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Summary 
 
This technical report outlines the methodologies and outputs produced from the pilot 
investigation into Natural Capital mapping in the Colchagua Valley in Central Chile. The aims 
of the project were to demonstrate how the use of earth observation data together with local 
knowledge can help to better understand natural capital stocks in the region that support 
wine production and the role vineyards play in ecosystem service delivery.  
 
Working with lead partners at Programa Vino Cambio Climático y Biodiversidad Chile 
(VCCB) part of the Institute of Ecology and Biodiversity (IEB-Chile) at the Universidad 
Austral de Chile and engaging with local viticulture businesses through workshops, key 
ecosystem services of importance to vineyards were highlighted. High resolution Sentinel 
earth observation data were used to create a habitat map for the region of interest. Different 
modelling approaches were undertaken to quantify and map the delivery of water supply and 
quality, soil erosion and fire susceptibility. The models were run under several scenarios to 
estimate how service delivery varies with sustainable management practices and under 
climate change scenarios. The modelled outputs were used to train a Bayesian belief 
network, which alongside stakeholder knowledge, developed an overall network depicting 
structured probabilistic outcomes relating to how management measures affected the 
probable delivery of the key ecosystem services. Outputs have been displayed in a user-
friendly interactive manner using an R shiny online application, where stakeholders can 
query the modelled results and explore the impacts that management trade-offs have at an 
individual field scale. 
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1 Project Introduction 
 
Through the South Atlantic Research Outreach Programme, the Joint Nature Conservation 
Committee (UK) has collaborated with The Wine, Climate Change and Biodiversity Program 
(Programa Vino, Cambio Climático y Biodiversidad [VCCB]) which is a scientific initiative of 
the Institute of Ecology and Biodiversity and the University Austral of Chile.  The initiative 
works to show that biodiversity conservation and the development of the Chilean wine 
industry are compatible endeavours. VCCB works closely with 17 vineyards in the 
Colchagua Valley, central Chile. 
 
The Natural Capital Approach to Landscape Planning: a Pilot Project in Colchagua Valley, 
builds upon long standing work undertaken by VCCB and partner vineyards since 2008 
(VCCB, 2008). The project draws upon the natural capital work that JNCC has undertaken 
with the UK Overseas Territories in the South Atlantic region (JNCC 2019).  The project 
combines industry knowledge with ecosystem sciences and looks to disentangle and 
quantify the interactions between land management, biotic and abiotic factors, and the 
effects on ecosystem services relevant to wine producing businesses. 
 
In 2017, Chile exported 9% of its wine to the United Kingdom, with a value of US$203 
million. Projects such as this are critical to the UK and its trading partners in understanding 
how emerging science and technology can be translated for use by businesses and underpin 
sustainable supply chains that deliver long-term value, whilst protecting the ecosystems that 
support the global economy.   
 
The Colchagua Valley is part of Chile’s Mediterranean biome that can be found between the 
regions of Coquimbo (29°02’) and Bío-Bío (38°30’). It plays an important role in the 
productivity of Chile’s agriculture and viticulture. The biome is considered a priority for 
biological conservation as it represents 16% of the continental surface of Chile, yet hosts 
50% of Chilean flora and more than half of the country’s endemic species (Barbosa & Godoy 
2014). 
 
Like many of the world’s ecosystems, the Chilean Mediterranean biome is affected by land 
conversion to agriculture and urban development.  The wineries, who are the stakeholders in 
this project, have been working with VCCB since 2008, exploring ways in which their 
businesses can sustainably manage their land to conserve habitats in both their vineyards 
and the surrounding areas, enhancing the local biodiversity. 
 
The project goes to demonstrate how ecosystem mapping and modelling can be established 
in-line with user requirements and provide tools that help bring environmental data into 
decision making processes.  
 
Evidence-based environmental management is critical for avoiding supply chain disruption 
and potential infrastructure damage, such as identifying fire risks and implementing 
avoidance strategies. Better understanding of catchment processes can lead to informed 
land management planning and predicting factors such as water stress and pollution risk that 
are vital to the future sustainability of any business.  
 
The high-level project objectives are: 
 

• Demonstrate how Earth Observation data, ecosystem modelling and local ecological 
knowledge can be combined to inform ecosystem-based management. 

 
• Work with the wine industry to identify where the application of mapping and modelling 

outputs can offer commercial benefits through sustainable supply chains.  
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• Strengthen future collaboration between the United Kingdom and Partners in the South 
Atlantic region. 

 
The project is funded by the United Kingdom’s Department for the Environment, Farming 
and Rural Affairs (DEFRA). 
 
2 Habitat Map 
 
2.1 Introduction 
 
Habitat maps are a key component to understanding the distribution and extent of features 
across the landscape, and are a requirement in facilitating better management practices, 
natural capital accounting, ecosystem service mapping, interpreting and targeting 
biodiversity monitoring and delivering policies; such as those related to UN Sustainable 
Development Goals. There are many global land cover and land use products available, but 
these often do not provide enough detail to perform analyses on a regional level. A land 
cover map was available for the Colchagua Valley (Martínez 2014), but the map is out of 
date, and excluded recent land use change; such as those in the forestry and viticulture 
sectors. Therefore, an updated habitat map was required to carry out the ecosystem service 
mapping and modelling.  
 
Earth Observation (EO) has been extensively used to provide a synoptic view of land use, 
cover and change at a variety of scales. New sensors are being developed and launched at 
an increasing rate, with some mission making data accessible through open source 
licensing; such as the Copernicus Programme’s Sentinel data1. EO is a valuable resource 
when no other data are available but is most powerful when combined with field data and a 
variety of other data sources to create products that provide critical information, particularly 
for evidence-based decision making. 
 
2.2 Colchagua Valley  
 
The Colchagua Valley is located in central Chile in the General Libertador Bernardo O’ 
Higgins region, 130 km south of capital Santiago. The valley is carved by the Tinguiririca 
River flowing from the headwaters in the glaciated Andean Mountains to the east, down to 
the lowland grasslands towards the Pacific coast in the west. As a result, the valley 
experiences a Mediterranean climate bordered by mountain ranges, with glacial melt being 
an important water source throughout the year (Bravo et al. 2017). The Colchagua valley is 
located between 34°15’S and 34°50’S and 72°00’W and 70°15’W with a strong agriculture-
based economy famed for its winegrowing, which dates back to 1542 (Viñas de Colchagua 
2012). The area of interest for the habitat mapping covered an area of approximately 6900.8 
km2, defined by the main watersheds of interest (see section  5) and encompassing all of the 
VCCB stakeholder vineyards.   

 
1 Copernicus is an Earth Observation Programme headed by the European Commission (EC) in 
partnership with the European Space Agency (ESA). Copernicus provides a unified system through 
which vast amounts of data are fed into a range of thematic information services designed to benefit 
the environment, the way we live, humanitarian needs and support effective policy-making for a more 
sustainable future < https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview3>. 

https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview3
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Figure 2.1. Area of interest for the Colchagua Valley habitat mapping. 

 
2.3 Earth Observation Data  
 
Copernicus datasets have been identified as a key data source for this project because of 
their open access and their spatial resolution of 10 metres. In comparison with other open 
access EO datasets, Sentinel-2 covers the globe more frequently than other observing 
systems, and is an operational mission as opposed to research based. The Sentinel-2 
mission also endeavours to continue to provide open datasets for the future, with a further 
two satellites planned for launch to join the constellation. For the mapping work, both 
Sentinel-1, a radar mission, and Sentinel-2, an optical mission, were used to capture as 
many features in the landscape as possible. Further information on the Sentinels is 
contained in Appendix 1. 
 
2.3.1 Identification of Sentinel-2 data 
 
As an optical constellation of satellites, Sentinel-2 imagery is limited by cloud cover. To 
secure cloud-free data of the area of interest in Colchagua, an investigation was required to 
identify suitable images. Seasonal changes and differences were considered as these 
variations can be critical to habitat identification and separation of classes. For example, leaf 
flushes and snow cover vary between seasons. We examined all images acquired by the 
satellite in 2018, and identified cloud-free images from the following dates for use in the 
analysis: 
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• 25th March 2018 
• 28th July 2018 
• 21st October 2018 
• 10th December 2018 

 
This provided approximately quarterly scenes and are considered sufficient to identify most 
significant seasonal changes. 
 
2.3.2 Identification of Sentinel-1 data 
 
As a radar constellation, Sentinel-1 is not constrained to the same limitations as Sentinel-2, 
because this radar remote sensing tool can image Earth’s surface through cloud cover and 
during periods of darkness. This means that all images are potentially usable, to capture the 
seasonal changes and differences four images were chosen with dates that correspond as 
closely as possible to the Sentinel-2 images. The dates of these images were: 
 

• 25th March 2018 
• 23rd July 2018 
• 27th October 2018 
• 14th December 2018 

 
2.3.3 Pre-processing of Sentinel data 
 
Once the required scenes were identified, the Sentinel imagery were pre-processed using 
processing chains that have been established through previous project work at JNCC 
(Sentinel-2: Jones et al. 2017; and Sentinel-1: Minchella 2018). To fully exploit the valuable 
information contained within Sentinel data, users are required to undertake a series of 
complex pre-processing steps to turn the data from a ‘raw’ unprocessed format into a state 
that can be analysed. To enable wider use and exploitation of EO data, JNCC are promoting 
the systematic and regular provision of Analysis Ready Data (ARD). This aligns with the 
Committee on Earth Observation Satellites (CEOS) work on facilitating access to satellite 
data through the international CEOS Analysis Ready Data for Land (CARD4L) project. This 
notion of accepted standards is recognised by JNCC and the wider CEOS community as a 
vital step for repeatable and comparable analytical work. The use of ARD allows immediate 
analysis for end-users and removes complex pre-processing. The processing for Sentinel-2 
was carried out using cloud computing facilities available from Amazon Web Services 
(AWS). The processing chain steps include: 
 

• Geometric correction 
• Atmospheric correction 
• Radiometric correction 

 
Sentinel-1 data are transformed into backscatter products from data collected in the 
Interferometric Wide (IW) swath mode and processed from the Ground Range Detected 
(GRD) version of the data made available by the European Space Agency (ESA). These 
Sentinel-1 data contain data in both VV and VH polarisations. The raw scenes were terrain 
corrected, radiometrically normalised and processed to Gamma-0 backscatter coefficient in 
decibels (dB) using the open-source image analysis software SNAP Toolbox (ESA SNAP). 
 
2.4 Classification of habitat map 
 
The classification method chosen for the generation of the habitat map was the Living Map 
Method (LMM) (Kilcoyne et al. 2017). The habitat classes mapped are defined in section 
2.6.1. The LMM developed a code base that allowed users to implement a machine learning 
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approach to classification, with the flexibility to integrate numerous different data types, 
including earth observation data. The availability of a ready-made code base that is straight 
forward to adapt provides an advantage over other similar open-source tools, as it removes 
the time needed to write code for implementation. Other reasons for choosing the LMM 
method include: 
 

• Utilises machine learning algorithms which are increasingly used in mapping 
applications utilising earth observation data; 

• Can be carried out on pixel-based and object-based analyses; 
• All steps can be carried out using open-source software; 
• The code is available under an Open Government License; 
• JNCC had a minor role in supporting the development of the code, and hence had 

good familiarity with the method; 
• Can be repeated across different areas and a variety of datasets with little adaption to 

code; 
• Iterations of maps can be generated quickly, efficiently, and it is highly repeatable. 

 
For details on the datasets, classes and method, including data preparation, segmentation, 
training datasets creation and outputs, see Appendix 1 of this report. 
 
2.5 Field data collection 
 
Following the completion of the first draft of the broad habitat map (see Appendix 1), further 
data were required to validate the outputs and re-iterate the classification process if 
necessary. To generate a field survey, a set of points from each class was randomly 
generated using the outputs of the first draft habitat map. Figure 2.2 shows the location of 
these points, which were manually checked to ensure no proposed field data collection point 
overlapped with training points used to generate the classification algorithm. Due to time 
constraints and accessibility in the upper Andean region of the area of interest, only points 
considered within a smaller area of interest, as agreed upon by project partners at Austral 
University of Chile, were visited and recorded (or as many of these as possible). Figure 2.2 
shows the points randomly generated and those that the field team were able to visit feasibly 
during the field campaign conducted in January 2019. This introduces some bias and spatial 
correlation to the validation set, which becomes more evident and is discussed in detail in 
section 2.6.3. 
 

 
Figure 2.2. Location of points to visit during the field campaign. A) Points to visit B) Points visited. 
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2.6 Habitat map outputs 
 
2.6.1 Habitat map 
 
Table 2.1 shows the classes present in the habitat map. These classes were chosen in 
relation with the 2013 land cover map to provide continuity and are defined in relation to 
habitats of interest for the ecosystem service mapping. 
 

 Table 2.1. Habitat class names and descriptions. 
Class Name Class Description 
Agricultural land All areas used as vineyards and for fruit 

production. 
Alluvial plain A landform created by deposition of 

material eroded higher up the catchment.  
Central Andean Steppe Montane grassland and shrublands 

ecoregion in the high elevations of the 
southern Andes mountain range. 

Crop grassland All areas used to grow crop such as maize 
on a rotational basis (i.e. not permanent 
crop types), and areas used for grazing. 

Glaciers A slowly moving mass or river of ice formed 
by the accumulation and compaction of 
snow on mountains or near the poles. 

Lakes Areas of water bodies, including naturally 
formed lakes and reservoirs. 

Native forest A forest composed of indigenous trees and 
not classified as forest plantation. 

Plantation A forest established by planting and/or 
seeding in the process of afforestation or 
reforestation. It consists of introduced 
species in most cases. 

Rivers A river channel that includes a permanent 
flow of water. 

Rocky outcrops An area of bedrock that is exposed. Covers 
varying types of rock. 

Scrubland An area of land consisting of scrub 
vegetation. 

Seasonal meadows An area consisting of grassland that 
appears on a seasonal basis. 

Snow cover An area that is permanently covered in 
snow. 

Trees & Scrub Areas of trees, woodland and scrub that 
occur on the fringes of field boundaries, 
river banks and in urban areas. 

Urban Built infrastructure, including houses, farm 
buildings, roads and any other built 
structures, tarmac, concrete or gravel. 
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Figure 2.3. Habitat map of Colchagua Valley 2018. 
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2.6.2 Probability map 
 

 
Figure 2.4. Probability of classes being the identified class output, generated from the random forest 
algorithm when predications from individual trees are aggregated based on a voting system. 
 
Figure 2.4 shows the classification probability, attributed to each object. These figures 
suggest that there is greater confidence in the forest and water-based classes, such as lakes 
and rivers. It is likely that classes within the agricultural regions of the valley have a lower 
probability due to the variety of habitats which can appear similar in the EO data. For 
example, an object classified as crop grassland will have similar characteristics to seasonal 
meadows, agricultural land and scrubland classes in EO data, meaning that the probability of 
the object belonging to a single class is reduced. The presence of mosaic habitats will also 
reduce the probability value, so Figure 2.4 can be used to interpret the uniformity and variety 
of the landscape in addition to providing a level of confidence spatially of the classified 
output. 
 
2.6.3 Accuracy 
 
To analyse the accuracy of the outputs, the data collected during the field visit were used to 
generate an error matrix of the habitat map. The overall estimated accuracy of the map, 
which gives us an indication of how many of the field data were classified correctly, is 78 %.  
 



A Natural Capital Approach to Landscape Planning: a Pilot Project in Colchagua Valley - Technical 
Report 

9 

 
Figure 2.5. A graphical output of the user’s accuracy from the error matrix, where ‘n’ is the number of 
field validation points available per class. Overall estimated accuracy of the map is 78%. 
 
In order to interpret these results, an assessment of the error matrix is required (Figure 2.5). 
It should be noted that these estimates of accuracy have variable certainty associated with 
them due to differing field data sample numbers. For example, no validation points were 
collected for a number of classes, therefore, the estimated accuracy is unknown. The overall 
accuracy therefore, does not provide any indication of accuracy of classes without any field 
data, and should be interpreted as such, and used with caution. For classes with validation 
points, it is important to note the spatial distribution of the data is centred around the north 
west region of the area of interest, meaning the accuracy of other areas within the map are 
less certain. It is also worth mentioning classes Agricultural land, Crop / grassland rotation 
and scrubland are showing accurate user accuracies despite the random forest algorithm 
providing low probabilities for these classes in Figure 2.4. This means that the classification 
algorithm has performed better than expected when identifying classes that have similar 
characteristics with several other classes, such as Agricultural land and Crop / grassland 
rotation.  
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3 Soil loss 
 
3.1 Introduction 
 
Viticulture stakeholders within the project region identified priority ecosystem services that 
their vineyards either delivered or might affect. Topsoil was recognised as a major 
ecosystem service for the growth of the vines, and erosion of topsoil can be a significant 
ecosystem service loss. In addition, the import of nutrients due to erosion of soils upslope 
from the vineyards is also recognised as detrimental to grape growing. To evaluate the 
movement of soil both from within and above vineyards we used the Sediment Delivery 
Ratio (SDR) model of InVEST 3.5.0 (Stanford University 2019) to calculate revised universal 
soil loss equation (RUSLE). We used this over the inbuilt sediment module in the SWAT 
model (used to assess water supply and quality in Section 5) as the outputs are at a higher 
resolution (10 m pixel, rather than SWAT’s Hydrological Response Units) which is more 
appropriate for vineyard land management, and because it is well suited to change 
management parameters, the outputs of which were used to inform the follow-on Bayesian 
Belief Network (see Section 5).  
 
