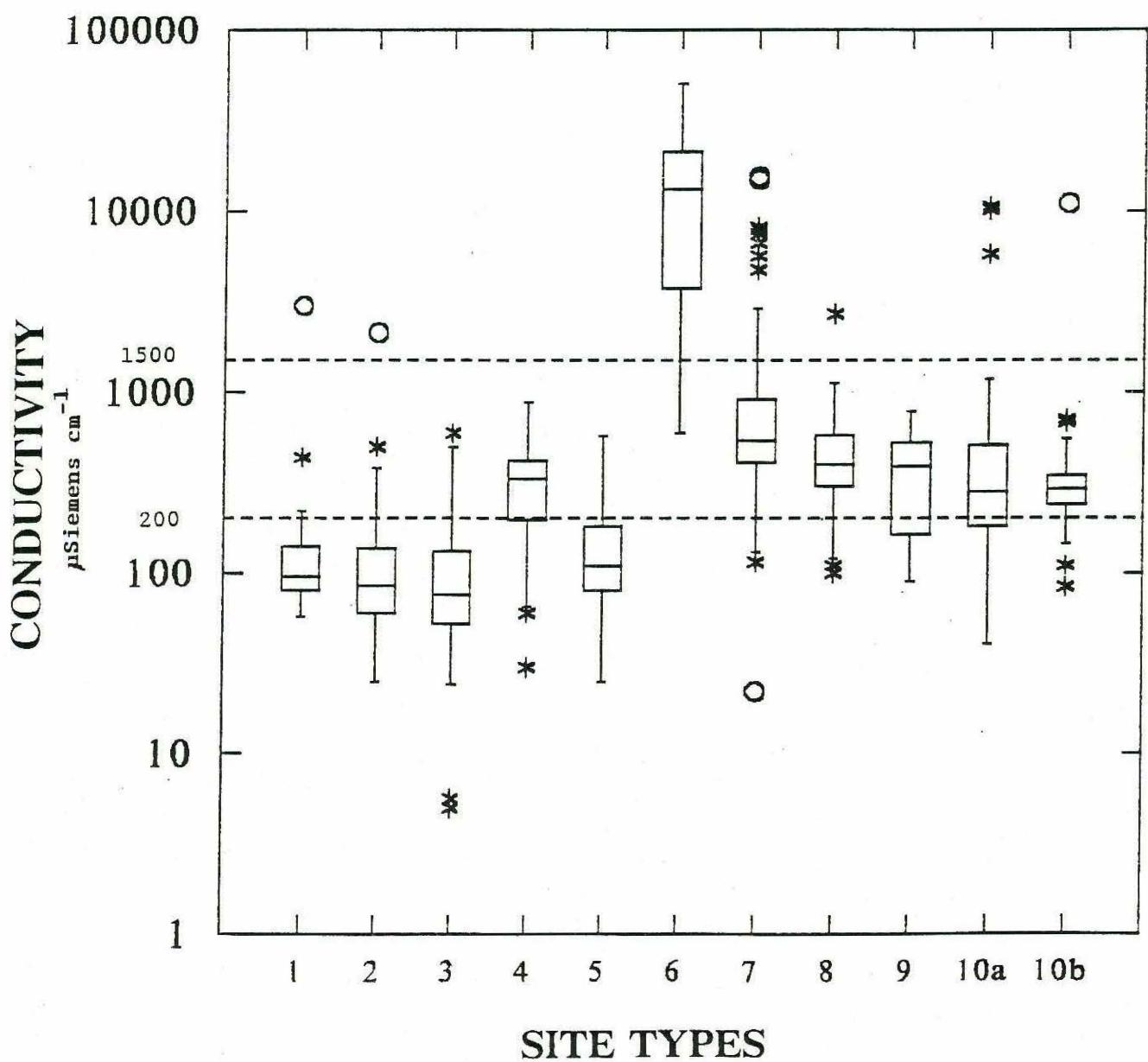
	Dystrophic Type 1 (48 sites)	Oligotrophic Types 2 & 3 (514 sites)	Mesotrophic Type 5 (85 sites)	Eutrophic- northern Type 7 (127 sites)	Eutrophic- southern Types 8,9,10 (256 sites)	No. of records	DOME code	TRS
<i>Eriophorum angustifolium</i>	++	++				251	D0	2.5
<i>Sphagnum spp.</i>	++	++	+			117	D0m	3.7
<i>Carex limosa</i>	?	++				31	0	4.0
<i>Lythrum portula</i>	++		?			22	0	4.0
<i>Baldellia ranunculoides</i>	++			?		21	0	4.0
<i>Carex rostrata</i>	+	++	++			503	D0M	4.3
<i>Carex nigra</i>	++	++		+		336	DOe	4.7
<i>Menyanthes trifoliata</i>	++	++	++	+		393	D0Me	5.3
<i>Ranunculus flammula</i>	+	++	+	+		601	d0Me	5.3
<i>Juncus effusus</i>	++	++	++		++	566	D0ME	5.5
<i>Potentilla palustris</i>	+	++	++	+	+	268	d0Me	5.5
<i>Carex lasiocarpa</i>	++	++				82	0M	5.5
<i>Carex aquatilis</i>	++	++	?			28	0M	5.5
<i>Agrostis stolonifera</i>	+	+		++	++	342	doE	5.7
<i>Veronica scutellata</i>	++		+	+		109	0Me	6.3
<i>Equisetum fluviatile</i>	++	++	++	+		484	0ME	7.0
<i>Hydrocotyle vulgaris</i>	++	++	++	+		270	0ME	7.0
<i>Equisetum palustre</i>	+	++	+	+		240	oMe	7.0
<i>Eleocharis palustris</i>	+	++	++	+		536	oME	7.3
<i>Caltha palustris</i>	+	++	++	+		357	oME	7.3
<i>Phragmites australis</i>	+	++	+	++		260	oME	7.3
<i>Galium palustre</i>	+	++	+	++		191	oME	7.3
<i>Scirpus lacustris</i>	+	++	+	++		188	oME	7.3
<i>Myosotis secunda</i>	+	++	?	++		51	oME	7.3
