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Summary 
Understanding the global environmental impacts of commodity consumption is necessary to 
inform evidence-based action. The Global Environmental Impacts of Consumption (GEIC) 
indicator is a key data source to support this, but data from mined commodities are currently 
out of its scope.  Their inclusion would broaden its applicability and meet the needs of a 
number of additional stakeholders. This report therefore aims to begin filling this data gap, 
presenting a proposed method for including mined commodities within the GEIC dataset, 
and an initial, prototype dataset of material footprint (tonnes of consumption) using the Input-
Output Trade Analysis (IOTA) framework that underpins GEIC, which can act as the basis 
for further potential methodological improvement and could eventually be extended to 
provide information on environmental impacts. 

The method proposed follows broadly the same modelling framework currently used within 
GEIC for agricultural commodities, with some additional steps and processes specific to 
mined commodities, such as the use of conversion factors to ‘translate’ between extracted 
ores and final products. It uses data sources provided by WU Vienna, UN Comtrade and 
EXIOBASE. 

Prototype results, which should be treated with caution due to their experimental nature, are 
provided for metal and mineral commodities consumed by the UK between 2005 and 2018 
(with partial data also available for 2019 and 2020 on request). These can be broken down 
by the country of origin and by the specific metal or mineral of interest.  For example, in 
2018, the mined commodities with the largest mass linked to UK consumption were ‘sand, 
gravel and crushed rock for construction’, ‘stone’, and ‘crude oil’. 

Next steps to develop and improve the method further are outlined, including efforts to use 
more granular commodity-specific information to make fuller use of ore and concentrates 
and alloy physical trade data, ways to improve the allocation of materials downstream in the 
model, and addressing the issue of missing conversion factors. Work to build on and 
improve this initial dataset and further scope the addition of associated environmental 
datasets is provisionally planned for the financial year 2026–2027. 

An appendix also provides details of some scoping work investigating the potential to 
integrate deforestation data, for potential eventual provision of a deforestation footprint 
rather than just a material footprint. 

https://commodityfootprints.earth/
https://commodityfootprints.earth/
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1. Introduction 
1.1. Background and context 

Commodity consumption is a major driver of natural habitat loss and degradation of 
ecosystem services, such as biodiversity, resilience to hazards, and climate change 
mitigation and adaptation.  Understanding how consumption links to these impacts is crucial 
to be able to address them.  The issue has been highlighted in multiple high-profile reports 
and policies, such as the National Food Strategy, the Dasgupta Review, the Government’s 
25 Year Environment Plan and its first revision (the Environmental Improvement Plan), and 
the Convention on Biological Diversity’s Kunming-Montreal Global Biodiversity Framework. 

The Global Environmental Impacts of Consumption (GEIC) indicator is a key data source 
estimating the biodiversity loss, deforestation, water use and a range of other impact types 
associated with the consumption of countries and territories around the world, which can be 
broken down to give commodity-specific results.  However, its scope is currently restricted to 
agricultural crop commodities, and in some cases cattle-related products and timber. This 
leaves an evidence gap relating to mined commodities, such as metals and minerals. 

Mined commodities are a particularly pertinent evidence gap to fill given the high proportion 
of total material footprint that they represent, their unique and significant impacts (e.g. acid 
pollution), and the increasing demand that there is for them, especially in the case of rare 
earth metals to support the transition to Net Zero. The importance of their inclusion was 
highlighted in the initial stakeholder group that was convened to input into the GEIC indicator 
before its original publication in 2021, but they were not possible to include at the time due to 
time and data constraints.  More recently, the Environmental Audit Committee included a 
recommendation that “UK consumption monitoring be developed to incorporate the 
monitoring of mined products, so as to support the Government’s programmes addressing 
the impact of mining-related deforestation” (House of Commons 2024). 

1.2. Aims and scope 

This report therefore aims to begin filling this data gap, presenting a proposed method for 
including mined commodities within the GEIC dataset, and an initial, prototype dataset.  At 
this stage, only the material footprint of metals and minerals is covered. However, it is 
calculated in a way that will allow for country- and commodity-specific estimates of 
environmental impacts to be obtained in future if relevant environmental data can be 
identified (see Appendix 1 for initial scoping work on linking it to deforestation). 