The SDR model is designed to map the overland sediment generation and subsequent 
delivery to waterways, however as part of this the model outputs the total potential soil loss 
per pixel calculated from the RUSLE: 
  

A=RKLSCP 
 
where A is the rate of soil loss (ton ha−1 yr−1), R is the annual rainfall erosivity factor 
(MJ mm ha−1 h−1 yr−1), K is the soil erodibility factor (t ha yr ha−1 MJ−1 mm−1), L is the slope 
length factor, S is the slope steepness factor, C is the cover and management factor, and P 
is the supporting practices factor (Renard et al. 1997). RUSLE does not include wind 
erosion, nor rill and gully erosion or landslips, and therefore the results are viewed as 
indicative and not absolute. 
 
3.2 Data sources 
 
The data inputs for the model are outlined below. All spatial data were georeferenced to 
WGS84 UTM zone 19S (ESPG:32719) and cropped to the area of interest. Data processing 
and transformations were performed in in R version 3.4.4 (R Core Team 2018). For 
additional non-spatial inputs2, default values were retained. For more details on the SDR 
model and the default values, please see the documentation from The Natural Capital 
Project (2019). 
 
3.2.1 Climate data 
 
Global layers of monthly minimum temperature, maximum temperature, mean temperature, 
mean windspeed, and total precipitation were downloaded from WorldClim v2.0 
(http://worldclim.org/version2) at 30 arc second resolution.  
 
The WorldClim global layers were used as a continuous raster of the entire region. Local 
weather station data from the Colchagua Valley were only available as point data, and at 
inconsistent time intervals. However, we chose to rescale the global layers based on local 
data to ensure layers were: i) more accurate to local conditions; ii) more up-to-date 
(WorldClim rasters represent year 2000 conditions), and; iii) consistent with the point data 
used in SWAT modelling (Section 5.2.2): Daily weather station data ranging from late-2017 

 
2 Threshold flow accumulation, Borselli k parameter, Borselli IC0 parameter and SDRmax. 

http://worldclim.org/version2
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to late-2018 (early-2015 to late-2018 for precipitation) were averaged per month. For each 
full month of weather data per station, WorldClim values corresponding to the location of that 
station were extracted. Station values were divided by the extracted WorldClim values to 
achieve a scaling factor for each station-month combination. All scaling factors were then 
averaged to produce a single scaling factor, and the original WorldClim raster layers were 
then multiplied by this factor to produce a new layer scaled by the local data. This process 
was repeated for each variable of interest independently. 
 
3.2.2 Predicted future climate data 
 
Global monthly raster layers of predicted minimum temperature, maximum temperature, and 
total precipitation for the year 2070 were downloaded from WorldClim v1.4 
(http://www.worldclim.org/CMIP5v1), for the model HadGEM2-ES and representative 
concentration pathways 4.5 and 8.5, to represent a moderate and high greenhouse gas 
concentration pathway (see also section 3.4.2). WorldClim v1.4 was used as predicted data 
under climate change are not yet available for WorldClim v2.0. These layers underwent 
scaling in the same way as the present-day climatic variables, using 20-year mean (2061-
2080) monthly values of minimum temperature, maximum temperature, and precipitation, 
derived from modelled station data. 
 
3.2.3 Rainfall erosivity (R) 
 
The rainfall erosivity factor is an index to describe the rainfall erosivity power, and the effect 
of raindrop impact on runoff. It is ideally derived as a proportional rainstorm parameter, 
based on storm energy and maximum intensity within a 30-minute period, and further 
validated against local erosion data to check suitability for the local region. As this requires 
long-term rainfall intensity and erosion data which are frequently not available, there are 
derived equations based on the correlation between rainfall erosivity (R) and total 
precipitation. Here we follow Renard and Freimund (1994) using the equation: 
 

R = 0.04830  P 1.61 
 
where P is a mean annual precipitation below 850 mm, and  
 

R = 587.8 – 1.219 P + 0.004105 P 2 

 
where P is a mean annual precipitation of 850 mm or above. This is a standard method, and 
appropriate when there are no validation data. These equations were applied to the 
precipitation rasters generated in section 3.2.1, to produce a 30 arc second resolution raster 
of rainfall erosivity in MJ mm ha-1 h-1 yr-1. 
 
3.2.4 Soil erodibility (K) 
 
Soil erodibility is a measure of the susceptibility of soil particles to detachment and transport 
by rainfall and runoff and is largely based on the texture of the soil. Soil profile data were 
taken from the Harmonized continental SOTER-derived database (SOTWIS) (ISRIC 2019) at 
a resolution of 30 arc seconds, which gives the proportion of clay, silt and sand of the soil. 
The soil texture R package (Moeys 2018) was used to classify the FAO (2006) soil type 
based on the soil size and texture proportions.  
 
The soil erodibility factor (K) (ton ha h (ha MJ mm)-1) was then derived per soil class based 
on the OMAFRA fact sheet (2015), as recommended by the SDR documentation (The 

http://www.worldclim.org/CMIP5v1
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Natural Capital Project 2019). Within the region the K factor ranged from 0.45 – 0.67, with a 
median of 0.45 for both the whole region and the vineyards. 
 
3.2.5 Slope length (L) and Slope steepness (S) 
 
Both slope length (L) and slope steepness (S) factors are derived by the InVest SDR model 
from the DEM (Appendix 1). The altitude within the region ranges from 54 – 4971 m, the 
mean altitude of the vineyard areas is 302 m (± 209 m). The mean slope was 13.5° (± 12.9°) 
and 9.8° (± 10.0°) for the region and vineyards respectively. 
 
3.2.6 Land Cover (LC) 
 
The habitat map produced from Sentinel 2 data by JNCC for this project (Figure 2.3) did not 
disaggregate vineyards from other types of similar agriculture such as orchards and table 
grapes, so these were added manually to the map using vineyard property boundary data 
provided by partners at VCCB. All areas falling within boundaries that had been classified as 
‘Agricultural land’ were reclassified as ‘Vineyard’ as a separately assigned 16th land class, 
and the full map was rasterised to a 10 m resolution.  
 
3.2.7 Biophysical table 
 
The table attributes a C factor and P factor value per land cover class, which is applied 
spatially by joining to the land cover map. The cover management factor is used within 
RUSLE to reflect the effect of cropping and management practices on annual soil loss and is 
most often used to compare relative impacts of differing management plans. To be 
calculated specifically requires detailed data on prior land use, surface roughness, soil 
moisture and parameters of the vegetation itself. This is difficult to acquire outside of 
experimental conditions and at the landscape level, so the C factor has been estimated for 
Colchagua based on the methodology of Panagos et al. (2015). The results of their literature 
review give a range of derived C factor per land cover class. This can then be corrected for 
local conditions based on vegetation density using the following formula: 
 

CLC = min(CLClit) + range(CLClit) x (1 – Fcover) 
 
where min(CLClit) and range(CLClit) are the minimum and range respectively of the C factor 
values retrieved from the literature for each land cover class, and Fcover is the % of soil 
covered by any type of vegetation derived from Copernicus Global Land Service (2019) 
data. Fcover was extracted using the land cover map shapefile, and the mean value per land 
cover class was applied in the above formula. 
 
Panagos et al. (2015) literature review is European focused, but given the lack of local data, 
European data were deemed to be more appropriate than globally averaged data due to the 
similarities in climate. In addition, the inclusion of local Fcover improves specificity to the area 
of interest. 
 
The support practice factor (P) specifies the ratio of soil loss in comparison to upslope and 
downslope tillage and is principally affected by practices such as contouring and terracing 
(and not the tillage system itself which is incorporated into the C factor). As with the C factor 
the value is applied per land cover class. For the purposes of this study P factor was defined 
as 1 to assume no special practices, and management effects are therefore only captured by 
the C factor. 
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3.2.8 Watersheds 
 
Watershed delineation was based on HydroBASINS (Lehner & Grill 2013) level 12 sub-
basins for the region, and the extent of the soil model was based on all sub-basins which 
intersect the land cover map. However, results are presented at the higher resolution pixel 
level rather than at sub-basin level to better represent soil erosion within the vineyard level. 
 
3.3 Results 
 
The map of estimated soil loss is shown in Figure 3.1. Although the modelled results are 
given in ton ha−1 yr−1, there are no local data available to validate the outputs. Therefore, the 
results are mapped qualitatively, based on Table 3.1.  
 

Table 3.1. Soil loss tolerance rates (OMAFRA Factsheet 2015). 
Soil Erosion Class Potential Soil Loss (ton ha−1 yr−1)  

Very low (tolerable) <6.7  

Low 6.7 –11.2  

Moderate 11.2 –22.4  

High 22.4 –33.6  

Severe >33.6  
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Figure 3.1. Modelled estimated soil loss in the Colchagua Valley. 
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3.4 Using Sediment Delivery Ratio to inform the BBN 
 
The Viticulture ImplemeNting Ecosystem Services Bayesian Belief Network shows how 
management practices and future climate may impact soil loss at the field level (section 6). 
To inform the BBN, the SDR model was re-run after changing parameters for C factor for the 
Vineyard land cover class (to represent changes in management within the vineyards), 
climate change projections, and with added native buffer strips within the vineyards. 
 
3.4.1 Management scenarios 
 
Changes to C factor were again based on Panagos et al. (2015), and used the following 
equation: 
 

C = CLC x Ctillage x Ccover 
 
CLC is calculated as above (see 2.2.7), and a management factor for tillage and cover crop is 
applied to quantify the effect in differing practices on soil loss. Conventional tillage assumes 
a Ctillage of 1, and a Ctillage of 0.35 or 0.25 is appropriate for conservation/ridge tillage and no 
tillage respectively (OMAFRA Factsheet 2015). A total of 83% of vineyard fields managed by 
stakeholders of this project (n=18) reported using tillage practices of some sort. As vines are 
permanent crops, tillage will not be 100% of the field, and therefore the values of 0.35 was 
used as default but changed to 0.25 to measure the impact on the model outputs of 
removing tillage practises. The default for Ccover was 1, assuming no cover crops used, but 
an iteration where Ccover = 0.8 was also used to represent the reduction in soil erosion due to 
use of cover crops (Panagos et al. 2015). 
 
3.4.2 Climate scenarios 
 
Vineyards are interested in understanding how ecosystem services may respond to future 
climate change, particularly in relation to water management. To look at the implications of 
future climate change on the region, two scenarios were selected from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) evaluations used in the Fifth Assessment Report 
by the Intergovenmental Panel on Climate Change (IPCC). These were the representative 
concentration pathways (RCPs) 4.5 and 8.5; which represent two different scenarios and 
provide a range of predictions. RCP4.5 represents a moderate stabilization scenario under 
climate change, whereas RCP8.5 represents a very high baseline emissions scenario (van 
Vuuren et al. 2011). Data for these scenarios were taken from WorldClim and scaled as 
before (section 3.2.2) and used to calculate new R values for model input as above. 
 
3.4.3 Buffer scenario 
 
In previously published guidance to vineyard managers, VCCB encourage the creation of 
biological corridors of native vegetation around managed agricultural land, at least 9 m wide 
and connected, so as to encourage biodiversity, prevent soil erosion and aid water quality 
(Barbosa & Godoy 2014). To demonstrate this, buffer strips of 9 m native forest were added 
to the stakeholder fields within the dissolved vineyard, crop rotation and seasonal meadows 
land classes, as these were the land classes within vineyards that a native tree buffer strip 
would most likely be added to.  Adding buffer strips does not affect the management 
scenario ‘C factor’ for the ‘Vineyard’ land cover class but will affect the proportion of 
‘Vineyard’ and ‘Native Tree’ land cover classes within the vineyard areas, and therefore 
effect total RUSLE per vineyard. All above scenarios were therefore run using the buffered 
land cover layer also. 
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3.4.4 Topsoil loss within the vineyard 
 
Outputs for all nodes of the BBN were extracted to inform the BBN at the Field level 
(boundaries of the stakeholder vineyard estates): The mean value of the outputs within each 
field boundary was used for continuous variables, and median used for categorical variables. 
The vineyards in Colchagua valley are largely planted on flat land, yet RUSLE is heavily 
influenced by slope. To better capture the risk to soil loss, means were taken from all pixels 
where slope was greater than 2°. Outputs were extracted for every combination of scenario 
of management, climate, and buffered land cover. As before soil loss was categorised using 
Table 3.1. 
 
3.4.5 Eroded upslope soil 
 
To quantify the amount of soil eroding upslope, thus potentially travelling downslope and 
contributing to the nitrification of the vines, the sum of upslope soil loss was calculated for 
each vineyard. Upslope buffers of 50 m were created for all regions classified as ‘Vineyard’ 
(see also section 6.4.1). These were used to extract the proportion of each land class, plus 
mean values for precipitation, slope, soil type, and the summed total of soil loss within the 
buffer, to inform the BBN. Outputs were derived from every combination of scenario of 
climate and buffered land cover. Exploring ‘Tillage’ across the landscape was out of scope 
for the project, this was considered only at vineyards level to inform the Bayesian Belief 
modelling (see section 6). 
 
4 Fire Susceptibility 
 
4.1 Introduction 
 
Wildfires have increased in both frequency and size in recent years in central Chile (Gómez-
González et al. 2019), posing a threat to both vineyard infrastructure and production. Here, 
we employ a species distribution modelling (SDM) type framework following previous studies 
in Chile and elsewhere (Gómez-González et al. 2019; McWethy et al. 2018; Duane et al. 
2015), using historical burn and estimated ignition locations as presence points analogous to 
species records, to identify environmental and anthropogenic predictors of wildfire. These 
models are used to predict and map current landscape ignition susceptibility and burn 
avoidance (how unsusceptible the habitat is to fire) and burn avoidance under management, 
specifically the planting of buffer strips.  
 
4.2 Data Sources 
 
Unless otherwise specified, all data were georeferenced to WGS84 (EPSG:4326) and 
cropped to the area of interest covered by the habitat map. Data were often of a lower 
resolution than the habitat map (see Section 2) but required to be the same resolution for the 
modelling framework. Data were therefore resampled to the higher 10 m resolution of the 
habitat map where necessary. Transformation and resampling were performed using bilinear 
interpolation in the case of continuous variables, and nearest neighbour values in the case of 
categorical variables, in QGIS 3.4 (QGIS Development Team 2019) and R 3.4.4 (R Core 
Team 2018). 
 
Environmental and anthropogenic predictor variables considered relevant to habitat ignition 
susceptibility and burn avoidance were chosen primarily based on previous work both in 
Chile and other Mediterranean landscapes (Gómez-González et al. 2019; McWethy et al. 
2018; Duane et al. 2015). These variable layers were mostly indices of climate (temperature 
and precipitation), topography, or vegetation type and productivity, which together aimed to 
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account for factors including available fuel and fuel flammability. Where related layers were 
highly correlated (Pearson’s Correlation Coefficient ≥ 0.75), the most ecological relevant, 
basal, or highest resolution dataset was used. For example, potential evapotranspiration 
(PET) was considered but ultimately not included as a predictor variable given that it is 
highly correlated to precipitation, and the precipitation data in question was both of a higher 
resolution and more basal (precipitation is used to calculate PET). Population and road 
proximity metrics were also included as over 99% of ignitions in central Chile are 
anthropogenically caused (CONAF 2018; Urrutia-Jalabert et al. 2018).  
 
4.2.1 Topographic Data 
 
Slope and elevation, which potentially influence the behaviour of topographically driven fires 
(Duane et al. 2015) were included, with slope being calculated from the DEM using QGIS 
3.4.  
 
4.2.2 Climate Data 
 
Minimum annual temperature, maximum annual temperature, mean annual temperature, 
mean annual windspeed, and total annual precipitation were calculated from rescaled 
WorldClim layers as described in Section 3.2.1.  
 
Temperature seasonality and precipitation seasonality (the seasonal variability in 
temperature and precipitation) were calculated using the rescaled monthly minimum 
temperature, maximum temperature, and precipitation layers and the R package dismo 
(Hijmans et al. 2017). 
 