<i>Carex vesicaria</i>	+	++		++		47	oME	7.3
<i>Oenanthe crocata</i>	+	?		++		23	oE	7.5
<i>Myosotis laxa</i>	+	+		++	++	145	omE	7.7
<i>Mentha aquatica</i>	++		++	++		343	ME	8.5
<i>Phalaris arundinacea</i>	++		+	++		200	ME	8.5
<i>Sparganium erectum</i>	++		+	++		210	ME	8.5
<i>Typha latifolia</i>	++			++		193	ME	8.5
<i>Alisma plantago-aquatica</i>	++			++		166	ME	8.5
<i>Carex elata</i>	++			++		43	ME	8.5
<i>Cicuta virosa</i>	++			++		26	ME	8.5
<i>Cladium mariscus</i>	++			++		20	ME	8.5
<i>Iris pseudacorus</i>	+		++	++		247	mE	9.0
<i>Myosotis scorpioides</i>	+		++	++		172	mE	9.0
<i>Glyceria maxima</i>	?		?	++		47	E	10.0
<i>Typha angustifolia</i>	?			++		59	E	10.0
<i>Polygonum hydropiper</i>	?			++		43	E	10.0
<i>Carex pseudocyperus</i>			?		++	42	E	10.0
<i>Nasturtium officinale agg.</i>				++	++	93	E	10.0
<i>Apium nodiflorum</i>				++	++	54	E	10.0
<i>Scirpus tabernaemontani</i>				++	++	31	E	10.0
<i>Veronica anagallis-aquatica</i>				++	++	31	E	10.0
<i>Carex paniculata</i>				+	++	61	E	10.0
<i>Carex riparia</i>				?	++	56	E	10.0
<i>Solanum dulcamara</i>					++	130	E	10.0
<i>Veronica beccabunga</i>					++	86	E	10.0
<i>Carex acutiformis</i>					++	76	E	10.0
<i>Ranunculus sceleratus</i>					++	65	E	10.0
<i>Rumex hydrolopathum</i>					++	41	E	10.0
<i>Berula erecta</i>					++	33	E	10.0
<i>Carex acuta</i>					++	24	E	10.0
<i>Butomus umbellatus</i>					++	23	E	10.0