1.3. Disclaimer 

The inclusion of mining data is a novel attempt to expand the commodity coverage of the 
GEIC indicator. Due to difficulties in the data landscape for metals and minerals and the 
early nature of this work, results presented should be considered a prototype dataset. 
Further work is planned to address some of the limitations identified in an iterative process – 
including via discussion with data providers, for example from WU Vienna - but it is likely to 
have lower certainty than the main GEIC dataset (agricultural commodities) for the 
foreseeable future. Users should therefore treat results with caution and consider them to be 
of a preliminary and interim nature and should not at this stage make direct comparisons 
with the main GEIC dataset. 

https://www.nationalfoodstrategy.org/
https://www.gov.uk/government/publications/final-report-the-economics-of-biodiversity-the-dasgupta-review
https://www.gov.uk/government/publications/25-year-environment-plan
https://www.gov.uk/government/publications/environmental-improvement-plan
https://www.cbd.int/gbf/
https://commodityfootprints.earth/
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2. Methods 
The implementation of mining products within the GEIC/IOTA modelling framework largely 
follows the existing logic of agricultural commodities, albeit with some important differences.  
For further information on GEIC’s methods, please refer to Croft et al. (2024).  This report 
details how the methods used for metals and minerals differ to those described in Croft et al. 
(2024).  In the following sections we provide a high-level summary of the key differences, 
then lay out the data available, the exploratory process involved to determine the scope of 
the integration of mining data, the methods utilised for implementation, and finally a 
discussion of existing limitations and areas for potential future improvement.  

2.1. Summary of key methodological differences compared to 
Croft et al. (2024) 

For agricultural products within GEIC, “production” refers to the growing of primary 
commodities (e.g. soybeans, wheat, maize).  Trade data integration is limited to that of the 
same primary forms (note: cattle and timber products are treated slightly differently, due to 
their fundamentally different commodity properties).  Given the nature of mining and the 
products originating from mining, “production” is fundamentally different; extraction often 
consists of bulk ores of varying material quality and content which can then be processed 
and refined and traded at myriad levels of “purity” (i.e. focal material concentration).  As 
such, for integration into the GEIC/IOTA modelling framework, trade data for various 
commodity forms is converted into primary equivalents, with this primary equivalent referring 
to the extracted material within countries of origin. 

Such conversions rely on having available data, but the information available to us (sourced 
from researchers at WU Vienna) is often patchy and incomplete given the complexity and 
opacity of mining production statistics.  We therefore adopt a hierarchical approach to best 
match trade information to available conversion factors, as follows: 

• If a direct match (country, commodity and year) is available, adopt this value. 

• If no direct match is available, but available factors for a given commodity (across 
geographies and time) take one unique value across all available data, use this value. 

• If, for a given country and commodity (across time), a unique conversion factor is 
provided, adopt this value. 

• If different factors are available for a given country/commodity, but not the specific 
year, adopt the value for the nearest available year. 

• If for a given country/commodity no value has been assigned, look within the provided 
factors for the commodity for other countries to see if they are estimated from global 
averages; if there exists such a value adopt this value for the nearest available year. 

This approach successfully provides trade for all country/commodity/year combinations with 
an appropriate conversion factor and allows the reported exports to be converted to raw 
primary equivalents. 