Global annual Palmer Drought Severity Index (PDSI) raster layers were downloaded from 
TerraClimate (http://www.climatologylab.org/terraclimate.html) at the highest available 
resolution (~4 km) for the most recent 10 years for which data were available (2008 – 2017), 
and averaged to create a single layer of annual PDSI. PDSI describes wetness and dryness 
relative to the local normal (Palmer 1965) and provide information about potential habitat 
dryness and flammability. 
 
4.2.3 Biological Variables 
 
MODIS MOD13A1 Normalized Difference Vegetation Index (NDVI, Didan et al. 2015) 
product, used to inform the model of vegetation productivity and condition, was downloaded 
and processed using the R package MODIS (Mattiuzzi & Detsch 2018) for the study area 
and period 2008-2017, at 500 m resolution. Annual mean NDVI was calculated from this 
product. 
 
4.2.4 Habitat map 
 
The habitat map produced in Section 2, adapted to include a vineyard class as outlined in 
section 3.2.6, was included to inform the model of the association between vegetation types 
and burned areas. 
 
4.2.5 Anthropogenic Variables 
 
Anthropogenic layers, capturing information on population density and the distance of 
burned and unburned areas to main roads, were included to account for the fact that Chilean 
wildfires are almost exclusively a result of anthropogenic ignitions (CONAF 2018; Urrutia-
Jalabert et al. 2018). 
 

http://www.climatologylab.org/terraclimate.html
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A shapefile of Chilean road networks was downloaded from OpenStreetMap 
(https://www.openstreetmap.org; ©OpenStreeMap, licensed under the Open Data Commons 
Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF)). The roads 
layer was edited to include only significant roads (listed as ‘Motorway’, ‘Primary’, 
‘Secondary’, ‘Tertiary’, and their respective ‘Link’ roads). This layer was then rasterised to a 
0.0001 decimal degree (~10 m) resolution. A raster layer of distance to these main roads 
was then calculated. Rasterization and distance calculations were performed in QGIS 
2.14.5. 
 
Modelled data of population density per hectare, rescaled to match to UN country-level 
population estimates, was downloaded from WorldPop (WorldPop 2016). 
 
4.2.6 Burned Area Data 
 
Monthly MODIS burned area product MCD64A1 (Giglio et al. 2015) was downloaded and 
processed using R and the package MODIS at ~500 m resolution. Data used in final 
analysis spanned the period 2008-2017. For each month, discrete areas of contiguous 
burned pixels (considered individual fires) were polygonised and used as a mask to identify 
burned pixels in a version of the month’s data resampled to 10 m, with the pixel centroid 
latitude and longitude values combining from each month to become the ‘burned locations’ 
point layer for the burn avoidance analysis.  
 
For each fire, the earliest burned pixel or pixels were also identified, and taken to represent 
the location of ignition events for that fire. Because the estimated burn dates in MODIS 
MCD64A1 data have inherent uncertainty (i.e. initial burn date is not always detected with 
100% accuracy), we aimed to account for this by considering ignitions occurring close to 
each other in space and time as one event. Where pixels were within ~10.4 km of each other 
(the distance travelled by a medium sized fire in 1 day (Johnston et al. 2018) based on the 
advice of the Canadian Forest Fire Behaviour Prediction System (Alexander et al. 1984)), 
they were assumed to represent the same ignition event. Aggregating all earliest burn points 
from distinct fires in this way resulted in 165 unique potential ‘ignition events’ associated with 
the fires experienced by the area of interest in the period 2008-2017. Pixels associated with 
each of the 165 events were polygonised in turn and used as a mask to extract pixel centroid 
latitude and longitudes from a 10 m resampled version of the MODIS data, in the same way 
as for burn locations. This created a layer of 814,604 potential ignition points. One point 
falling within the area of each ‘ignition event’ was randomly sampled to produce a layer of 
165 unique random points to use as ignition locations during modelling. For both burn and 
ignition, any points located on snow cover, glacier, river, or lake habitat classes were 
removed from the dataset of potential points for modelling. All processing was performed in 
R. 
 
4.3 Fire Susceptibility Model 
 
Landscape level ignition susceptibility and burn avoidance were modelled using a species 
distribution model (SDM) framework. In this context, the cell centroids of burned cells for the 
165 randomly sampled ‘ignition points’ act as presence points analogous to species 
presence records, and all other layers act as environmental or anthropogenic predictors 
defining where burns or ignitions take place. Here we implement a Random Forest 
regression approach (RF) using the package JNCCsdms (JNCC 2018), which proved to be 
consistently the most successful of a suite of species distribution models (including Boosted 
Regression Trees, GLM, GAM, and MaxEnt) implemented in early testing. A regression 
approach was used in place of a classification approach both to enable the mapping of 
relative levels of suitability (rather than presence-absence), and because regression 
techniques have previously been observed to be more successful in SDM contexts (Hijmans 

https://www.openstreetmap.org/
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& Elith 2019). Output maps were created by averaging the results of a number of model 
runs, in this case 10 runs were used as this value had been suggested by previous work 
examining SDM implementation (Barbet-Massin et al. 2012). 
 
Potential ignition points were randomly sampled for each model run as described above, 
resulting in a layer of 165 randomly placed ignition location points, one for each ‘ignition 
event’. The exact number of ignition points varied between model runs (mean = 158.6), as 
randomly placed ignition points could fall within an ignition event location but outside of the 
area of interest, representing an ignition for which there was no habitat map coverage. Note 
that due to the inability to identify exact ignition point, the habitat ignition susceptibility maps 
should be considered significantly more uncertain than those for habitat burn avoidance. For 
the burn avoidance analysis, a subset of 10,000 points representing burned pixels was used 
rather than the whole burned pixels layer, to avoid computational limitations or excessive 
processing time. 
 
Since burn and ignition points represent presence-only data, and the modelling framework 
also requires information on absences (i.e., where fires have not taken place), random 
pseudo-absence background points were generated for each model run, with the number of 
points generated equalling the number of presence points used in that run. Pseudo-absence 
points were generated within unburned or unignited cells for the respective burn and ignition 
maps. Pseudo-absences were generated in equal number to presences (though typically 
samples were not exactly even) following suggestions from previous work examining species 
distribution modelling (Barbet-Massin et al. 2012), which suggested equal weighting of 
presences and absences and equal numbers of each in random forest modelling (though in 
that case considering classification). Additionally, in the case of ignition susceptibility, the 
typically used value of 10,000 pseudo-absence points was not used as this resulted in model 
overfitting, which was avoided by using a lower number of absence points.  
 
Ten models were fitted and used to produce ten rasters (then averaged) of predicted burn 
avoidance (Figure 4.1) and ignition susceptibility (Figure 4.2), and an additional ten for burn 
avoidance under the buffer strips management scenario (used to inform the BBN, see 
section 3.4). These management predictions were created in the same way and using the 
same parameters as the models run with no management, however the habitat map input 
layer was replaced with a modified habitat map where 9 m woodland buffers were added to 
vine, meadow, and crop areas within vineyards to simulate management effects (see section 
3.4.3). Averaged outputs were categorised as ‘Poor’, ‘Moderate’ and ‘Good’ for burn 
avoidance, representing values of <33%, 33-66%, and >66% respectively, and ‘Low’, 
‘Moderate’ and ‘High’ for ignition susceptibility, representing values of <33%, 33-66%, and 
>66% respectively. AUC (area under the receiver operator curve), is also reported as an 
indicator of the quality of model performance, where an AUC of 1 indicates highly successful 
model prediction, and 0 indicates highly unsuccessful prediction (Hijmans & Elith 2019). 
 
4.4 Informing the BBN 
 
Average burn avoidance value for both the model with no management and the model under 
management was calculated for each vineyard-field combination and used to inform the BBN 
(section 6). 
 
Note that climate change was not included in the fire scenario modelling, as these models 
failed to produce realistic predicted burn avoidance. There are several possible and likely 
interacting reasons for this.  Input precipitation and temperature seasonality values under 
climate change often lay outside the range of values the fire model was trained against.  
Additionally, WorldClim precipitation data demonstrated increases with climate change, in 
contrast to what is expected of the region (Urrutia-Jalabert et al. 2018). Moreover, non-linear 
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relationships between observed fire and climatic variables may be resulting in unexpected 
interactions between predicted climate and fire. Due to a lack of confidence in scenario 
model results, they were not included in the final product, and predictions under climate 
change were not considered for burn avoidance in the BBN. 
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4.5 Result 

 
Figure 4.1. Modelled habitat burn avoidance, categorised as Good (>66% avoidance, least likely to burn), Moderate (33-66%) and Poor (<33% avoidance, 
more likely to burn). Mean AUC = 0.994. 
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Figure 4.2. Modelled habitat ignition susceptibility, categorised as Low (<33% susceptibility, least likely to ignite), Moderate (33-66% susceptibility) and High 
(>66% susceptibility, most likely to ignite). Mean AUC = 0.835. 
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5 Water quality and supply 
 
5.1 Introduction 
 
Water supply and water quality were highlighted as a priority by stakeholders, being 
essential to grape production and a key concern in terms of water resource management 
under future climate scenarios and impacts on water quality driven by land management 
practices. VCCB emphasised stakeholder desires to understand how management 
strategies involving fertiliser and pesticide application, soil tillage, creation and maintenance 
of buffer strips and cover crops could affect water resources both now, and under future 
scenarios.  
 
To understand the processes behind these ecosystem services, the Soil and Water 
Assessment Tool (SWAT)3 was used to model and map water metrics within the valley. 
SWAT is a complex semi-distributed model, developed by the US Department of Agriculture, 
Agricultural Research Service (USDA-ARS) and has been applied globally to assess water 
and sediment movement within catchments. It is well-established as a robust 
interdisciplinary watershed modelling tool with an online literature database of case studies 
where it has been applied worldwide (Gassman et al. 2007). Its flexibility allows users to 
alter land uses and management operations within land parcels, such as crop rotations, 
fertiliser use and tillage. 
 
Studies have applied SWAT to examine climate change scenarios, water quality 
assessments and trade-off of different land management practices. This versatility and the 
robustness of the modelling tool makes it well suited to producing ecosystem service maps 
and exploring how different management practices can alter their delivery. SWAT was used 
over other ecosystem service mapping tools as it produces additional intermediary 
hydrological metrics such as percolation, which are relevant to vineyards. SWAT’s inbuilt 
algorithms to determine snowmelt favour its use over other similar models in highly glaciated 
watersheds, as a result it has been applied in previous studies of the Chilean Andes (Stehr 
et al. 2008; Omani et al. 2017). Although the model is complex and data demanding, and 
local data in our region of interest are limited, global data layers for specific application in 
SWAT are available along with guides and literature examples that inform its use and 
application.  
 
5.1.1 The Soil and Water Assessment Tool (SWAT) Model 
 
SWAT is an open-sourced environmental model for assessing the daily, monthly and annual 
hydrological and sediment dynamics in a watershed. It is available through the QGIS 
interface as a python plugin QSWAT, and uses data inputs of elevation, land use and soil 
maps to delineate a watershed into sub-basins and determine Hydrological Response Units 
(HRUs). These HRUs are homogenous unique soil type and land use parcels within each 
sub-basin, which feed into equations for run-off and soil erosion to generate the output 
statistics for water and sediment yields. Different management conditions can be applied to 
each HRU and their changing response measured across the landscape. A flow diagram of 
the SWAT model development is displayed in Figure 5.1. 
 
 
 
 
 

 
3 The Soil Water Assessment Tool (SWAT) (2019) is open-sourced software available through Texas 
A&M University from https://swat.tamu.edu/. 

https://swat.tamu.edu/
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Figure 5.1.  Flow diagram outlining the SWAT model development methodology. 
 
To accurately predict movements of nutrients, sediments and water, SWAT models the 
hydrological cycle to simulate what is occurring across the entire watershed. Firstly, the 
hydrologic balance is simulated for each HRU within a sub-basin; this is calculated through  
the water balance equation (Neitsch et al. 2011): 
 

𝑆𝑆𝑆𝑆𝑡𝑡 =  𝑆𝑆𝑆𝑆0 +  �(𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 −  𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝐸𝐸𝑑𝑑 −  𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑄𝑄𝑔𝑔𝑔𝑔)
𝑡𝑡

𝑖𝑖=1

 

 
where 𝑆𝑆𝑆𝑆𝑡𝑡 is the final soil water content (mm H2O), 𝑆𝑆𝑆𝑆0 is the initial soil water content on 
day i, t is the time (days), 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 is the amount of precipitation on day i (mm H2O), Qsurf is the 
accumulated runoff or rainfall excess (mm H2O), 𝐸𝐸𝑑𝑑 is the amount of evapotranspiration on 
day i (mm H2O), 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the amount of water entering the vadose zone from the soil profile 
on day i (mm H2O), and 𝑄𝑄𝑔𝑔𝑔𝑔 is the amount of return flow on day i (mm H2O). 
 
Calculating input variables to the equation on an HRU basis enables input factors such as 
evapotranspiration and runoff to reflect the differences between crop and soil types (Neitsch 
et al. 2011).  This calculation determines the land phase of the hydrologic cycle and the 
amount of water deposited onto the land and entering the main channels within each sub-
basin division.  
 
The inputs and processes at this stage include climate variables of daily precipitation, 
minimum and maximum air temperature, wind speed, solar radiation and relative humidity. 
SWAT uses temperature-index based computation methods to model its hydrological and 
snowmelt processes, outlined in Neitsch et al. (2002). SWAT classifies precipitation input as 
either rain or snow determined by the average daily temperature and snowfall temperature 
thresholds. Snowmelt is then governed by a set of parameters which can be assigned to the 
whole catchment or within elevation bands of individual sub-basins, allowing for flexibility 
when working in mountainous glaciated watersheds.  
 
Canopy storage, infiltration and evapotranspiration are calculated from the soil and plant 
types, determined by the land use classes. SWAT uses a modified soil conservation science 
(SCS) curve number method to calculate the surface runoff volume: 
 
 
 
 
 
Where Qsurf is the accumulated runoff or rainfall excess (mm H2O), Rday is the rainfall depth 
for the day (mm H2O), Ia is the initial abstractions which includes surface storage, 
interception and infiltration prior to runoff (mm H2O), and S is the retention parameter (mm 
H2O) which varies dependent on changes in soils, land use, slope and management. 
 
Soil erosion is determined through using the Modified Universal Soil Loss Equation 
(MUSLE), which is well established in models of soil erosion (Dile et al. 2018; Williams 
1975):  
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Where sed is the sediment yield on a given day (metric tons), Qsurf is the surface runoff 
volume (mm H2O/ha), qpeak is the peak runoff rate (m3/s), areahru is the area of the HRU (ha), 
KUSLE is the USLE soil erodibility factor (0.013 metric ton m2 hr/m3 -metric ton cm)), CUSLE is 
the USLE cover and management factor, PUSLE is the USLE support practice factor, LSUSLE is 
the USLE topographic factor and CFRG is the coarse fragment factor. 
 
The MUSLE equation uses the amount of runoff to simulate soil erosion, supplied by the 
hydrology model, along with crop management factors and C factor (CUSLE) which is a value 
accounting for the degree of soil loss depending upon crop type, management, and land 
cover. Other factors used in the soil loss equation are derived from Wischmeier and Smith 
(1978). The MUSLE equation is used by SWAT as it can provide a finer temporal resolution 
producing daily outputs and uses runoff factor to calculate erosion, as opposed to the 
Revised Universal Soil Loss Equation (RUSLE) used in the INVEST sediment delivery 
modelling, which uses annual precipitation to calculate annual gross erosion using the 
rainfall energy factor (see section 3).  
 
The nitrogen cycle is also simulated in SWAT through monitoring five pools of nitrogen; NH4 
and NO3 stored in the soil impacted by calculations of plant uptake, leaching, volatization, 
denitrification and erosion, and three pools of organic nitrogen associated with the soil 
humus, detailed in Neitsch et al. (2002). Similarly, the phosphorus cycle is equated through 
monitoring stored pools of soluble and organic phosphorus in the soil. Additional inputs of 
fertilisers and pesticides are derived from loading functions and are applied through 
management operations to the land. 
 
The second phase of the model controls how water, nutrients and sediments move through 
soil and the stream networks and towards the main outlet (i.e., the Tinguiririca River). 
Sediment, water flow, nutrient and chemical pathways are equated throughout the stream 
network taking into account the land management operations within each sub-basin and 
influencing downstream conditions. Reservoirs within the network are modelled separately 
within SWAT and their dynamics differ to those of rivers, having significant impacts upon 
sediment and nutrient storage and water flow. More information on the equations used in 
calculations can be found in SWAT’s technical documentation (Neitsch et al. 2011).  
 