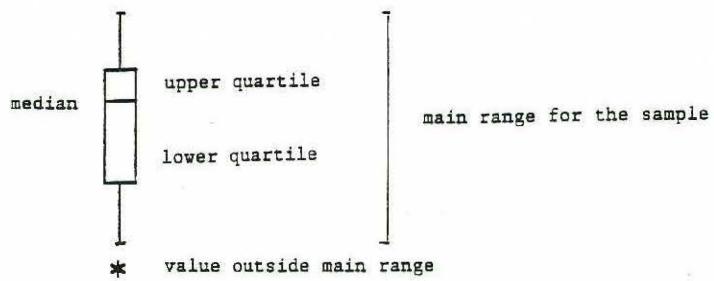


++ records more than expected number - strong association

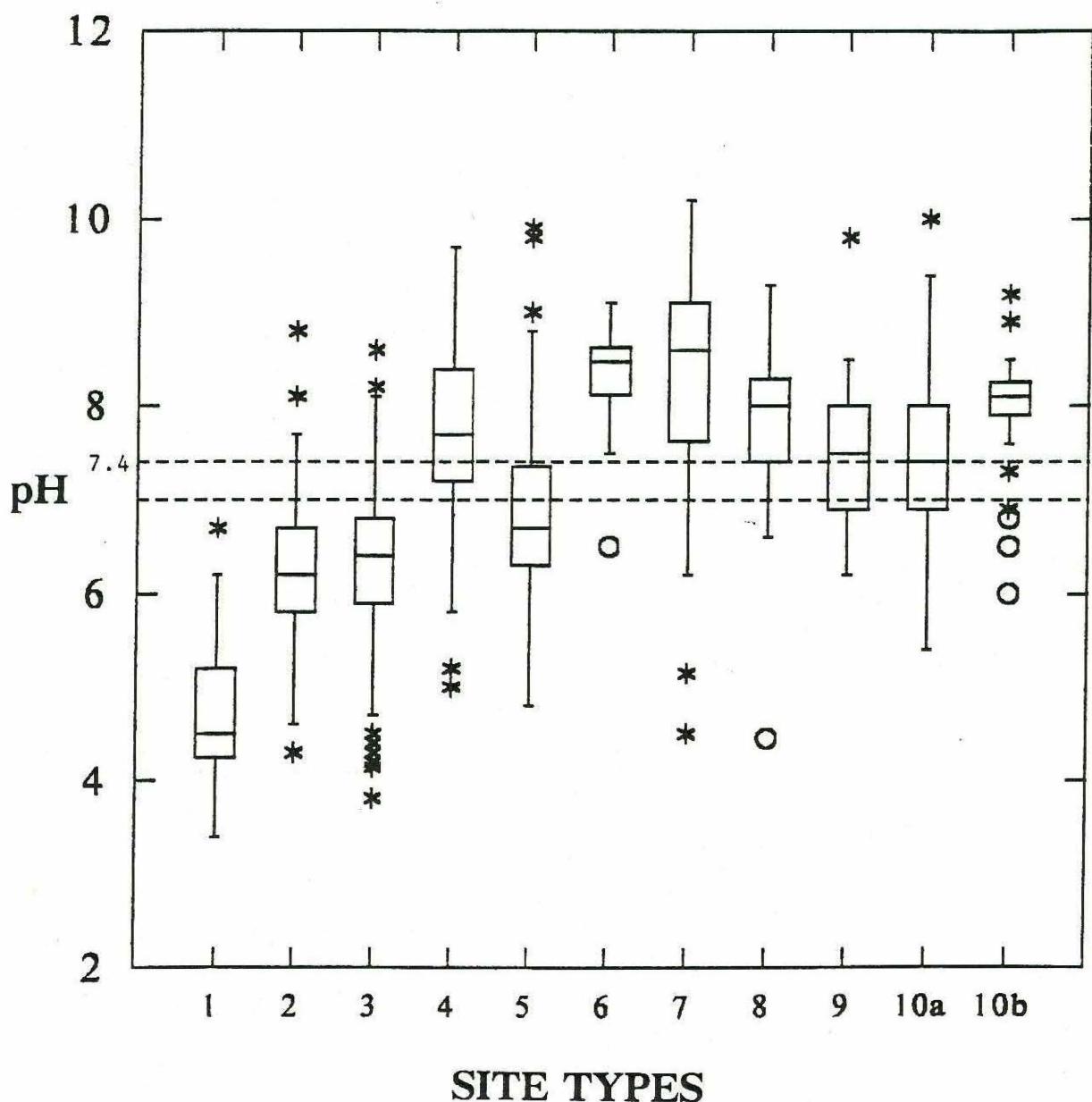
++ records 50-100% of expected number - weak association