At this point, the production (extraction) data and converted trade data can be run through 
the re-export algorithm within the IOTA codebase to balance and resolve trade flows to 
represent country of origin to country of final import. 
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The resulting data are then hybridised with the financial MRIO component of the modelling 
framework.  Here, another difference occurs from the standard agricultural commodity 
implementation.  Typically, each agricultural product is associated with a single producing 
sector, and when it comes to combining the production and trade data within the MRIO it is 
sales/purchases by/from this sector that are used to allocate imports across purchasing 
sectors within the importing country’s economy.  Because production and trade data for 
mining products cover a broader range of commodity types (i.e. many types of products), 
sectors associated with production (extraction) and sales/purchases (of processed 
commodities) can differ.  The hybridised allocation process accounts for this by 
differentiating between the different appropriate sectors for different materials and splits the 
allocation accordingly.  The split typically consists of one sector for production (extraction) 
and another for traded goods.  Where this is the case, the split allocation is handled quite 
simply by differentiating between domestic supply of domestically sourced products and 
those that have been traded, separating the two, handling the allocations in two stages and 
then recombining.  In some instances, the traded commodities are associated with more 
than one sector of origin.  In such cases, a global average (relative global trade of the 
different commodity types across the time series) is utilised to weight the splitting of imported 
goods across the different sectors accordingly. 

From this point, the remainder of the calculations of subsequent supply chains, and 
ultimately material footprints, follow the same process as within the traditional GEIC/IOTA 
framework (i.e. application of standard MRIO methods on a hybridised Leontief inverse). 

2.2. Data sources 

The following datasets are utilised in the construction of a material footprint for metal and 
mineral products within the GEIC/IOTA framework: 

• Metal and mineral production timeseries: We were supplied by WU Vienna with a 
global metal and mineral production dataset produced for the UN International 
Resource Panel by an international consortium (www.resourcepanel.org/global-
material-flows-database), covering the years 1970 to 2020 (although commodity 
coverage for 2019 and 2020 is incomplete).  This provides a breakdown of the mined 
products and associated masses of material extraction per country of production.  Note 
that in the case of coupled production, as often occurs in the mining of metal ores (e.g. 
combined copper and gold mining), price allocation is used to allocate the ‘auxiliary 
material’ (i.e. the part of the crude metal ore that does not contain the metals) to the 
different metal commodities produced from the same crude ore.  Two classification 
schemes are provided, a more detailed scheme with 129 material categories, and a 
more aggregated ‘Common Compilation Category’ scheme which contains 39 
categories. 

• Metal-to-ore conversion factors: Based on the same UN IRP dataset, we were also 
supplied by WU Vienna with factors that allow conversion between (some) metal 
products (and a handful of relevant non-metal products) and raw material equivalents.  
These allow, for example, traded downstream products (e.g. refined metals) to be 
converted back into the mass of their constituent crude ore extraction.  Thirty-six 
conversion factor classifications were supplied, but individual conversion factors are 
specific to country and year of production. 

• UN Comtrade: Using a combination of HS-code and keyword searches, we identified 
potentially relevant traded products from the UN Comtrade database.  Where this 
information can be linked explicitly to produced commodities with limited assumptions 
(see details below) it is used to map commodity trade. 
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• EXIOBASE MRIO: Raw material production and/or trade is mapped into appropriate 
sectors in the EXIOBASE MRIO to ensure production is distributed through to final 
consumption. 

2.3. Method applied 

The description below outlines the methods applied to link the UN IRP metal and mineral 
production data through to final consumption via the use of the EXIOBASE MRIO and 
(where possible) UN Comtrade data.  It should be noted that, whilst steps have been taken 
to ensure a robust application within the constraints of the data and time availability, several 
limitations exist which could be a target for further work. Additionally, where assumptions 
have been made to connect datasets, further validation of the methods would be beneficial 
(e.g. in consultation with WU Vienna). 

Starting from the metal and mining production data, production is associated, where 
possible, with physical estimates of trade in materials that can be directly linked back 
(without complex assumptions) to raw material extraction (Figure 1). Once the physical-trade 
step is complete, we are left with an estimate of the traded material quantities, per origin, 
and (subtracting trade from production) a remaining amount of production that was not 
distributed using physical trade data.  This remaining quantity is allocated to the relevant 
production sector within the MRIO in the country of origin.  Traded quantities are allocated to 
the relevant producing sector and distributed according to relative sectoral expenditure in the 
destination country (e.g. UK purchases of copper from Chile are based on sector-specific 
economic shares of purchases from Chilean ‘copper production’ sectors).  Standard MRIO 
methods are then utilised to ensure production is mapped in its entirety to final demand. 
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Figure 1. A flow chart illustration of the data pipeline used to produce initial results for a metals and minerals footprint estimate for the UK. The 
green boxes (production data, trade data mass, conversion factors and MRIO) show inputs, the orange boxes (trade data raw equivalent, re-
export corrected trade data, domestically produced supply, traded supply, and hybridised MRIO data) show intermediate data, and the red box 
(results) represents final outputs from the modelling process. 
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2.3.1. Mapping production data to trade   