The SWAT model uses all of these algorithms to output several intermediary metrics 
throughout each stage of the hydrological cycle, as well as quantifying the amount of runoff 
from each HRU and the streamflow, sediment and nutrient concentrations within the stream 
network.  This information can be displayed spatially to map how these metrics vary across 
the landscape. The model can be rerun under different modelled climatic conditions and 
management operations to compare how these impact upon the modelled hydrological 
cycles. 
 
5.2 Data sources 
 
All data were georeferenced to WGS84 UTM zone 19S (ESPG:32719) and cropped to the 
area of interest detailed in Section 2.2. The SWAT model was built using the QSWAT 
version 1.7 under 32-bit QGIS version 2.18.27. Data processing and transformations were 
also performed in this version of QGIS (QGIS Development Team 2019) and in R version 
3.4.4 (R Core Team 2018). 
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5.2.1 Landscape 
 
The modelled watershed in the Colchagua Valley in central Chile was a total area of 
6163.95 km2 and encompasses all VCCB partner vineyards, key stakeholder in the project. 
The watershed ranges from a minimum elevation of 55 m to a maximum of 4971 m in the 
Andean mountains.  To delineate the watershed and create topographic layers, a 30 m DEM 
raster layer (see Appendix 1) was re-projected to the regional projection ESPG:32719 and 
clipped to the extended watershed boundary (the whole area of interest shown in Figure 
5.2). High level watershed delineation boundaries were obtained from Hydrological data and 
maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) developed 
by the World Wildlife Fund’s Conservation Science Program (WWF 2019). The vector layer 
was available on a global scale developed from high resolution SRTM digital elevation 
models and broken down into different delineation scales. These are different subdivisions of 
the land based upon watersheds determined by the elevation and are available at different 
scales depending upon the topological concept of the Pfafstetter coding system, which 
ranges from 1 to 12 increasing as the watersheds are further divided to smaller sub-units. A 
HydroBASINs polygon layer, a subset of the HydroSHEDS database at the 15 second arc 
resolution (Lehner & Grill 2013), was used at the Pfafstetter Level 7 to determine the main 
watersheds covering the area of interest and stream network. The area of interest used for 
the SWAT modelling process differs slightly from the other maps produced in this project, as 
it is clipped by the boundary of the main watershed delineation so models a slightly smaller 
region as a result.  
 
The land cover was based on the adapted 16 class map developed for this project (see 
section 3.2.6). A South American soil tile was obtained from Waterbase (UNU-INWEH 2019) 
based on the UN Food and Agriculture Organization digitized Soil Map of the World (2003). 
The soil map (v.3.6) was prepared at a nominal scale of 1:5000000 (65 km2 resolution) and 
cropped to the watershed boundary. 
 
5.2.2 Climate 
 
Local data were provided from five stakeholder weather stations for 2018 with incomplete 
daily records for variables including; daily air temperature, precipitation, relative humidity, 
solar radiation and wind speed. Additional stations from the Ministerio de Obras Püblicas’s 
Direcciõn General de Aguas hydrometric network (DAG 2019) were added to improve 
hydrological estimations.  
 
The climate change scenarios were developed with climate projections from the Coupled 
Model Intercomparison Project Phase 5 (CMIP5) evaluations used in the Fifth Assessment 
Report by the Intergovenmental Panel on Climate Change (IPCC). The CMIP5 HadGEM2-
ES modelled data were used along with baseline historical climate data from 1979-2005 at 
38 km resolution. These were obtained as daily temperature and precipitation station records 
from 2W2E (2019) which extracted data from the ISI-MIP project, that developed a Climate 
Change Toolkit for projecting and extracting predictive data under the CMIP5 scenarios 
(Vaghefi et al. 2017) using global historical data CRUTS3.1 from the Climate Research Unit 
East Anglia (Harris et al. 2014). To supply all the required variables into SWAT, daily data for 
solar radiation, relative humidity and wind speed were extracted for the same period from the 
National Centers for Environmental Prediction’s Climate Forecast System Reanalysis 
(NCEP-CFSR) global meteorological dataset through SWAT’s weather data tool (2019).   
 
The watershed within the area of interest includes a glaciated region of the Andean 
mountains and consequently snowmelt is a key water resource in the region (Valdés-Pineda 
2014). Datasets from Global Land Ice Measurements from Space (GLIMS 2018) were used 
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to make comparisons with the glacier outlines and snow depth data that were obtained from 
study stations in Stehr and Aguayo’s (2017) supplementary paper. 
 
5.3 Model configuration 
 
5.3.1 Watershed delineation 
 
The stream networks were defined through using the “burn-in” methodology available 
through the QSWAT interface. For this method, elevations were extracted from the digital 
elevation data within the DEM then a digitally defined stream network (hydroBASINs 2010) 
was superimposed onto the DEM to provide hydrographic definition of the streams and 
watershed boundary delineation. Sub-basins were delineated using standard analytical 
techniques from the TauDEM suite contained in the SWAT QGIS interface (Dile et. al. 2018). 
A minimum upstream contributing area of 50 km2 was used for the drainage basin threshold 
value in defining stream cells. This is the minimum area draining into a stream, therefore 
helps to define subbasin size. This threshold value is based on a SWAT model for a basin in 
the nearby Biobio region, which covered a similar sized catchment (Stehr et al. 2008).  
The study area contains two watersheds (from the level 7 Pfafstetter delineation), the main 
watershed of interest and an added sub-section of the watershed towards the southwest, 
where some stakeholder vineyards were located outside of the main watershed. The main 
river outlets, reservoir locations, and inlet for the sub-watershed were based on comparisons 
with ‘QuickOSM’ base maps plugin available in QGIS (Trimaille 2019) and snapped to 
300 m. The overall area modelled was 6163.95 km2, with the main watershed size being 
5055.60 km2. This was divided into 68 sub-basins, shown in Figure 5.2. 
 

 
Figure 5.2. Delineated Watershed overlaid on top of the digital elevation model. 
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5.3.2 HRU creation 
 
The sub-basins were then further divided into Hydrological Response Units (HRUs) defined 
by unique land-use and soil combinations within each sub-basin. These were defined using 
the habitat map derived using Sentinel-2 satellite imagery (Section 2) and the global FAO 
soil tile available through Waterbase. SWAT contains predetermined crop and urban land 
databases, which define a variety of characteristics such as maximum rooting depth and leaf 
area index, which are used in the hydrological, soil and nutrient equations.  
 
As local data were unavailable for every parameter for local habitat types, the habitats 
classed in the habitat map were matched to the nearest crop/land-use classes contained 
within the SWAT reference database (shown in Appendix 2). These assumptions may create 
inaccuracies in how plant uptake is modelled within SWAT as classes are based upon North 
American land classes (where SWAT was developed).  If more data on local crop 
characteristics was made available models could be further refined to provide more accurate 
outputs based upon local parameters.  
 
Due to lack of local soil data, the global UN FAO soils dataset was used to define the soil 
characteristics, which was compatible with the built in QSWAT reference database 
(global_soils and usersoil). Within each sub-basin, unique combinations of soil type and land 
use cover were used to generate 1036 unique HRUs, shown in Figure 5.3. For each unique 
HRU, management operations and snow parameters were applied to define crop growth 
cycles and snowmelt. The HRU parameters of the model are explained in more detail in 
Appendix 2. 
 

 
Figure 5.3. A map of the defined actual Hydrological Response Units derived from the land use and 
soil maps. 
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5.3.3 Station data and Weather generator 
 
Data from local meteorological stations were prepared in the SWAT input format, converting 
measurement units using the ‘weathermetrics’ R package version 1.2.2 (Anderson et al. 
2016) and Allen et al. (1998) conversion factors for solar radiation units from watts per 
square meter per day (W/m2 day-1) to megajoules per square metre per day MJ/m2 day-1. 
When employing SWAT modelling it is suggested to run models with at least a 3 to 5 warm-
up period to give the simulation processing time to establish basic hydrological flow 
conditions and processes, particularly for stabilising water levels in reservoirs to ensure 
accurate modelling (Almendinger 2016). To aid in the conversions of daily station text files 
and add simulated data for a given warm up period, a weather datafile writing tool was 
created ‘weathergen.R’ in R to help speed up processing.  
 
For the two climate change simulations RCP4.5 and RCP.8.5, only station data for daily 
precipitation and air temperature records were available. To maintain consistency with the 
baseline model, these were also modelled using a 3-year warm-up period. 
 
In addition to station data, SWAT requires a ‘weather generator’.  This is a table of stations 
with monthly average climatic variables it can refer to when local data are missing, and 
conditions need to be simulated. For each sub-basin the model searches for the closest 
station with available data, therefore if no station data are available for the period, SWAT will 
use the simulated station data. To build the weather generator, the historical data used to 
generate the climate change simulation daily values were used, to maintain consistency.  
These were daily maximum and minimum air temperatures and precipitation data from 
CRUTS3.1 for the period 1979-2005. For the remaining climate variables required by SWAT; 
solar radiation, wind speed and relative humidity, data from Climate Forecast System 
Reanalysis (CFSR) were obtained for the same time period. CFSR is a long-term dataset 
from 1979-2014 providing global coverage of daily climatic variables and is regularly used in 
SWAT modelling studies; a web tool for extracting these data is provided by SWAT (SWAT 
2019). Comparison between long-term historical datasets used in CFSR and in Global 
Climate Models revealed no significant differences in climate trends (Omani 2014), therefore 
the uncertainty in using these data sources together for creating the weather generator is 
relatively negligible.   
 
CRUTS stations were compared to the closest CFSR station using a nearest neighbour join, 
in order to obtain the missing climatic variables (QGIS processing). To calculate the 169 
climatic statistical values the model’s weather generator requires, another R tool was 
developed ‘swat_wgen.R’, which follows the same method as the widely used “WGN Excel 
macro” developed by Dr. Gabrielle Boisrame available through the SWAT (2019) software 
pages. The climate statistics of maximum half hour rainfall were assumed to be a third of the 
daily precipitation value, following community knowledge from the Spatial Science 
Laboratory of Texas A&M University, which developed the SWAT modelling software 
(Srinivasan 2013). There are several methods to estimate skewed coefficient of a 
distribution, so for the skewed precipitation values the statistical package ‘e1071’ was used 
in R and method 2 in the ‘skewed’ function was applied, which closely aligned to the excel 
SKEW function outputs and commonly used in analytical software such as SPSS (Meyer et 
al. 2019). The ‘swat_wgen’ tool produced a weather generator table that was then inserted 
into SWATs reference database and used for all the model simulations. 
 
5.4 Baseline modelling  
 
The SWAT model was run with the prepared meteorological station data and weather 
generator from long term historical weather statistics.  The SWAT model was run firstly to 
show the baseline conditions, the ecosystem services delivered where no management 
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measured were applied to the land. For the baseline model, a three-year warm-up period 
was applied using simulated data, then the model was run for three years from 2016 to 2018 
using station data, where available, and printing the results on a yearly basis, using an 
annual timestep. The average mean values across the run period were used to produce the 
final plots of water flow and water quality metrics from HRUs into the stream reach, shown in 
Figure 5.4 – 4.9.  
 
As the model was unvalidated, results are presented categorically with high, moderate and 
low values. The categorical boundaries for the maps produced were determined from the 
data ranges of the baseline model, as well as comparisons with literature resources for the 
ranges of meteorological variables in Central Chile (Boisier et al. 2018; Alvarez-Garreton et 
al. 2018). This method of categorising was used due to some of the SWAT algorithms and 
resulting outputs being unique to SWAT, which in turn means comparisons to other existing 
high, moderate and low levels are difficult. For instance, the estimated water yield is defined 
as the total amount of water leaving the HRU into the main channel reach and is a calculated 
value from the equated surface water runoff, lateral flow, groundwater flow, and transmission 
loss equations. Similarly, Water Stress days is a calculated value in SWAT equated by: 
 
 
 
 
 
Where wstrs is the water stress for a given day, Et is the maximum plant transpiration on a 
given day (mm H2O), Et,act is the actual amount of transpiration on a given day (mm H2O) 
and wactualup is the total plant water uptake for the day (mm H2O). Other calculations of the 
water stress a plant experiences may vary by using different metrics such as annual runoff 
as indicators of water stress (Alcamo et al. 2007). 
 
The gridded appearance of the output maps reflects the low resolution of the FAO soils data 
layer used in the model, which does not accurately reflect how the soil compositions vary 
spatially across that landscape. Within the time constraints of the project it was not possible 
to conduct a sensitivity analysis to assess the relative influence of data layers, including the 
soils layer. A summary of the baseline maps is shown in Table 5.2. 
 
As data for the current levels of phosphates and nitrates present within streams were 
unavailable, it was difficult to determine what the current state of water quality within the 
region was likely to be. To give an impression of areas that may have naturally higher nitrate 
and phosphate levels, and therefore at greater potential risk of having poorer water quality, 
the loading rates of organic nitrogen and phosphorus were mapped. These were calculated 
through a number of equations used to model the nitrogen and phosphorus cycles based on 
the land use classes and characteristics of the soil, which are outlined in Neitsch et al. 
(2011).  The categorised levels of nitrate and phosphorus present in the water are based on 
concentration classifications from the ADAS report to DEFRA assessment for the nitrates 
directive in England (2007) and the UKTAG WFD European standards (2008), shown in 
Table 5.1 below. 
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Table 5.1. Classifications for nitrate and phosphorus levels present in water (ADAS 2007; UKTAG 
WFD 2008). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Average Nitrate concentrations 
Classification 
for nitrate 
grade 

Grade limit (mg 
NO3/l) Average 

Description 

1 <5 Very Low 
2 >5 to 10 Low 
3 >10 to 20 Moderately Low 
4 >20 to 30 Moderate 
5 >30 to 40 High  
6 >40 Very High 

Annual mean Soluble Reactive Phosphorus  

Status  Grade limit (μg/l)  

High <30 
Good >50 to 30 
Moderate >150 to 30 
Poor >500 to 150 
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Figure 5.4.  Modelled baseline map of annual water yield and average daily streamflow across the modelled period divided across Hydrological Response 
Units. The gridded appearance of the output maps reflects the low resolution of the FAO soils data layer used in the model. 
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Figure 5.5. Modelled baseline map of annual mean percolation past the rooting depth of the crop. 
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Figure 5.6. Modelled map of annual water stress days for the modelled period, zoomed to the major populated region in the south west of the valley where 
stakeholder vineyards are predominantly located. 
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Figure 5.7. Modelled map of the average daily soil water content for the period, zoomed to the major populated region in the south west of the valley where 
stakeholder vineyards are predominantly located. 
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Figure 5.8. Modelled map of organic nitrogen loading rates, where nutrients are leaving the Hydrological Response Units and entering the stream. This is 
mapped against the natural levels of nitrate present in the water within each stream reach. These are estimations of natural levels without any additional 
management being applied to the landscape.  
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Figure 5.9. Modelled map of organic phosphorus loading rates, where nutrients are leaving the Hydrological Response Units and entering the stream. This is 
mapped against the natural levels of soluble phosphorus present in the water. These are estimations of natural levels without any additional management 
being applied to the landscape. 
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Table 5.2. Summary of baseline maps produced with output details extracted from the SWAT documentation (Arnold et al. 2012; Neitsch et al. 2012). The 
categorical ranges are denoted as Very Low = VL, Low = L, Low-Moderate = LM, Moderate = M, Moderate-High = MH, High = H, Very High = VH.   

Ecosystem 
Service 

SWAT 
variable 

Metric Description Categorical boundaries 

Water 
Supply 

WYLD Water yield Total amount of water leaving the HRU and entering the main channel. Calculated from 
surface water runoff, lateral flow, groundwater flow, transmission losses through 
tributary channels and water abstractions. 

(mm H2O) 
VL:0-200, L:200-350, M:350-
500, H:>500 

(Calculated) Mean daily 
streamflow 

Mean water flow within a reach (the continuous extent of water within a subbasin) 
calculated from the average of daily streamflow into and out of the reach. 

(m3/s)   
L:0-10, M:10-20, H: 20-30, 
VH:>30 

PERC Percolation Water that percolates past the root zone. This is based on the rooting depth associated 
with the crop type and is calculated average annual value per HRU. 

(mm H2O) 
VL: 0-50, L:50-150, M:150-250, 
H:250-350, VH:>350 

SW_INIT Soil water content 
-start of the day 

Soil water content as the amount of water in the soil profile at the start of the day, 
averaged across the modelled time period.  

(mm H2O) 
VL: 0-30, L:30-60, M:60-90, 
H:>90 

SW_END Soil water content 
– end of the day 

Soil water content as the amount of water in the soil profile at the end of the day, 
averaged across the time period. The soil water loss from start of the day is a function 
of initial soil water content, time, precipitation, surface runoff, evapotranspiration, the 
soil profile characteristics and return flow. 