? fewer than 5 records, so association not confirmed

Ranges of alkalinity for site types


Values for Types 1 and 8 are not included because data are too few. Type 6 is excluded because of its salinity.


Ranges of conductivity for site types


○ value far outside main range

Ranges of pH for site types

○ value far outside main range

Other titles in the "Research & survey in nature conservation" series

No. 1 The use of permanent quadrats to record changes in the structure and composition of Wytham Woods, Oxfordshire. A S Horsfall and K J Kirby. 1985.

No. 2 Monitoring the abundance of butterflies 1976-1985. E Pollard, M L Hall and T J Bibby. 1986.

No. 3 Saltmarsh survey of Great Britain: Bibliography. Compiled by Kevin Charman, Wanda Fojt and Shirley Penny. 1986.

No. 4 A survey of the numbers and breeding distribution of the North Atlantic gannet *Sula bassana* and an assessment of the changes which have occurred since Operation Seafarer 1969/70. Sarah Wanless. 1987.

No. 5 Agricultural structures policy and nature conservation in Upland Grampian: a pilot study. J R Crabtree, Sue Evans, Brian J Revell and Philip M K Leat. 1987.

No. 6 Changes in the Cumbrian countryside. First report of the National Countryside Monitoring Scheme. 1987.

No. 7 The Wash and its environment. Report of a conference held on 8-10 April 1987 at Horncastle, Lincolnshire. Edited by Pat Doody and Brian Barnett. 1987.

No. 8 The moths of Ceredigion. A P Fowles. 1988.

No. 9 Long-term monitoring in unmanaged woodland nature reserves. G F Peterken and Christa Backmeroff. 1988.

No. 10 The woods of Argyll and Bute. Jane MacKintosh. 1988.

No. 11 A woodland survey handbook. K J Kirby. 1988.

No. 12 The reintroduction of the white-tailed sea eagle to Scotland: 1975-1987. Prepared by John A Love. 1988.

No. 13 Saltmarsh vegetation of the Wash. An assessment of change from 1971 to 1985. Margaret I Hill. 1988.

No. 14 The peatland management handbook. T A Rowell. 1988.

No. 15 Woodland conservation and research in the clay vale of Oxfordshire and Buckinghamshire. Proceedings of a symposium ... on 14 March 1987. Edited by K J Kirby and F J Wright. 1988.

No. 16 NCC research in the uplands. Proceedings of a seminar, 1986. Edited by D B A Thompson, S Whyte and P H Oswald. 1988.

No. 17 The saltmarsh survey of Great Britain. An inventory of British saltmarshes. Fiona Burd. 1989.

No. 18 A sea-cliff bibliography. Compiled by Jonathan Mitchley. 1989.