An initial step was to develop an IOTA-specific classification system based on the material 
classifications provided by UN IRP.  In most cases a 1:1 mapping was made between 
materials in the production dataset and those used in IOTA.  However, there were 
exceptions.  The IOTA classifications adopted seek to balance the specificity available 
across multiple datasets.  For example, UN IRP provides five ore products associated with 
titanium.  However, the trade data are non-specific about the sources of titanium, and 
therefore combining into one category was deemed to reflect the most communicable 
classification.  98 individual commodities (or commodity groups) result from this classification 
exercise.  

Search terms were then developed to identify potentially relevant materials in the UN 
Comtrade dataset.  Given that materials relevant to mining may be spread across multiple 
HS sub-classifications, a search-term-based method was believed to offer the most 
comprehensive option for initial screening (as opposed to searching within codes known to 
contain metal products alone, for example).  The Comtrade API was queried and all resulting 
HS classifications downloaded.  Resulting products identified in the trade records were then 
coded for relevance according to the criteria detailed in Table 1. 

Table 1. Categories that UN Comtrade were grouped into, and their treatment in the 
modelling framework. 

Criterion Description Treatment 

O Ores or concentrates of an 
identifiable metal 

Not modelled in physical 
units (but may be possible in 
future versions; see 
‘Limitations’ section) 

M Metal product that can be 
converted readily into ore-
equivalents using 
conversion factors 

Modelled in physical units, 
subject to associated 
conversion factor availability 

A Specific metal alloy Not modelled in physical 
units (but may be possible in 
future versions; see 
‘Limitations’ section) 

NM Non-metal product that can 
be used directly (or if 
relevant with a conversion 
factor) to link to raw material 
equivalents 

Modelled in physical units, 
with associated conversion 
factor applied where 
relevant (otherwise no 
conversion factor needed) 

U Uncertain metal/mineral 
content, a complex mixed 
product or compound, or 
otherwise difficult to link 
back to relevant ore/raw 
material without complex 
assumptions 

Not modelled in physical 
units 
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Criterion Description Treatment 

X Irrelevant code (i.e. product 
not linked to metal/mineral 
product in question) 

Not relevant for inclusion 

W Metal/mineral derived from 
waste or scrap (and 
therefore not associated 
with material extraction) 

Not relevant for inclusion for 
a material footprint covering 
raw material extraction 

Trade records typically group together (O) ores and concentrates (e.g. HS261000 
“Chromium ores and concentrates“).  This is problematic as the metal content of these 
products can vary drastically and within the classification scheme there is no direct 
mechanism to tell at what concentration the metal exists.  Consultation with Jim West 
(CSIRO) revealed that whilst there may be case-by-case approaches to deal with this issue 
in future iterations (see ‘Limitations’ section), it could not be generally assumed that 
materials would be traded as ores or concentrates and therefore it would not be possible to 
apply general conversion factors.  In this release, therefore, the decision was taken to 
exclude physical trade of ore and concentrate products.  Instead, untraded material 
production is allocated to the relevant production sector in the country of origin.  

A similar issue exists for alloys (A). Certain alloys are specified in the trade data (e.g. HS 
740322 “Copper; copper-tin base alloys (bronze) unwrought”) but without information about 
the respective base metal composition.  Without information, or the application of 
assumptions, to estimate the base-metal content of alloys, in this release it was deemed 
necessary to also exclude physical-trade treatment of alloy products.  

A number of traded materials are for products which include the commodity of interest in 
more downstream processed states or within other complex products/compounds (U) that 
makes it impossible to define target-material content (e.g. HS 741021 “Copper; foil, backed 
with paper, paperboard, plastics or similar backing material, of a thickness (excluding any 
backing) not exceeding 0.15 mm, of refined copper”). Again, these are excluded from the 
physical-trade treatment within IOTA. 