(mm H2O) 
VL: 0-30, L:30-60, M:60-90, 
H:>90 

(Calculated) Average daily soil 
water content 

Average daily soil water content calculated from the average values at the start and 
end of the day (SW_INIT & SW_END). 

(mm H2O) 
VL: 0-30, L:30-60, M:60-90, 
H:>90 

W_STRS Water Stress 
days 

The number of days the plant experiences water stress. Water stress is considered 0 if 
under optimal water conditions for the crop and ranges closer to 1 as soil water 
conditions vary from the optimal. This is determined through comparisons of actual and 
potential plant transpiration, detailed in Neitsch et al. 2012. 
  

(days) 
0-50, 50-100, 100-150, 150-200  

Water 
quality 

ORGN Organic nitrogen 
yield 

The amount of organic nitrogen transported out of the HRU and into the reach during 
the time step. In the baseline scenario, these are modelled nutrient values based on 
the land use and soil types without any additional input from management. 

(kg N/ha) 
VL:0-10, L: 10-25, M: 25-35, H: 
>35 

ORGP Organic 
phosphorus yield 

Organic phosphorus transported with sediment out of the HRU and into the reach 
during the timestep. These are modelled nutrient values based on the land use and soil 
types without any additional input from management. 

(kg N/ha) 
VL:0-1.5, L:1.5-3.0, M:3.0-4.5, 
H: >4.5 

NO3_OUT Nitrate 
concentration 

The average daily concentration of nitrate leaving the reach.  
 
 

(mg N/L) 
VL: 0-5, L: >5 

SOLP_OUT Soluble 
Phosphorus 
concentration 

The annual mean soluble phosphorus concentration leaving the reach  (ug P/L) 
VL:0-30, L:30-50, M:>50 
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5.5 Climate change scenarios  
 
Two climate change scenarios were run using the same weather generator as the baseline 
model (section 5.4). Daily precipitation and minimum and maximum temperatures were used 
under the HadGEM2-ES RCP 4.5 and 8.5 simulations (see section 3.4.2). The scenarios 
were run with a three-year warm-up period from 2066 to 2068 and then modelled for three 
years from 2069 to 2071. 
 
Figure 5.11 shows a comparison of monthly discharges for a particular reach (reach 63) 
between the baseline scenario and the modelled data from the two climate change 
simulations and how streamflow varies under these scenarios. Reach 63 is selected as it is 
located within the central valley near to several stakeholder vineyards and upstream of the 
main watershed outlet.   
 

Figure 5.10. River discharge for reach 63 from the baseline model.  
 

 
Figure 5.11. River discharge for reach 63 from the future scenarios under climate change scenarios 
RCP4.5 and RCP8.5 (bottom).  
 
Figure 5.12 shows how water stress days of vegetation vary under the two climate change 
scenarios in the lowland region where the stakeholder vineyards are located. These were 
produced to help inform vineyard owners on how water availability may change in the future 
to gauge the potential impact this can have on vines. Water stress is used in viticulture to 
increase the fruit quality of berries, however if crops are in irrigation deficit then this can 
significantly reduce the production yield (Jara et al. 2017).  
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Figure 5.12. Modelled maps showing the water stress days experienced under climate change 
scenarios RCP4.5 (top) and RCP 8.5 (bottom). Water stress is calculated as a function of the amount 
of water uptake of the plant during the day and the maximum amount of transpiration. 
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5.6 Management scenarios to inform the BBN 
 
VCCB encourages their stakeholders to use a variety of sustainable management practices 
to improve the ecosystem service provision of their land and minimise the negative impacts 
practices such as fertiliser and pesticide use can have upon the environment (Barbosa & 
Godoy 2014).  Of the suggested management practices; creation of buffer strips, the 
application of organic fertiliser, chemical fertiliser, herbicide and fungicide, and winter 
grazing within vineyards by cattle were assessed with the SWAT model. Each management 
measure was applied to the vineyards and modelled both individually and in combination 
with each other compare how different management strategies can influence the water 
quality.  To decrease computation time because of project time constraints, the model HRUs 
were rebuilt, applying threshold values to filter the considered HRUs to cover a minimum of 
2% of the sub-basin (2% soil type, 2% land use), generating 615 HRUs used to run the 
scenarios. The outputs from modelling the different management combinations were used to 
inform the knowledge underpinning the Bayesian Belief Network relationships between 
management and downstream water quality (see section 6).  
 
5.6.1 Buffer strips 
 
Management scenarios were run to explore how planting buffer strips of native vegetation 
within the vineyards could increase nutrient uptake by plants and aid in improving water 
quality, as suggested in the guidance to stakeholders from VCCB (Barbosa & Godoy 2014). 
As detailed in section 3.4.3, this was assessed through modifying the land use layer to 
create 9 m buffer strips of native trees within the vineyard habitats. To apply this in the 
SWAT model the HRUs were rebuilt using the modified land use layer, with the same 
parameters as the baseline model, and rerun to simulate the effect of adding buffer strips.  
 
5.6.2 Fertiliser and Pesticide use 
 
Agricultural pesticide and fertiliser use can have a large impact on water quality and are 
consequently a large concern in countries where there are high application rates. In 2016, 
Chile used 152.7 kg/ha of nitrogen-based fertilisers and 5.69 kg/ha of pesticide per area of 
cropland annually, which are relatively high in comparison to usage in other countries (FAO 
2017).  
 
Scenarios of high, moderate and low pesticide and fertiliser applications were based on FAO 
global averages for national fertiliser and pesticide use per area of cropland in 2016 (FAO 
2017). From the stakeholder questionnaires, fertilisers used in current management 
practices included organic sources: compost, humus and seaweed and chemical sources: 
urea, nitrogen, potassium and phosphorus-based fertilisers. The types of pesticides used by 
stakeholders tended to focus on herbicides as a form of weed control and fungicides to 
control the spread of the common mildew fungus on vines. In the scenarios, ‘Basta’ a 
Glufosinate Ammonia herbicide and ‘Botran’ a DCNA (Dicloran) fungicide were applied to 
the vineyards, which are both pesticides commonly used in grape production (Bayer 2019; 
Washington State University Extension 2019). Each treatment was applied to the vineyards 
once annually after the harvest period, with the quantities summarised in Table 5.3. To 
assess the impact of application to the vineyards, the herbicide and fungicide was only 
applied to the vineyard land classes within the catchment and outputs were compared with 
the baseline model. To inform the BBN, the model was run with different high, moderate and 
low scenarios of each type of fertiliser and pesticide applied to fields. To inform the chemical 
concentration node of the BBN (see section 6), all possible combinations of herbicide and 
fungicide were run with and without buffers being applied to fields under the baseline and 
climate change scenarios. To inform the nutrient concentration node, combinations of 
organic fertiliser, chemical fertiliser, herbicide, winter grazing by cattle and planting buffer 
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strips were run to produce outputs encompassing all possible combinations of inputs in the 
BBN.  
 
To assess the fertiliser treatments, the percentage of the fertiliser applied to each vineyard 
that leached into the reach was calculated on a HRU level using the equation: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ =
𝑁𝑁𝑁𝑁3𝑃𝑃(𝑠𝑠𝑖𝑖𝑠𝑠) − 𝑁𝑁𝑁𝑁3𝑃𝑃(𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠)

𝑁𝑁_𝐴𝐴𝑃𝑃𝑃𝑃  
 𝑥𝑥 100 

 
where PFLeach is the percentage of the total N fertiliser that was applied that has leached 
below the soil profile, NO3L(sim) is the amount of nitrate leached per HRU in the management 
scenario, NO3L(base) is the amount of nitrate leached per HRU in the baseline scenario and 
N_APP is the amount of Nitrogen fertilizer applied in kg N/ha. The amount of nitrate leached 
from the soil profile is calculated in SWAT using numerous algorithms detailed in Neitsch et 
al. 2011) and simultaneously equate nitrate losses through surface water and lateral flow. 
 
Table 5.3. Management scenarios modelled with the SWAT baseline model repeated annually 

 
For these scenarios, as shown in Figure 5.13, the percentage change in nitrate load in the 
stream (PNO3Load) was also calculated from the difference between the simulated and 
baseline nitrate load transported out of the reach: 
 

𝑃𝑃𝑁𝑁𝑁𝑁3𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿 = (NO3_OUT(𝑠𝑠𝑖𝑖𝑠𝑠) −𝑁𝑁𝑁𝑁3𝑂𝑂𝑂𝑂𝑂𝑂(𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠))/𝑁𝑁𝑁𝑁3𝑂𝑂𝑂𝑂𝑂𝑂(𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠)  𝑥𝑥 100 
 
To assess the pesticide scenarios, the percentage of the applied chemical that entered the 
reach was calculated on a sub-basin level by: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ =
SOLPST_OUT(𝑠𝑠𝑖𝑖𝑠𝑠)

∑𝑃𝑃𝑆𝑆𝑇𝑇_𝐴𝐴𝑃𝑃𝑃𝑃  
 𝑥𝑥 100 

 
where PPLeach is the percentage of the total amount of pesticide applied to the sub-basin 
that is present as dissolved pesticide in the reach during the timestep, SOLPST_OUT is the 
amount of soluble pesticide in the reach and ∑PST_APP is the sum of the amount of 
pesticide applied to the sub-basin. 
  

Management Chemical 
Id name 

Scenario Amount applied 
(kg/ha) 

Amount applied 
(kg N/ha) 

Day Month 

Fertiliser - 
organic 

Cattle 
(beef) 
manure 

Low 625 25 10 4 

Moderate 1250 50 10 4 
High 2500 100 10 4 

Fertiliser -
chemical 

Urea Low 54.35 25 10 4 
Moderate 108.70 50 10 4 
High 217.40 100 10 4 

Herbicide Glufosinate 
Ammonia 

Low 1 - 10 4 
Moderate 3 - 10 4 
High 6 - 10 4 

Pesticide/ 
fungicide 

DCNA 
(Dicloran) 

Low 1 - 10 4 
Moderate 3 - 10 4 
High 6 - 10 4 
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Figure 5.13. A map showing the amount of nitrogen applied to vineyards that has leached below the 
soil profile and the change in nitrate loading within the reach, under a high organic fertiliser scenario.  
 
5.6.3 Winter grazing by cattle 
 
Winter grazing by livestock is suggested as a sustainable management measure within 
vineyards for maintaining biodiversity, soil fertilisation and weed management through winter 
grazing. Chile has a lower stocking rate of cattle compared with other South American 
countries, at 0.19 LSU (livestock asset) per hectare (FAO 2019). For assessing the impact of 
cattle management, manure deposition estimations were calculated from FAO statistics of 
total manure excreted by non-dairy cattle divided by the area of agricultural land. Statistics 
from Chile in 2006 were used in the moderate cattle stocking scenario and statistics for New 
Zealand were used in the intensive stocking simulation, where the density of cattle is 
amongst the highest globally at 0.82 LSU/ha. Manure statistics were calculated for each 
country using the following equations: 
 

𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇 =
𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃𝑇𝑇 𝐶𝐶𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃 𝑠𝑠𝑇𝑇𝐿𝐿𝑃𝑃𝑠𝑠 (𝑃𝑃𝑆𝑆𝐿𝐿) 
𝑃𝑃𝑆𝑆𝐿𝐿 𝑃𝑃𝐿𝐿𝑜𝑜𝑜𝑜𝑃𝑃𝑟𝑟𝑠𝑠𝑟𝑟𝐿𝐿𝑜𝑜 𝑃𝑃𝐿𝐿𝑃𝑃𝑐𝑐𝑐𝑐𝑟𝑟𝑃𝑃𝑜𝑜𝑃𝑃𝑇𝑇

 

 

𝐷𝐷𝑃𝑃𝑟𝑟𝑇𝑇𝐷𝐷 𝑚𝑚𝑃𝑃𝑜𝑜𝑚𝑚𝑟𝑟𝑃𝑃 𝑃𝑃𝑥𝑥𝑃𝑃𝑟𝑟𝑃𝑃𝑇𝑇𝑃𝑃𝐿𝐿 (𝑠𝑠𝑘𝑘 ℎ𝑃𝑃−1 𝐿𝐿𝑃𝑃𝐷𝐷−1) =
𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇

𝐴𝐴𝑅𝑅𝐸𝐸𝐴𝐴(ℎ𝑃𝑃)
 𝑥𝑥 �

𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇(𝑠𝑠𝑘𝑘)
𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇

 𝑥𝑥 365� 

 
where TOTH is the total number of cattle heads and TOTM is the Annual total N cattle 
manure on a countrywide level. 
 
Estimations of dry matter consumption were obtained from IPCC guidelines based on the 
minimum and maximum estimates of consumption of low-quality forage (Dong et al. 2006). 
Grazing was assumed to occur on vineyards only during the winter period in Chile (19 June 
to 10 September) (Ruiz-Albarrán et al. 2016). The parameters used in the simulations are 
shown in Table 5.4, with the day and month denoting when the operation began in the 
model.  
 
Table 5.4. Cattle grazing scenarios modelled with the SWAT baseline model. 
Management Scenario Consumed biomass 

(kg/ha/day) 
Deposited manure 
(kg/ha/day) 

Grazing 
days 

Day Month 

Winter 
grazing 

Moderate 3.5 0.94 83 19 6 
Intensive 5.5 4.60 83 19 6 
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6 Bayesian Belief Network modelling 
 
6.1 Introduction 
 
The lead partners at VCCB work with viticulture businesses to develop sustainable 
environmental management practices that work with the natural environment and deliver 
benefits by enhancing the quality of the grapes and wine produced. To graphically 
demonstrate how an ecosystem responds to land management and other environmental 
variables, a Bayesian belief network (BBN) approach was adopted to relate management 
practices to ecosystem service outcomes. This was developed using training data from the 
ecosystem service modelled outputs under the different management and climate scenarios 
(sections 3-5), as well as literature reviews and local knowledge obtained from interviews 
and workshops with the vineyard stakeholders. 
 
The BBN approach was chosen as it allows a flexible approach to integrate knowledge from 
the different modelling outputs. It can account for the uncertainty in the relationships 
between management practices, environmental components and ecosystem services, by 
using probability tables. Therefore, confidence in a relationship informed here by literature, 
modelled data and stakeholder knowledge can be accounted for in the conditional probability 
values. Once fitted with the informed conditional probability tables, the BBN could then be 
queried to explore how changes in management affected the probable service delivery of the 
key ecosystem services of interest to stakeholders.   
 
To communicate these decisions to stakeholders in a user-friendly interactive way, an R-
shiny application was developed using R shiny dashboard. This allows users to select 
management practices and see how these impact upon the ecosystem service delivery of 
their vineyards on an individual field scale. This lets them explore the relationships between 
management and ecosystem service delivery and the different trade-offs that could impact 
their businesses on a scale relevant to their operations and future management decisions. 
 
6.2 Conceptual Ecological Model 
 
Discussions with the VCCB team and a master’s thesis by their student Journet (2016) 
provided an understanding of the different management approaches undertaken by 
vineyards and the types of sustainable practices landowners are encouraged to consider. 
This also provided an insight into how viticulturists in the region viewed relationships 
between management and ecosystem services (Figure 6.1). Through discussions and 
workshops, stakeholders identified the following ecosystem services as most relevance to 
their business:  
 

• Natural biocontrol of pest species 
• Biodiversity 
• Aesthetic appeal 
• Prevention of fire spread 
• Reduction in topsoil loss  
• Avoidance of natural nutrient enrichment 
• Water supply and water quality regulation 

 
A conceptual model was developed to integrate these factors and provide the structure for 
the directed acyclic graph (DAG) (Figure 6.3). This shows diagrammatically how interactions 
between the promoted management practices and the environment caused changes in the 
delivery of ecosystem services. 
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Figure 6.1. Boxes denote management interventions in vineyards that have direct and indirect 
interactions with natural ecosystems surrounding areas of production. It identifies ecosystem services 
provided by native ecosystems and how both managed and natural areas interact. Compared visions 
of literature and the viticulturists (Journet 2016).  
 
6.3 Bayesian Belief Network Development 
 
BBNs are a statistical modelling methodology used to infer probable relationships between 
elements using known relationships with intermediaries. A simple BBN diagram is displayed 
in Figure 6.2. 
 

 
Figure 6.2. An example of a simple BBN diagram (Morgan et al. 2012). 

 
Each component in the network is listed as an individual “node” in the diagram and the 
relationship between the nodes are termed an “edge”.  The direction of the edge indicates 
causality, where one “parent” node can cause a change in state of the “child” node. In Figure 
6.2, this is illustrated by the season and elevation nodes determining the temperature. A 
discrete network was developed by assigning each node with possible “states”, which 
categorises the data into bands of values (e.g., high, moderate or low). BBNs are 
probabilistic models where every possible state of a node is determined by an occurrence 
probability, collated into a single conditional probability table (CPT). Therefore, the probable 
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state of a child node will be determined by the states of the parent nodes. Using this logic, 
we can infer likely outcomes given known states of parent nodes and their relationships to 
child nodes and can develop larger networks to inform more complex problems.    
 