No. 19 A botanical classification of standing waters in Great Britain and a method for the use of macrophyte flora in assessing changes in water quality. Margaret Palmer. 1989.

No. 20 Vegetated shingle structures survey of Great Britain: Bibliography. Pippa Sneddon and R E Randall. 1989.

No. 21 Dungeness bibliography. Compiled by Helen Riley (assisted by Brian Ferry). 1989.

No. 22 Inventories of ancient, long-established and semi-natural woodland for Scotland. G J Walker and K J Kirby. 1989.

No. 23 The Nature Conservancy Council's research programme (1989/90 edition). Compiled and edited by Philip Oswald and Stefa Kaznowska. 1989. Reprinted with minor corrections 1991.

No. 24 Cut-over lowland raised mires. Proceedings of a conference held on 4 and 5 October 1988 at Doncaster. Edited by Wanda Fojt and Roger Meade. 1989.

No. 25 Moorland management: a literature review. M A Mowforth and C Sydes. 1989.

No. 26 Dungeness: a vegetation survey of a shingle beach. Brian Ferry, Ned Lodge and Stephen Waters. 1990.

No. 27 Methods for monitoring heather cover. Angus MacDonald and Helen Armstrong. 1989.

No. 28 Heather damage: a guide to types of damage and their causes. Angus MacDonald. 1990.

No. 29 A review of the scarcer Ephemeroptera and Plecoptera of Great Britain. John H Bratton. 1990.

No. 30 Wildlife habitat in Cumbria. P G Kelly and K A Perry. 1990.

No. 31 Grazing research and nature conservation in the uplands: proceedings of a seminar, 1988. Edited by D B A Thompson and K J Kirby. 1990.

No. 32 A review of the Trichoptera of Great Britain. I D Wallace. 1991.

No. 33 Goose damage and management workshop. Proceedings of a meeting organised by The Wildfowl and Wetlands Trust at Martin Mere, Lancashire, on 27 April 1990. Edited by Myrfyn Owen and M W Pienkowski. 1991.

No. 34 A review of the scarcer Neuroptera of Great Britain. P Kirby. 1991.

No. 35 A review of the scarce and threatened bees, wasps and ants of Great Britain. Steven Falk. 1991.

No. 36 The Nature Conservancy Council's research programme (1990/91 supplement). Compiled and edited by Philip Oswald and Stefa Kaznowska. 1991.

No. 37 An atlas of wildlife habitat in Cumbria. P G Kelly and S E Hunt. 1991.

No. 38 An atlas of wildlife habitat in Bedfordshire. S E Hunt and P G Kelly. 1991.

No. 39 A review of the scarce and threatened flies of Great Britain (Part 1). Steven Falk. 1991.

No. 40. Research on the ecological effects on woodland of the 1987 storm. Edited by A M Whitbread. 1991.

No. 41 The habitat of sand lizards *Lacerta agilis* at Merseyside. A S Cooke. 1991.

No. 42 Erosion and vegetation change on the saltmarshes of Essex and north Kent, between 1973 and 1988. Fiona Burd. 1991.

The UK Joint Nature Conservation Committee was established by the Environmental Protection Act 1990 "for the purposes of nature conservation, and fostering the understanding thereof" in Great Britain as a whole and outside Great Britain. It is a committee of the three country agencies (the Countryside Council for Wales, English Nature and Scottish Natural Heritage), together with independent members and representatives from Northern Ireland and the Countryside Commission, and is supported by a specialist staff. JNCC and the three country agencies carry forward duties previously undertaken by the Nature Conservancy Council.

JNCC's statutory responsibilities include:

- the establishment of common scientific standards;
- the undertaking and commissioning of research;
- advising Ministers on the development and implementation of policies for or affecting nature conservation for Great Britain as a whole or nature conservation outside Great Britain;
- the provision of advice and dissemination of knowledge to any persons about nature conservation.

JNCC also has the UK responsibility for European and international matters affecting nature conservation.