Waste or scrap (W) materials are not directly associated with new raw material extraction. In 
some cases, virgin materials may be used alongside waste products to form recycled 
materials, but the trade data does not contain such specificity, and therefore the decision 
was taken to exclude waste products from the physical-trade treatment.  An exception to this 
is where HS codes do not provide equivalent non-waste linked data (i.e. where virgin metals 
appear to be classified in a category which may also include waste – for example HS810600 
“Bismuth; articles thereof, including waste and scrap”). Information on the trade of waste or 
scrap-derived products is potentially of interest in the context of a circular economy and 
therefore these data might be of interest in alternative applications within IOTA in future.  

2.3.2. MRIO mapping 

The process above identifies the products that can be modelled within IOTA in physical 
units, with any remaining unallocated production then dependent on insertion into the 
primary producing sector in the country of origin.  Both insertion points require the product or 
commodity to be mapped to corresponding EXIOBASE sectors.  To facilitate this, a mapping 
exercise was undertaken using UN IRP material names, relevant HS code, NACE 
classification information and EXIOBASE sector descriptions. 
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For primary production, fifteen EXIOBASE sectors are relevant and can be easily identified. 
In some cases, there is a 1:1 mapping against the raw material production data (e.g. 
EXIOBASE ‘Mining of nickel ores and concentrates’ matches UN IRP ‘Nickel - associated 
ore’). In many cases, however, several raw material products are mapped to a single MRIO 
sector. 

For traded products, the mapping is more complex and careful screening against NACE 
documentation (which provides more detail than, but can be concorded against, EXIOBASE 
classifications) was used to identify the relevant sectors that should be associated with 
traded materials.  Since the relevant traded products are typically associated with base 
metals, there is often just a single relevant downstream sector that applies.  For example, 30 
traded copper products were identified in the trade-screening exercise to be taken forward in 
the physical-trade analysis. These are all, however, associated with the single ‘Copper 
production’ sector in EXIOBASE. In other cases, more than one relevant EXIOBASE sector 
exists. For stone products, for example, NACE descriptions reveal that basic processing of 
stone can be associated with the ‘Quarrying of stone’ EXIOBASE sector, but that further 
shaping/cutting (e.g. for construction should be associated with the ‘Manufacture of other 
non-metallic mineral products n.e.c.’ sector). 

The steps above result in a finalised mapping list whereby an IOTA-specific commodity code 
and name is mapped to: 

• The UN IRP code and material name. 

• The CCC code and material name. 

• Data to be treated as a primary or physically traded component of the modelling; 
process. 

• The respective sector (or sectors) for insertion of production or trade information into 
the MRIO model. 

2.3.3. Conversion factors and determining final product-treatment with the 
IOTA framework 

The process described above determines the theoretical treatment of identified products 
within the IOTA framework.  However, to avoid underestimating the material extraction 
requirements of traded metals (and some other minerals) conversion factors must be used.  
Conversion factors for 36 materials were supplied by WU Vienna based on the UN IRP 
database, of which 34 map onto the materials used in the production dataset. For the most 
part, non-metal products do not have conversion factors (as raw material extraction is 
equivalent to that present in the traded commodity, for example anthracite, limestone).  
Exceptions where conversion factors are provided include ‘oil shale and oil sands’, 
‘nepheline syenite’, ‘potash’, ‘diamond ore, gems’, ‘diamond ore, industrial’ and ‘sulphur ore’.  
Conversion factors are provided for most major traded metals, with the exception being 
aluminium/bauxite.  Where conversion factors are not available for metals (in addition to 
aluminium this includes commodities such as cadmium, magnesium or selenium) we take 
the decision not to model these in physical units due to the likelihood of significantly 
underestimating associated raw material extraction.  Where conversion factors are not 
available for non-metals, these are modelled in physical units (as in most cases it is 
reasonable to assume material equivalence). 