BBNs were used in this project, to help deduce relationships between management 
practices and the ecosystem services.  The suggested management practices by VCCB 
(Barbosa & Godoy 2014) and key ecosystem services highlighted by the stakeholders were 
each assigned to a node. This was developed into a directed acyclic graph (DAG) shown in 
Figure 6.3, by adding additional nodes for intermediate environment components and edges 
to denote the relationships between nodes, informed by the key variables required for the 
ecosystem service provision models used in sections 3-5 and expert opinion from ourselves 
and stakeholders. Information on the states of each node and their conditional probability 
tables were informed by a mixture of measured and modelled data, literature reviews and 
expert opinion, detailed in section 6.4. The R package ‘bnlearn’ (Scutari & Ness 2019) was 
used to build and fit the BBN in R and it was then queried using the package ‘gRain’ 
(Højsgaard 2016). 
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Figure 6.3. Bayesian Belief Network Directed Acylic Graph (DAG). The orange nodes represent vineyard management practices. Blue nodes represent 
ecosystem components/features where data can be added to explore these factors on a spatial scale. Yellow nodes highlight the key ecosystem services that 
can be delivered by the vineyards. 
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6.4 Relationship Evidence 
 
6.4.1 Measured and modelled data 
 
The data inputs and modelled outputs from the ecosystem service models described in 
sections 3-5 were used to inform the BBN relationships, summarised in Table 6.1.  
 
Table 6.1. A summary of the nodes informed by either input data sources used in the ecosystem 
service provision models or output data produced by the models, detailed in sections 3-5. 

Model  Described 
in Section 

Scenarios modelled BBN node informed Measured data input or 
modelled output data 

INVEST 
Sediment 
Delivery Ratio 
(SDR) model  

3 Baseline, Climate 
change scenarios, 
Cover crops, Tillage, 
Buffer strips 

Field id Measured 
Vineyard land cover Measured 
Air temperature Measured 
Precipitation Measured 
Slope Measured 
Upslope land cover Measured 
Soil type Measured 
Vineyard slope Measured 
Upslope Precipitation Measured 
Vineyard soil erodibility Modelled 
Upslope soil erodibility Modelled 

Fire 
Susceptibility 
model 

4 Baseline, Buffer strips  Field id Measured 
Vineyard land cover Measured 
Wind exposure Measured 
Precipitation Measured 
Air temperature Measured 
Burn Avoidance Modelled 

SWAT model 5 Baseline, Climate 
change scenarios, 
Buffer strips, Organic 
Fertiliser, Chemical 
Fertiliser, Fungicide, 
Herbicide, Winter 
Grazing by Cattle 

Field id Measured 
Vineyard land cover Measured 
Sub-basin Measured 
Soil type Measured 
HRU Precipitation Measured 
Air temperature Measured 
River discharge Modelled 
Artificial nutrient input Modelled 
Nutrient load Modelled 
Nutrient concentration Modelled 
Chemical contaminants Modelled 
Chemical concentration Modelled 

 
Due to a lack of available data on current management practices applied to the stakeholder 
vineyards, conditions were modelled without considering practices already in place. Each 
vineyard is looked at in isolation and it is assumed that management from one vineyard does 
not impact the management at another. As this is a proof of concept project, this was 
designed to give an indication of the potential impacts that certain management could have 
upon the landscape. Given more data about the current landscape and working closer with 
stakeholders to design parameters this could be further developed to provide more accurate 
results. 
 
Data were extracted from the models at three different scales, as follows: 
 

• Vineyard scale – Shape files of stakeholder vineyard boundaries were supplied by 
VCCB. These were used to extract information specific to each individual field, such as 
the proportion of land cover, slope, climate variables. 

 
• Upslope catchment – The upslope catchment was defined as the contributing area of 

flow for soil movement into the vineyard habitats within field boundaries. This was 
calculated by the TauDEM Python applications, which use elevation data to calculate 



A Natural Capital Approach to Landscape Planning: a Pilot Project in Colchagua Valley - Technical 
Report 

49 

flow directions of soil and water movement across the landscape. By assessing the 
flow pathways against the field boundaries, the applications can be used to calculate 
the flow contribution area upslope of the field. Figure 6.4 displays the calculated 
upslope contributing area for one of the stakeholder vineyards.  These were cropped 
to a distance of 50 m to represent the contributing area of soil which enters the 
vineyards, as described in the Natural Capital Project’s (2019) InVest Sediment 
Delivery Ratio documentation. The upslope catchment area was used to extract data 
from the soil loss model to inform the BBN node ‘Avoidance of natural nutrient 
enrichment’. 

 

 
Figure 6.4. The upslope contributing area to a stakeholder vineyard calculated using the TauDem 
functions. 
 

• Sub-basin level – Data were extracted at the sub-basin level to inform the nodes 
relating to water quality, as the chemical and nutrient levels within a stretch of the river 
is dependent upon the land use and management within the whole sub-basin drainage 
area. Contributing values could be obtained per vineyard and therefore their 
contribution toward the water quality could then be extrapolated. 

 
6.4.2 Literature review and stakeholder workshops 
 
For nodes which could not be informed directly by the models, information from the 
stakeholder workshops and studies carried out by the VCCB research team were valuable in 
informing the remaining BBN relationships.  
 
The thesis by Journet (2016) as part of the VCCB research group explored how vineyard 
management practices can impact upon ecosystem services by conducting interviews with 
stakeholders in the region and literature reviews. This provided an overview of the 
suggested measures encouraged by VCCB and their impact upon vineyard vegetation. This 
along with satellite images from Google Earth and expert opinion helped to inform the 
“Proportion of vegetation types” node and relationships to management. This node simplifies 
the Vineyard land cover by categorising the states into vegetation type classes, the states of 
which were based upon high level FAO land cover classification (Di Gregorio 2005). The 
conversion table for these classes are displayed in Table 6.2. This simplification reduces the 
dimensions required in the child nodes captures the differences in vegetation biomass 
between habitats.  
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Planted cover crops and interrow planting between vines were highlighted by Journet (2016) 
as a method to enhance soil fertility and reduce topsoil loss, as well as encouraging natural 
biodiversity within the vineyard. Cover crops mentioned in the region were mostly exotic 
species such as vetches, clovers and mustards, herbaceous crops, captured in the BBN by 
increased proportions of the “grass” vegetation type.  Cattle management was also 
highlighted by Journet as a key practice used to enrich soil and manage pests and disease. 
Winter grazing from livestock is used to manage weed control within vineyards, reducing the 
proportion of grass between vines through trampling and consumption, which has shown to 
have an impact upon fire risk impacting the amount of mid-to-low-level vegetation (Journet 
2016). 
 
Table 6.2. Land cover class conversion table from habitat map classes to proportion of vegetation 
type states. 

Vineyard Land Cover 
classes Bare Bare soil Grass Shrub 

Trees – 
native 

Trees –  
 non-native 

Agricultural land - 50% 5% 15% 30% - 
Alluvial plain 80% 10% 10% - - - 
Central Andean steppe - 34% 33% 33% - - 

Crop grassland - - 100%  - - 

Glaciers 100% - - - - - 

Lakes 100% - - - - - 

Native forest - - - - 100%  
Plantation - 50% - - - 50% 
Rivers 100% - - - - - 

Rocky outcrops 80% 20% - - - - 

Scrubland - - - 100% - - 

Seasonal meadows - - 100% - - - 

Snowcover 100% - - - - - 

Trees & Scrub  - - 50% 50% - 

Urban 100% - - - - - 

Vineyard - 40% 10% 50% - - 
 
Similarly, the "semi-natural habitat” node was used for simplification within the network, 
simplifying the states of the “Vineyard land cover” by categorising the information into three 
categories instead of sixteen. These were denoted as agriculture, semi-natural and urban 
habitats, and were categorised using expert opinion with the classification shown in Table 
6.3. 
 
Table 6.3. Land cover class conversion table from habitat map classes to semi-natural habitat states. 
Categories Habitat classes 
Agriculture Agricultural land, Crop grassland, Plantation, Seasonal meadows, 

Vineyards 
Semi natural Alluvial plain, Central Andean steppe, Glaciers, Lakes, Native Forest, 

Rivers, Rocky outcrops, Scrubland, Snowcover, Trees & Scrub 
Urban Urban 

 
Biodiversity within vineyards has been explored in a number of studies and has shown to 
increase with increasing proximity to nearby semi-natural habitat, as opposed to disturbed 
land such as urban or agricultural land (Grashof-Bokdam & van Langevelde 2005; Márquez-
García et al. 2018). Biodiversity is key for ecosystem functions within a vineyard such as 
maintaining the fungal diversity and pest control within fields. It is key with regards to 
encouraging the natural yeasts and fungal species diversity as part of the ‘terroir’ 
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characteristic in growing biodynamic wines. Fungal diversity and maintaining a correct 
balance of yeast species within the environment is important to the flavour and quality of the 
wine produced and has been linked to plant diversity and the distance of the vines to the 
surrounding semi-natural habitat (Castañeda et al. 2018).  
 
Pest species are key concerns for vineyards, stakeholder identify rabbits, vine fake red 
spider, Oiddio and vine wood fungi as particular pest species in the region. Guidance from 
VCCB (Barbosa & Godoy 2014) highlights how creating ecological corridors by using buffer 
strips and cover crops can help reduce pest pressures by encouraging natural predators, 
whereas monoculture vineyard fields are more susceptible to pests and disease.  
 
Cattle management is also seen to aid in pest prevention, in addition to fire prevention; as 
shorter grasses are maintained reducing ignition potential and fuel availability (Journet 2016; 
Márquez-García 2018). Pesticide and fertiliser application have shown to negatively impact 
upon vineyard biodiversity, especially where use is excessive as well as downstream 
impacts within lakes and streams (Puig-Montserrat et al. 2017).  Another benefit of 
encouraging biodiversity in vineyards is the aesthetic value species add to the landscape, 
increasing values associated to community identity and human well-being (Tribot et al. 
2018).  
 
6.4.3 Constructing the Conditional Probability Tables (CPTs) 
 
The data collated for each node detailed in section 6.4.1 was used along with the two 
simplification nodes “proportion of vegetation types” and “semi-natural habitat” (described in 
section 6.4.2) to create training data for four of the ecosystem services; reduction in topsoil 
loss, avoidance of natural nutrient enrichment, fire avoidance and water quality. This training 
data was then used to fit smaller sections of the BBN in Figure 6.3. This was partitioned to 
reduce processing power and computation time. These smaller BBNs generated the 
conditional probability tables for the majority of nodes, informing their relationships based 
upon the training data. The CPT for the end service node for water quality was calculated as 
a combination of the nutrient and chemical concentration nodes, where these were both of a 
high status the water quality was denoted as poor. The remaining node CPTs for 
biodiversity, fungal diversity, aesthetic appeal and natural pest control were equated using 
knowledge from literature reviews detailed in section 6.4.2 and expert opinion. All the CPTs 
were then compiled to populate the larger Bayesian belief network, linking all of the modelled 
ecosystem services together with management decisions. 
 
6.5 Applying the BBN 
 
The extracted data were collated, and the BBN network was fitted with the informed 
conditional probability tables. This allowed it to be queried under the different scenarios with 
functions in the “bnlearn” package.  
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Figure 6.5. A diagram of the fitted BBN displaying the conditional probability tables as bar graphs for each node. 
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To make this more accessible for stakeholders, an R shiny application was developed using 
R shiny dashboard to allow users to view the outcomes of management decisions in a user-
friendly display (see Figure 6.6 to Figure 6.8). The Viticulture ImplemeNting Ecosystem 
Services (VINES) app was developed to display specific land parcels managed by particular 
stakeholders, displaying a map of their vineyards’ location in relation to the surrounding 
landscape using 3D renders of their fields and surrounding area, and data from their 
individual crop fields. 
 
The app consists of three tabs, shown in the screenshots in Figure 6.6 to Figure 6.8. The 
App landing page (Figure 6.6) displays a 3D rendered image of the Colchagua valley, 
developed using the R package ‘rayshader’ (Morgan-Wall 2019). On this page the user 
should select their winery and field. This information then feeds into the second tab 
‘Management’, which allows stakeholders to view and query the data for their selected field, 
plotting the ecosystem service delivery in a coloured bar plot (Figure 6.7). Here they can 
select different management options and climate change scenarios, which queries the BBN 
directly outputting how this changes the resulting ecosystem services and their relative 
probabilities of being either ‘Good’, ‘Moderate’ or ‘Poor’. This is visualised by changes in the 
proportional bar plot, with the state having the largest area representing the most likely state 
of ecosystem service delivered. This plot is interactive, allowing users to hover over areas of 
the graph to retrieve probability values, as well as show and hide legend entries by clicking 
them. There is also an option to download a .csv file of the plot data and reset all 
management options to default. The final tab ‘Network’ displays the BBN DAG, showing the 
user the mechanisms by which each scenario is affecting the ecosystem services and allows 
them to visualise the underlying BBN network. 
 

 
Figure 6.6. App landing page.  
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Figure 6.7. Example plot displayed in the app, with default management and climate change options. 
 

 
Figure 6.8. BBN DAG visualisation. 
 
7 Conclusion and next steps 
 
The Natural Capital Approach to Landscape Planning: a Pilot Project in Colchagua Valley, 
combines industry knowledge with ecosystem sciences and seeks to disentangle and 
quantify the interactions between land management, biotic and abiotic factors and the effect 
on business-critical ecosystem services. The project ran for five months, and within that time 
initial iterations have developed, showing how models can be established in-line with user 
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requirements, providing tools that help bring environmental data into decision making 
processes. The use of Bayesian Belief Networking (BBN) helps to clarify the trade-offs 
associated with land use planning and management.  
 
Environmental risk management is critical for avoiding supply chain disruption and potential 
infrastructure damage; such as identifying fire risks and implementing avoidance strategies. 
Better understanding of catchment processes can lead to better informed land planning. 
Predicting factors such as water stress and pollution risk are vital to the future success of 
any business. The most important next steps are to test the applicability of these concepts 
and identify how they may be applied in this context or scaled to accommodate other 
scenarios.  
 
7.1 Potential Steps for Model Improvement 
 
Working more closely with vineyards to gather and apply local data and gain a more detailed 
understanding of the links between management decisions, ecosystem responses, abiotic 
variables and impacts, which would improve the BBN. This would provide more advanced 
information, enabling models to be adapted, to inform local management and monitoring of 
outcomes. The scalability of the models could be assessed to identify management unit 
specific applications, at finer scales.  
 
Due to a lack of available data on current management practices adopted by the focal 
vineyards, conditions were modelled without considering practices already in place. Each 
vineyard was reviewed in isolation, and it is assumed that management from one vineyard 
does not impact management at another. Improved understanding of current interventions 
implemented by vineyards and other land users would provide a better picture of inter-play 
between different activities; potentially identifying opportunities for cooperative management, 
to maximise ecosystem services and minimise environmental impacts.  
 
The use of high-resolution satellite imagery would improve habitat mapping, as would 
conducting further ground validation across a wider area, this would improve the accuracy of 
the classification of different land use and regional habitats; helping to identify more features 
delivering ecosystem services, improving modelling at the local and landscape level, and to 
detect change over time. 
 
Due to a lack of local soil data, a low-resolution Food and Agriculture Organisation (FAO) 
soils data layer has been used, which does not accurately reflect how the soil compositions 
may vary spatially across the landscape. Soil data could be improved with the provision of 
local data or sampling, especially in terms of biophysical characteristics and rates of soil 
loss.   
 
Local crop characteristics and measurements were unavailable and were matched to the 
nearest crop type in the models’ crop databases, which are based upon temperate US crop 
types. Information on local crop characteristics would improve the accuracy of assessing 
factors such as water demand and stress and soil permeability.  
 
With more time, a sensitivity analysis could assess the relative influence the data layers 
have on the responses in the Soil and Water Assessment Tool (SWAT) models. 
 
Local weather station data from the Colchagua Valley was only available as point data, and 
at inconsistent time intervals. There is value in exploring how local meteorological data could 
be better collected to improve local accuracy of models. 
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Due to time and resource constraints, it was not possible to cover all ecosystem services 
identified as ‘important’ by stakeholders.  Future work could explore natural biocontrol of 
pest species, and even cultural values associated with the vineyards and landscape. 
 
Biodiversity is of utmost importance to the terroir of the wine growing region. Researching 
organisms such as wild yeasts and soil microbial communities could be explored in relation 
to land management and spatial planning, to maintain or restore unique characteristics of the 
landscape. 
 