Conversion factors are available per-year and per-country of origin. In some cases, 
production data exist in a particular year and/or country without an equivalent conversion 
factor being supplied.  In instances where a value is missing for a given country and year, 
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but factors exist for alternative years for this country, the closest year’s value is used as a 
substitute (using nearby year(s) if only one date is missing). In cases where a country has no 
conversion factor for any year, a global-average conversion factor is utilised (for the nearest 
possible year if a corresponding year is unavailable). 

In some instances, IOTA commodity classifications are coarser than the availability of 
material production and conversion factor data from UN IRP.  In these instances, we have 
initially selected the conversion factors which result in the lowest ‘material equivalent’ values.  
There is a risk that, in actuality, the commodity is composed of material which has higher 
material extraction requirements, but erring on the lower side allows the MRIO in theory to 
“correct” for this discrepancy, whereas erring on the higher side is more prone to “locking in” 
incorrect flows.  It is likely that this simplifying assumption could be improved in future via 
case-by-case data interrogation (see ‘Limitations’ section) but in the immediate term the 
effect of this assumption may be that a greater volume of recorded material is processed via 
insertion into the primary production sector rather than via bilateral trade.  Within IOTA, total 
consumption and trade is capped at total production, so at the system level the reported 
production quantities are preserved. 

Following application of conversion factors, we obtain the traded production quantities in raw 
material equivalents.  These are then inserted into the IOTA framework in terms of 
production (of the raw material) and trade (of raw equivalent materials).  These get 
processed through the re-export algorithm of the framework to link points of final import to 
points of origin and then get incorporated into the financial MRIO component of the 
framework to complete the modelling of the supply chains.  The modelling is conducted at 
appropriate levels of commodity resolution to ensure that equivalent sector-level information 
is preserved (i.e. the trade and application to the MRIO will be done in similar commodity 
groupings), before being aggregated at the end to give unified raw-equivalence values. 
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3. Results 
Files providing the data produced are available through the JNCC Resource Hub. Below, a 
summary of some key results are presented.  As the methods remain experimental and 
require further improvement, results should be used with caution at this stage.  As 
preparation of the data differs from the main agricultural GEIC dataset in terms of the 
methodology applied and levels of uncertainty involved, users should also avoid comparing 
or aggregating with the main GEIC results at this stage. 

The mined commodities linked to UK consumption in 2018 with the highest mass were 
‘sand, gravel and crushed rock for construction’, ‘stone’, and ‘crude oil’ (Table 1).  Time 
series for several selected commodities (‘sand, gravel and crushed rock for construction’, 
‘bituminous and sub-bituminous coal’, ‘copper’, and ‘lithium’) are shown in Figures 2 to 5, 
including a breakdown of the data by country of origin.  For example, it can be seen that 
‘sand, gravel and crushed rock for construction’ mass consumed by the UK has fluctuated 
over the years, with peaks in 2007 and 2015, and low points in 2010 and 2017, but has 
remained between 250,000 tonnes and 350,000 tonnes throughout the time series.  Most 
‘sand, gravel and crushed rock for construction’ comes from the UK itself, with most of that 
imported coming from China.  Lithium is notable for its significant increase in mass 
consumed within the last two years of the time series (2016–2018), with most UK supply 
originating in Australia. 

Table 2. Top ten mined commodities linked to 2018 UK consumption, with masses (tonnes). 

Commodity Name Tonnes 

Sand, gravel and crushed rock for construction 313,495,003 

Stone 133,861,118 

Crude oil 81,862,638 

Bituminous and sub-bituminous coal 54,804,587 

Natural gas 50,509,942 

Gold - associated ore 48,728,031 

Other clays 30,121,536 

Iron ores 22,999,752 

Copper - associated ore 21,254,072 

https://hub.jncc.gov.uk/assets/bb5a5bcf-6297-4570-bbc3-83fc85a13467
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Figure 2. Timeseries of UK consumption linked to ‘Sand gravel and crushed rock for construction’ production, with top-ten countries of origin; 
tonnes. The order in which the countries appear in the graph match the order in the legend (e.g. UK is the top bar, ‘other’ is the bottom bar).  
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Figure 3. Timeseries of UK consumption linked to ‘Bituminous and sub-bituminous coal’ production, with top-ten countries of origin; tonnes. 
The order in which the countries appear in the graph match the order in the legend (e.g. China is the top bar, ‘other’ is the bottom bar).  
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Figure 4. Timeseries of UK consumption linked to ‘Copper - associated ore’ production, with top-ten countries of origin; tonnes. The order in 
which the countries appear in the graph match the order in the legend (e.g. Chile is the top bar, ‘other’ is the bottom bar).  
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Figure 5. Timeseries of UK consumption linked to ‘Lithium ore’ production, with top-ten countries of origin; tonnes. The order in which the 
countries appear in the graph match the order in the legend (e.g. Australia is the top bar, Portugal is in the second from top bar).
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4. Next steps 

4.1. Limitations and areas for potential improvement  
The following areas of potential improvement have been identified in the course of this initial 
development work. 

4.1.1. Use of ore and concentrates physical trade data  

It is potentially possible to utilise a combination of the monetary value of trade information 
and commodity-price statistics to estimate whether trade is taking place in terms of ores or 
commodities.  Equally, commodity-specific information could help to make assumptions (e.g. 
iron ore traded in ore, copper as concentrates).  Aspects such as regional electricity prices 
could also be used to inform assumptions (e.g. we have received anecdotal evidence that 
Australia has started to ship bauxite to China for processing as local electricity costs have 
made it less profitable to produce aluminium concentrates locally).  Identifying a handful of 
priority metals to undertake such an analysis for would likely be necessary to develop a 
proof of concept. 

4.1.2. Use of alloy physical trade data  

Comtrade reports alloy trade meaning that should data be available on typical metal content 
(e.g. from industry sources) it could be used to approximate the metal content associated 
with certain materials.  Again, focusing on a handful of metals to test out potential options 
would be helpful to developing a proof of concept. 

4.1.3. Improving methods to allocate materials downstream in the MRIO  

Currently, MRIO expenditure data are used to distribute materials after they are inserted into 
the MRIO.  Interrogation of the expenditure data for the UK, however, reveals that this 
general approach is likely to bias dissimilar materials towards certain sectors.  For example, 
the UK ‘Processing of Food products nec’ sector of EXIOBASE appears to have high levels 
of expenditure on the ‘Mining of chemical and fertilizer minerals, production of salt, other 
mining and quarrying n.e.c.’ sector, yet some materials inserted into this sector are unlikely 
to have direct food use.  It may be possibly therefore selectively to include/exclude 
downstream sectors for each commodity to refine allocations further.  A more thorough 
review of expenditure profiles, and commodity-by-commodity mapping to downstream-
utilisation, would be necessary. 

4.1.4. Missing conversion factors  

Some conversion factors are not available within the dataset provided by WU Vienna based 
on the UN IRP database. The most notable is for bauxite/aluminium.  For other materials we 
could explore whether appropriate factors could be obtained from WU Vienna (who are 
working to further improve their database on ore grades and the environmental impacts of 
mining on a site-specific level, through the EU project RAWCLIC) or other sources. 

4.2. Potential future work 

Work to build on and improve this initial dataset and further scope the addition of associated 
environmental datasets is provisionally planned in the coming years.  

https://www.rawclic.eu/home
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https://www.gov.uk/government/publications/25-year-
environment-plan  

  

https://www.gov.uk/government/publications/final-report-the-economics-of-biodiversity-the-dasgupta-review
https://www.gov.uk/government/publications/final-report-the-economics-of-biodiversity-the-dasgupta-review
https://www.gov.uk/government/publications/environmental-improvement-plan
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Appendix 1: Scoping a deforestation extension for mining 
Estimating the deforestation associated with the trade and consumption of mined products 
depends on a suitable data layer, or layers, to connect tree cover loss through to mining 
activity.  Additionally, in the context of the GEIC indicator, which seeks to maintain the 
commodity-specificity of impacts where possible, data which allow associated mine-
production output to be obtained per unit of deforestation would be beneficial. 