The models and BBNs can be used to inform monitoring schemes, assess outcomes in real 
terms (e.g., does reduced cattle stocking density impact soils or water quality), there is also 
the potential to explore how this type of information can be quantified and used by 
companies to improve and report on environmental performance. 
 
The approaches developed can be adapted to other scenarios, ecosystem services and land 
use. The main proviso being the availability of data.  
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Appendix 1 – Implementing the Living Maps Method (LMM) 
in the Colchagua Valley 
 
1  Datasets 
 
A summary of each of the datasets used for input to the habitat classification is listed below. 
All data were georeferenced to the map projection that is most suitable to the region, which 
is WGS 84 / UTM zone 19S (EPSG:32719) and were resampled to 10 m unless otherwise 
specified. 
 
1.1  Sentinel-1 
 
Sentinel-1 is a polar-orbiting, all weather, day-and-night radar imaging mission for land and 
ocean services. The mission is part of the European Union (EU) Copernicus Programme and 
is operated by the European Space Agency (ESA). The mission consists of a two-satellite 
constellation providing orbit revisit times of six days. The radar instrument transmits and 
receives in C-band (5.405 GHz) at a resolution of 5 x 20 metres in interferometric wide-
swath mode. This is the most common mode that is used over land masses. The data is 
processed and stored as Level 1 Single Look Complex (SLC) and Level 1 Ground Range 
Detected (GRD) products by the ground segment of ESA. The SLC product contains the 
intensity of returns and phase information, whereas the GRD product does not contain the 
phase information, due to the enhanced processing that it receives. This GRD data is multi-
looked and projected to ground range using the earth ellipsoid model. 
 
Sentinel-1 data are transformed into backscatter products from data collected in the 
Interferometric Wide (IW) swath mode and processed from the Ground Range Detected 
(GRD) version of the data. These Sentinel-1 data contain data in both VV and VH 
polarisations. The raw scenes were terrain corrected, radiometrically normalised and 
processed to Gamma-0 backscatter coefficient in decibels (dB) using the SNAP Toolbox 
(http://step.esa.int/main/toolboxes/snap/). An example Sentinel-1 ARD product is shown in 
Figure A1.1. 
 

 
Figure A1.1. Sentinel-1 ARD product, captured on the 25th March 2018, for the Colchagua Valley. 

http://step.esa.int/main/toolboxes/snap/
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1.2  Sentinel-2 
 
Sentinel-2 is a polar-orbiting, multispectral high-resolution imaging mission for land 
monitoring. The mission is also part of the EU’s Copernicus Programme and operated by 
ESA. The mission consists of a two-satellite constellation providing orbit revisit times 10 
days at the equator with one satellite, and five days with two satellites under cloud free 
conditions which results in 2-3 days at mid-latitudes. The optical instrument payload samples 
13 spectral bands: four bands at 10 metres six bands at 20 metre and three bands at 
60 metre spatial resolution. The orbital swath width is 290 kilometres. 
 
Sentinel-2 data are transformed to produce a topographically corrected surface reflectance 
product with cloud and topography mask that can be applied to the imagery provided 
separately. The Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI) 
software (http://www.rsgislib.org/arcsi) was used to produce this product, as this is the 
software that has been used during the automation process in the UK (Jones et al. 2017). 
This process, although developed for UK processing, can be deployed globally, and this 
saves time in cost and effort while deploying the processing chain to other areas globally. 
During the processing the 20 m image bands are sharpened to 10 m through application of 
linear regression models. The 60 m bands are primarily used for atmospheric aerosol 
correction and processes and are therefore removed from the final surface reflectance 
product. 
 
ESA’s SNAP toolbox was used to create Linear Spectral Unmixing (LSU) layers for 
productive vegetation, non-productive vegetation, and shade and water for all four Sentinel-2 
scenes. The rationale behind LSU is that the signal detected by Sentinel-2 into a pixel is 
frequently a combination of numerous disparate signals. Figure A1.2 shows a visualisation of 
this. To overcome the mixed pixels, modelling is implemented in the SNAP toolbox 
(http://step.esa.int/main/toolboxes/snap/) to identify the percentage of each material present 
per pixel. The user defines “pure” pixels for the productive vegetation, non-productive 

Grass 

Tree 

Soil 

Mixed Pixel 

30
 m

 

40 m 

Figure A1.2. An example diagram showing a mixed pixel composed of grass, trees and soil 
(Kilcoyne et al. 2017). 

http://www.rsgislib.org/arcsi
http://step.esa.int/main/toolboxes/snap/
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vegetation, shade and water layers. The relative abundance of these materials are then 
highlighted based on the materials spectral characteristics. By identifying pure pixels of 
desired criteria, each pixel is attributed with affinity to the training pixels. For more detail on 
the LSU process see Living Map Method Report (Kilcoyne et al. 2017). 
 
1.3 Digital Elevation Model (DEM) 
 
A DEM provided by NASA’s Shuttle Radar Topography Mission (SRTM) in 2000 was used in 
the classification process. The SRTM data is open source and is available at a resolution of 
1 arc-second, or about 30 metres. Data were downloaded from Earth Resources 
Observation and Science (EROS) Center website (https://www.usgs.gov/centers/eros). 
Layers of slope, aspect and hill shade were also created, and all layers were resampled to 
10 metre spatial resolution.  
 
1.4 Bioclim 
 
Maximum temperature, minimum temperature and annual rainfall was downloaded as freely 
available raster layers at ~1 km spatial resolution (30 arc-seconds) from WorldClim 
(http://worldclim.org/bioclim). 
 
1.5 Open Street Map data 
 
OpenStreeMap® are open data, licensed under the Open Data Commons Open Database 
License (ODbL) by the OpenStreetMap Foundation (OSMF). The data were downloaded 
through a QGIS plugin (https://wiki.openstreetmap.org/wiki/QGIS_OSM_Plugin) and 
included layers on buildings and roads. 
 
2 Training Data 
 
There were limited data available from the field for use in this project for habitat mapping. A 
2013 land cover map was available and was used as a baseline. Training data created 
based on the location and distribution of classes as mapped in 2013; albeit on a coarser 
scale. Within each class distribution, an equal number of points were generated per class on 
a random basis.  All these points were used to train the random forest algorithm only. 
 
3 Method 
 
A summary of steps is outlined in the flowchart in Figure A1.3. 

https://www.usgs.gov/centers/eros
http://worldclim.org/bioclim
https://wiki.openstreetmap.org/wiki/QGIS_OSM_Plugin
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Figure A1.3.  Flowchart of classification process (Kilcoyne et al. 2017). 
 
The method follows the steps of the Living Maps Method. More detail on the steps can be 
seen in the technical report (Kilcoyne et al. 2017). The only difference to the method outlined 
in this report is the segmentation process, and the number of significant variables identified 
to improve the model fit of Random Forest, which is outlined below in Appendix section 3.1. 
 
3.1 Segmentation 
 
The segmentation was applied in the commercial image analysis software package, Trimble 
eCognition version 9.2.1. At the time of writing, eCognition produces a better object 
characterisation of the landscape than open-source software alternatives. The processing of 
the segmentation used the Sentinel-2 images from December. The segmentation algorithm 
used was a combination of the multispectral segmentation and spectral differences 
algorithm. The multispectral segmentation algorithm was first used to generate objects, while 
the spectral difference algorithm was used to eliminate small objects by combining spectrally 
similar objects into one. The parameters used are outlined in Table A1.1 
 
Table A1.1.  Parameters used for object generation. 
Multiresolution Segmentation Parameters 
Image band weights Blue = 1; Green = 1; Red = 2; Red Edge 5 

= 1; Red Edge 6 = 1; Red Edge 7 = 1; Red 
Edge 8A = 1; NIR = 3; SWIR1 = 4; SWIR2 = 
4 

Scale parameter 18 
Shape 0.6 
Compactness 0.4 

 
3.2 Random Forest Classifier most significant variables 
 
Random Forest was selected as the most successful statistical classification method. A 
multinomial classifier, Random Forest is a fast and parallelisable algorithm (compared to 
other statistical classification methods such as Support Vector Machines). Random Forest 
has a low computation requirement and can therefore be rerun without large time 
investment. The method is extremely flexible, able to deal with continuous and categorical 
variables, and able to discern interactions between variables (Kilcoyne et al. 2017).  
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A Random Forest is built out of a large number of decision trees, which have been trained 
on a subset of the training data and a subset of the training variables. Trees are built by 
making a series of sequential partitions of the training data, each one based on the value of 
a single variable, until the data has been separated into groups with identical classes, or a 
maximum number of partitions are reached. New data points can then be fed through each 
tree to produce a prediction. The predictions from each tree are aggregated, and the class 
with the most “votes” is considered the best overall prediction. Each of the individual trees is 
a weak predictor of class, but together the forest has stronger predictive power (Kilcoyne et 
al. 2017). 
 
The number of variables required to produce an accurate classification varies per project 
and the final number is determined when the overall accuracy of the map does not increase 
with additional variables. The final list of variables is available in Table A1.2 
 
Table A1.2. Final list of variables used in the mapping and their significance values as determined by 
the random forest algorithm. 

Variable name Significance 
Value 

Slope – Mean 72.54760129 
Waterways – Open Street Map – Mean  71.24787397 
Height – Mean  59.63962917 
Roads – Open Street Map – Mean  55.58142176 
Sentinel-2 – March – Roughness – Mean  49.51739453 
Difference Index – Sentinel-2 – October – Green Band – SWIR1 Band 46.80663597 
Sentinel-2 – October – Blue Band – Mean  40.00953466 
Sentinel-2 – December – Blue Band – Median  39.42202805 
Sentinel-2 – December – Red Edge [8A] Band – Median  36.3874349 
Sentinel-2 – December – Blue Band – Mean  36.28038398 
Sentinel-1 – July – Backscatter – VH – Mean  35.75198425 
Difference Index – Sentinel-2 – December – Green Band – SWIR1 Band – Mean  35.20160931 
Difference Index – Sentinel-2 – March – Green Band – SWIR1 Band – Mean  35.18408674 
Sentinel-1 – July – Backscatter – VV – Mean  34.48999362 
Difference Index – Sentinel-2 – October – Red Band – SWIR2 Band – Mean  33.71149407 
Sentinel-2 – December – Red Edge [8A] Band – Standard Deviation  32.86976039 
Difference Index – Linear Spectral Unmixing – March – Non-Photosynthetic 
Vegetation – Linear Spectral Unmixing – October – Non-Photosynthetic 
Vegetation – Mean  

32.59380616 

Sentinel-2 – October – Blue Band – Median  32.47969091 
Sentinel-1 – July – Backscatter – VV – Median  32.19519016 
Linear Spectral Unmixing – October – Water/Shade – Mean  32.11183534 
Sentinel-2 – July – NDWI (Green) – Mean  32.05935048 
Difference Index – Sentinel-2 – October – Red Band – SWIR1 Band - Mean 32.02550816 
Sentinel-2 – March – Blue Band – Median  31.87871294 
Difference Index – Sentinel-2 – December – Red Band – Red Edge [5] Band – 
Mean  

31.60258527 

Sentinel-1 – October – Backscatter – VV – Mean  31.15906736 
Sentinel-2 – October – Green Band – Mean  30.70047368 
Sentinel-1 – July – Backscatter – VH - Median 30.22784791 
Sentinel-2 – October – Red Edge [8A] Band – Median  29.94324594 
Sentinel-2 – March – Blue – Mean  29.84671631 
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Sentinel-2 – October – Blue Band – Standard Deviation  29.53510312 
Sentinel-2 – October – NIR – Median  28.75321749 
Sentinel-2 – October – Red Band – Mean  28.1821866 
Sentinel-2 – October – Red Edge [7] Band – Mean  28.11684533 
Sentinel-2 – October – SWIR2 Band – Median  28.08480935 
Difference Index – Sentinel-2 – December – Red Band – Red Edge [5] Band – 
Mean  

28.08058611 

Plantations – O’Higgins 2013 – Mean  27.03271549 
Sentinel-2 – October – Green Band – Median  26.78671136 
Sentinel-2 – December – Green Band – Mean  26.67012603 
Sentinel-2 – October – Red Edge [5] Band – Mean  24.49036896 
Sentinel-2 – December – Red Edge [6] Band – Standard Deviation  24.1995114 
Sentinel-2 – December – NIR Band – Standard Deviation  23.50938571 
Sentinel-2 – December – Red Edge [7] Band – Standard Deviation  22.76341942 
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Appendix 2 – SWAT modelling HRU parameters 
 
Various model parameters were required to create the Hydrological Response Units (HRUs) 
of the SWAT model. To create unique soil and land use combination from the data layers, a 
lookup table was created to relate the land classes of the habitat map (section 2) to the crop 
databases within SWAT (Table A2.1). Glaciers and Snow cover are classed as water, with 
the snowmelt parameters determining its physical state when the SWAT is run. As explained 
in section 4, as detailed crop characteristics and measurements were unavailable, the 
habitat classes were matched to the nearest crop type in SWAT’s inbuilt crop databases, 
which are based upon temperate US crop types. Managed agricultural habitats of crop 
grassland and plantations were classed as Cropland/Grassland Mosaic and 
Cropland/Woodland Mosaic respectively, capturing the differences in their vegetative 
structure. However, this caused some inaccuracies in the modelling process where for 
instance although the Central Andean steppe and Southwestern US (Arid) Range may share 
some characteristics of grassy/shrubby regions intermixed with bare exposed rock, the crop 
species present will vary and therefore may not accurately represent plant characteristics 
such as average rooting depth. 
 
Table A2.1.  The land use lookup table comparing habitat classes from the produced habitat map 
(see Chapter 1) with classes within the SWAT crop and urban databases. Further descriptions of the 
SWAT classes are noted in Appendix A of the SWAT documentation in Arnold et al. (2012) 

Raster Id Habitat class SWAT class SWAT class name 
1 Agricultural land AGRL Agricultural Land - Generic 
2 Alluvial plain WEHB Herbaceous wetland 
3 Central Andean steppe SWRN Southwestern US (Arid) Range 
4 Crop grassland CRGR Cropland/Grassland Mosaic 
5 Glaciers WATR Water  
6 Lakes WATR Water 
7 Native forest FRST Forest – Mixed 
8 Plantation CRWO Cropland/Woodland Mosaic 
9 Rivers WATR Water 
10 Rocky outcrops BSVG Barren or Sparsely Vegetated 
11 Scrubland SHRB Shrubland 
12 Seasonal meadows GRAS Grassland 
13 Snow cover WATR Water 
14 Trees & shrub SHRB Shrubland 
15 Urban URBN Residential 
16 Vineyard GRPE Vineyard 

 
1 Plant growth definitions 
 
Once the HRUs were defined in the model, management operation parameters were used to 
establish cycles in plant growth. These are determined in SWAT by the crop characteristics 
of the land use class and by the operations applied to each HRU. These operations define 
the start period when growth begins and the end of the growth period for natural habitats or 
when harvest occurs for managed land.  
 
As SWAT was developed for temperate regions, operations are usually scheduled by heat 
day units and the algorithms rely on a dormancy period, which is absent in regions in the 
tropics and the southern hemisphere (Strauch & Volk 2013). To overcome this, management 
operations for all land use classes were scheduled instead by date, following the start and 
end of the growing season in September and April, as noted for Curico, in Hajek and 
Guitiérrez (1979). Managed agricultural habitats and vineyards were scheduled according to 
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information provided by stakeholders at a pre-project workshop; vineyard harvest season 
was set as taking place in March. 
 
2 Snow parameters 
 
Glacier boundaries were denoted in the habitat map. Using the GLIMS Glacier database, 
visual comparisons with the habitat map (described in appendix section 1) showed they 
followed a similar outline with the same sub-basins impacted by both datasets.  Following 
the approach of Omani et al. (2017), these boundaries were used to help determine the 
equilibrium line altitude (ELA), a theoretical line separating the accumulation and ablation 
zone of a glacier, and different snow melt parameters were assigned to areas of ice and 
snow present in the relevant zones. The ELA was estimated through comparisons of the 
habitat map and DEM to extract the minimum elevation for glaciated habitats within each 
sub-basin, assuming below which snow cover would be seasonal. Sub-basins exceeding a 
threshold elevation of 2000 m were subdivided into 10 elevation bands, with bands evenly 
spaced throughout each sub-basin’s minimum and maximum elevations (see Table A2.3). 
Glacier bands were denoted as those where at least 50% of the elevation band exceeded 
the ELA.   
 
The GLIMS database had few complete records falling within our study region and was 
lacking seasonal snow line data, therefore the seasonal snow line was instead presumed to 
be equivalent to the minimum elevation of the snow cover denoted by the habitat map. This 
had a lower accuracy as the full seasonality of snow cover was not assessed in the creation 
of the habitat map but provided an indication of areas that experience some snow cover 
throughout the year. 
 
From the literature, melt factors have been reported higher for ice (6-8 mm per day) than 
snow (3-5 mm per day) (Braithwaite 2008). Snow melt parameters were extracted from 
Table 1.15 in Omani’s (2014) dissertation study where SWAT was used to model a similar 
glaciated watershed study region in Central Chile. The average snowmelt parameters across 
the total basin were applied across the 10 elevation bands, with maximum melt factors and 
minimum lag times applied where elevations were highest, shown in Table A2.2.  
 
The initial snow storage was required for each individual band, denoted with the ‘SNOEB’ 
parameter in SWAT as the equivalent water content within the band. Local snow depth 
records and observations of mean ice thickness within the catchment region of Libertador 
Bernardo O’Higgins were unavailable from the World Glacier Inventory (WGI 2019). As a 
result, snow depths for the elevation bands were estimated from glacial experiments 
conducted in the Chilean Andes by Stehr and Aguayo (2017). Data obtained from the 
supplementary section of their 2017 study contained mean snow depth records for three 
stations installed at varying elevations in the Biobío region in Central Chile, a region just 
south of Libertador Bernardo O’Higgins with a similar climate that has been studied in 
greater detail than the Colchagua region of interest. Their experimental stations provided an 
indication of the varying snow depth and were applied to the elevation bands in the 
watershed model where elevations exceeded that of the station (Portillo alt. 3005 m, mean 
depth: 473.5091 mm, Laguna Negra alt. 2709 m, mean depth: 376.3265 mm, Volcan Chilan 
alt.1964 m, mean depth: 262.366 mm). 
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Table A2.2. The snowmelt parameters used within defined elevation bands, from Omani (2014).  
Snow melt parameter SWAT 

parameter 
Lower elevation 
bands (below 
snow cover) 

Snow 
bands 

Glacier 
bands 
(avg) 

Glacier 
bands 
(max) 

Temperature lapse rate (˚C/km) TLAPSE -4.3 -4.3 -4.3 -4.3 
Precipitation lapse rate (mm 
H2O/km) 

PLAPSE -17 -17 -17 -17 

Snowfall temperature (˚C) SFTMP  0.77 1.01 1.14 1.14 
Snowmelt base temperature (˚C) SMTMP 0.42 0.90 1.66 5 
Melt factor for snow on June 21 
(˚C) 

SMFMX 4.68 4.64 5.38 7 

Melt factor for snow on 
December 21 (˚C) 

SMFMN 4.07 4.06 4.93 8 

Snowpack temperature lag 
factor (˚C) 

TIMP 0.78 0.74 0.50 0.01 
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Table A2.3. Sub-basins exceeding a threshold elevation of 2000 m were divided into 10 elevation bands, with the threshold elevations noted for each band 
(ELEV1-10). The minimum snow cover elevation and glacier elevations were extracted from comparisons with the Digital Elevation Model and habitat map 
layers along with the maximum elevation for each sub-basin. Where there was no overlap between the snow and glacier habitats within a sub-basin boundary 
this is denoted as n/a*. 

Sub-
basin 

Maximum 
elevation 
(m) 

Minimum snow 
cover elevation 
(m) 

Minimum glacier 
elevation (m) 

ELEVB1 
(m) 

ELEVB2 
(m) 

ELEVB3 
(m) 

ELEVB4 
(m) 

ELEVB5 
(m) 

ELEVB6 
(m) 

ELEVB7 
(m) 

ELEVB8 
(m) 

ELEVB9 
(m) 

ELEVB10 
(m) 

13 3567 2443 2655 1466.55 1687.65 1908.75 2129.85 2350.95 2572.05 2793.15 3014.25 3235.35 3456.45 
14 4971 2495 2542 1690.65 2035.95 2381.25 2726.55 3071.85 3417.15 3762.45 4107.75 4453.05 4798.35 
15 3752 2385 2416 1475.8 1715.4 1955 2194.6 2434.2 2673.8 2913.4 3153 3392.6 3632.2 
18 3918 2657 2860 1121.2 1415.6 1710 2004.4 2298.8 2593.2 2887.6 3182 3476.4 3770.8 
19 4971 2379 2474 1686.85 2032.55 2378.25 2723.95 3069.65 3415.35 3761.05 4106.75 4452.45 4798.15 
22 2059 n/a* n/a*  374.65 551.95 729.25 906.55 1083.85 1261.15 1438.45 1615.75 1793.05 1970.35 
26 2535 n/a*  n/a* 754.7 942.1 1129.5 1316.9 1504.3 1691.7 1879.1 2066.5 2253.9 2441.3 
27 4686 2717 3037 1602.3 1926.9 2251.5 2576.1 2900.7 3225.3 3549.9 3874.5 4199.1 4523.7 
28 4207 2781 2991 1578.35 1855.05 2131.75 2408.45 2685.15 2961.85 3238.55 3515.25 3791.95 4068.65 
30 4676 2439 2426 1253.15 1613.45 1973.75 2334.05 2694.35 3054.65 3414.95 3775.25 4135.55 4495.85 
32 2062 n/a*  n/a* 375.75 553.25 730.75 908.25 1085.75 1263.25 1440.75 1618.25 1795.75 1973.25 
33 3056 2410 2480 779.8 1019.4 1259 1498.6 1738.2 1977.8 2217.4 2457 2696.6 2936.2 
38 3028 2499 2579 1079.55 1284.65 1489.75 1694.85 1899.95 2105.05 2310.15 2515.25 2720.35 2925.45 
40 2939 2489 2663 793.9 1019.7 1245.5 1471.3 1697.1 1922.9 2148.7 2374.5 2600.3 2826.1 
43 3838 2513 2939 1458.25 1708.75 1959.25 2209.75 2460.25 2710.75 2961.25 3211.75 3462.25 3712.75 
47 3706 2778 2994 1208.45 1471.35 1734.25 1997.15 2260.05 2522.95 2785.85 3048.75 3311.65 3574.55 
52 2057 n/a*  n/a* 552.2 710.6 869 1027.4 1185.8 1344.2 1502.6 1661 1819.4 1977.8 
54 3911 2717 2837 840.6 1163.8 1487 1810.2 2133.4 2456.6 2779.8 3103 3426.2 3749.4 
60 2243 n/a*  n/a* 568.15 744.45 920.75 1097.05 1273.35 1449.65 1625.95 1802.25 1978.55 2154.85 
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Appendix 3 – Stakeholder workshops 
 
The stakeholder vineyards provided meteorological station data from 2018 along with 
information on the management practices they use on their fields shown in the tables below:  
 
Table A3.1. Pest questionnaire. 

 
 
 
 
 
  

Field Type of treatment Insects Fungus Rabbits Birds Others None
a Chemical Insects Fungus
a Biocontrol Insects
b Chemical Insects Fungus
b Biocontrol Insects
c Chemical Insects Fungus Mite
c Biocontrol Rabbits
d Chemical Insects Fungus
d Biocontrol Insects
e Chemical Insects Fungus
e Biocontrol Insects Fungus
f Chemical Insects Fungus
f Biocontrol Insects Fungus
g Chemical Insects Fungus Mite
g Biocontrol None
h Chemical Insects Fungus
h Biocontrol None
i Chemical Insects Fungus
i Biocontrol None
j Chemical Fungus
j Biocontrol None
k Chemical Insects Fungus
k Biocontrol Rabbits Birds
l Chemical Insects Fungus Mite
l Biocontrol Insects
m Chemical Insects Fungus
m Biocontrol Insects
n Chemical Insects Fungus
n Biocontrol None
o Chemical Insects Fungus Mite
o Biocontrol None
p Chemical Insects Fungus
p Biocontrol Insects
q Chemical Insects Fungus
q Biocontrol Insects
r Chemical Insects Fungus
r Biocontrol Insects Rabbits
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Table A3.2. Weed management. 

 
 
 
 
  

Field Most damaging weeds Scientific name Where the weed grows Type of management 
(Chemical, Mechanical, 
Both, Cover crop)

Frequency 
(times per 
year)

Information 
used to decide 
frequency

a Chepica Paspalum paspalodes Inter-row, under-vine C 2 Monitoring
a Correhuela Convulvulus arvensis Inter-row, under-vine C 2 Monitoring
b Chepica Paspalum paspalodes Inter-row, under-vine C 2 Monitoring
b Correhuela Convulvulus arvensis Inter-row, under-vine C 2 Monitoring
c Conyza Conyza bonariensis Inter-row, top-vine B 2 Monitoring
c Correhuela Convulvulus arvensis Inter-row, top-vine B 2 Monitoring
c Acacia caven Acacia caven Inter-row, under-vine M 1 Monitoring
d Chepica Paspalum paspalodes Under-row B 12 Monitoring
d Zanahoria silvestre Daucus carota Under-row B 4 Monitoring
d Falso te Bidens aurea Under-row B 4 Monitoring
e Chepica Paspalum paspalodes Everywhere M 12 Monitoring
e Galega Galega officinalis Everywhere M 12 Monitoring
e Maicillo Sorghum halepense Everywhere M 12 Monitoring
f Chepica Paspalum paspalodes Everywhere M 12 Monitoring
f Galega Galega officinalis Everywhere M 12 Monitoring
f Maicillo Sorghum halepense Everywhere M 12 Monitoring
g Correhuela Convulvulus arvensis Everywhere B 12 Monitoring
g Ballica Lolium sp. Everywhere C 4 Monitoring
g Malva Malva nicaensis Everywhere B 12 Monitoring
h Conyza Conyza bonariensis Inter-row, top-vine B 2 Monitoring
h Lotera Lotus corniculatus Inter-row, top-vine M Monitoring
h Meloza Madia sativa Inter-row, top-vine C 3 Monitoring
i Conyza Conyza bonariensis Everywhere C 3 Monitoring
i Meloza Madia sativa Everywhere C 3 Monitoring
j Chepica Paspalum paspalodes Inter-row, under-vine C 1 Calendar
j Galega Galega officinalis Inter-row, under-vine M 1 Monitoring
j Correhuela Convulvulus arvensis Inter-row, top-vine C 1 Monitoring
k Grass Inter-row, under-vine M 1 Monitoring
k Correhuela Convulvulus arvensis Everywhere C 12 Monitoring
k Chepica Paspalum paspalodes Inter-row, under-vine C 1 Monitoring
l Correhuela Convulvulus arvensis Inter-row M 1 Monitoring
l Qinguilla Chenopodium album Inter-row M 1 Monitoring
l Yuyo Brassica campestris Inter-row, top-vine B 1 Monitoring
m Correhuela Convulvulus arvensis Everywhere B Monitoring
m Epilodyum  Epilobium sp Everywhere B Monitoring
m Qinguilla Chenopodium album Everywhere B Monitoring
n Chepica Paspalum paspalodes Inter-row M, Cover crop 12 Monitoring
n Meloza Madia sativa Inter-row, under-vine M, Cover crop 12 Monitoring
o Correhuela Convulvulus arvensis Under-vine C 12 Monitoring
o Ballica Lolium sp. Under-vine M 12 Monitoring
p Conyza Conyza bonariensis Inter-row, under-vine M 8 Monitoring
p Ballica Lolium sp. Inter-row, under-vine C 8 Monitoring
p Malva Malva nicaensis Under-vine C 8 Monitoring
q Conyza Conyza bonariensis Inter-row, under-vine M 8 Monitoring
q Ballica Lolium sp. Inter-row, under-vine C 8 Monitoring
q Malva Malva nicaensis Under-vine C 8 Monitoring
r Conyza Conyza bonariensis Inter-row, under-vine M 8 Monitoring
r Ballica Lolium sp. Inter-row, under-vine C 8 Monitoring
r Malva Malva nicaensis Under-vine C 8 Monitoring
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Table A3.3. Tillage practices. 

 
 
 
 
 
  

Field

Type of interrow 
management (Tillage, 
Covercrop, Both)

When tillage present 
(Mechanical, Animal, 
Both, Other)

a Both Mechanical
b Both Mechanical
c Tillage Mechanical
d Tillage Mechanical
e Covercrop
f Covercrop
g Both Both
h Tillage Both
i Covercrop
j Tillage Both
k Tillage Mechanical
l Both Mechanical
m Both Mechanical
n Tillage Mechanical
o Both Mechanical
p Both Mechanical
q Both Both
r Both Both
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Table A3.4. Fertiliser application practices. 

 
 
 
 
 
  

Field Type of fertilizer Frequency 
(Times per 
year)

Name Field Type of 
fertilizer

Frequency 
(Times per 
year)

Name

a Chemical 2 Urea i Organic 0
a Chemical 2  Muriate of potassium j Chemical 2 Urea
a Organic 1 Compost j Chemical 2 UAN 32
b Chemical Urea j Chemical 2 Nitrato K
b Chemical 2  Muriate of potassium j Chemical 1 Muriato K
b Organic 1 Compost j Organic 0
c Chemical 2 Urea k Chemical 2
c Chemical 2  Muriate of potassium k Chemical 2
c Chemical 1 monoammonium phosphate k Chemical 2
c Organic 1 Compost k Organic 0
c Organic 1 Fontsoil l Chemical 28 Not specified
c Organic 1 Iberhumus l Chemical 28 Foliasa
d Chemical 1 Nitrogen l Organic 12 Seaweed
d Chemical 1 Potassium m Chemical 2 Not specified
d Chemical 1 Phosphorus m Chemical 28 Not specified
d Chemical 2 Magnesium m Organic 12 Not specified
d Chemical 1 Boron n Organic 28 Humus
d Organic 0 NA n Organic 1 Compost
e Chemical 0 NA n Organic 12 Seaweed
f Chemical 0 NA o Chemical Not specifie Nitrogen
e Organica 1 Compost o Chemical Not specifie Magnesium
f Organica 1 Compost o Chemical Not specifie Potassium
g Chemical 12 Urea o Chemical Not specifie Boron and Zinc
g Chemical 12 Cloruro de o Chemical Not specifie Phosphorus
g Chemical 24 Potasio o Organic Not specifie Compost
g Chemical 24 Nitrato de o Organic Not specifie Guano
g Chemical 24 Potasio p Chemical 20 Nitrogen
g Chemical 24 Sulfato de Mg p Chemical 20 Potassium
g Chemical 1 Zin, Boro p Chemical 32 Magnesium
g Organic 1 Guano p Chemical 4 Boron
g Organic 12 Cal p Chemical 4 Zinc
g Organic 24 Magnesium p Chemical 4 Phosphorus
h Chemical 2 Nitrogen q Chemical 20 Nitrogen
h Chemical 2 Potassium q Chemical 20 Potassium
h Chemical 1 Phosphorus q Chemical 32 Magnesium
h Chemical 2 Boron q Chemical 4 Boron
h Chemical 2 Zinc q Chemical 4 Zinc
h Organic 0 q Chemical 4 Phosphorus
i Chemical 3 Uaal 32 r Chemical 20 Nitrogen
i Chemical 2 Muriato Potasio r Chemical 20 Potassium
i Chemical 2 Sulfato Potasio r Chemical 32 Magnesium
i Chemical 4 Acido Fosforico r Chemical 4 Boron
i Chemical 4 Acido Borico r Chemical 4 Zinc
i Chemical 2 Sulfato de Mg r Chemical 4 Phosphorus
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Table A3.5. Organic management practices. 

 
 
 
 
 
 
 

Field Other 
organic 
practices 
(Yes/No)

Number of 
additional 
organic 
practices

Practice 1 Practice 2 Practice 3

a Yes 3
Protection of fauna that 
controls rabbits Controled hunt of rabbits Vinegar traps of wasps

b Yes 3
Protection of fauna that 
controls rabbits Controled hunt of rabbits Vinegar traps of wasps

c Yes 2
Mecanical control of 
weeds Pheromons for pests

d Yes 2 Biological corridors Hummus application in soil
e Yes 3 Biodynamic products Covercrops Biological corridors
f Yes 3 Biodynamic products Covercrops Biological corridors
g Yes 1 Organic control of pests

h Yes 2
Use of livestock to 
control weeds in winter

Use of guano as 
fertilization 

i Yes 1 Compost
j No 0
k No 0

l Yes 3
Use of livestock to 
control weeds in winter Hummus application in soil Seaweed

m Yes 3
Use of livestock to 
control weeds in winter Covercrops Seaweed

n Yes 3 Compost
Control of pest with 
organic products Control of weed mechanically

o Yes 2 Pheromons for pests Compost

p Yes 3 Pheromons for pests Compost
Use of livestock to control 
weeds in winter

q Yes 3 Pheromons for pests Compost
Use of livestock to control 
weeds in winter

r Yes 3 Pheromons for pests Compost
Use of livestock to control 
weeds in winter
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