There have been prior attempts to compile mining-linked deforestation footprints. For 
example, Hoang and Kanemoto (2021) utilised Curtis et al. (2018) ‘deforestation driver’ 
information to allocate tree cover loss associated with an ‘agricultural, mining and energy 
infrastructure’ category through the MRIO sectors based on country-wise economic outputs.  
Whilst this kind of approach represents a potentially viable mechanism for integration of 
mining linked deforestation data within the GEIC dataset, implementation of this kind within 
the IOTA framework would depend wholly on the economic structure of the MRIO to 
determine the final-demand drivers of forest loss.  In other words, aggregated deforestation 
across multiple production drivers (agricultural and non-agricultural) would have to be 
apportioned not via granular commodity-specific information but rather according to relative 
levels of economic activity.  An approach of this kind would depart from a main ‘value add’ of 
the hybrid MRIO structure that IOTA allows; that of retaining commodity-specificity linked to 
production impacts.  Furthermore, the aggregate nature of the deforestation-driver 
information provided via utilisation of the Curtis et al. (2018) dataset alone sits in contrast 
with the specific crop-information provided by the deforestation data currently used within 
GEIC (Singh & Persson 2024) whilst also overlapping with the drivers (agriculture) that 
Chalmers’ data model.  Whilst measures could be taken to ‘remove’ deforestation calculated 
from one dataset from another estimate, this represents an inelegant solution.  

A recent WWF report (contributed to by WU Vienna authors, among others) indicates that 
the majority of mining related deforestation can be attributed to gold and coal (Kramer et al. 
2023).  Their study estimates both direct and indirect deforestation from mining.  For the 
former, geospatial records of mine location are utilised (see below for further details on the 
geospatial polygons utilised) which are overlaid with Hansen/GFW forest change information 
to estimate deforestation linked to mines occurring since the year 2000.  Data from the SNL 
Metals and Mining data was then cross-referenced to ‘clusters’ of mining polygons to relate 
the forest cover loss within each mining area to reported commodity production.  In cases 
where several commodities were mined within a single cluster of mined polygons, price 
allocation was applied to distribute responsibility for deforestation impacts between different 
commodities (note that this has the effect of biasing deforestation attribution towards high-
value commodities such as gold).  Tentative indirect deforestation effects are determined by 
adding buffer-zones around the polygons.  Deforestation per commodity is then attributed to 
the GLORIA MRIO model (which includes ten mining sectors).  Results are not annualised 
(see below for discussion); rather the consumption footprint represents the total 
deforestation impact estimated over the 2000–2021 period covered.   

In the context of GEIC, a potentially appropriate approach exists in the exploration of a 
similar direct integration of geospatial mining information into the existing deforestation data 
layer utilised by GEIC.  The existing deforestation dataset within the GEIC indicator depends 
on deforestation estimates compiled, on a per-commodity basis, by the Chalmers University 
of Technology.  Previous versions of the dataset (Pendrill et al. 2022) were dependent on 
statistical ‘land balance’ allocations of tree cover loss through to land-use classifications and 
then to crop-types.  This utilised consistent (FAO) records of land utilisation (which do not 
contain estimates for mining).  However, more recently, advances have been made to allow 
spatially- and crop-specific remote-sensing data to be utilised in the first instance with land-
balance assumptions being used only where spatial data do not exist (Singh & Persson 

https://glad.earthengine.app/view/global-forest-change#bl=off;old=off;dl=1;lon=20;lat=10;zoom=3;
https://www.marketplace.spglobal.com/en/datasets/snl-metals-mining-(19)
https://www.marketplace.spglobal.com/en/datasets/snl-metals-mining-(19)
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2024).  An option exists, therefore, for geospatial information on mine extent - such as that 
from Maus et al. (2022; as used in the WWF study) to be associated, in a spatially explicit 
manner, with tree cover loss data utilised by Chalmers (in an equivalent manner to, for 
example, soy-linked land occupation being used).  In a basic case, this could result in a 
general ‘mining’ attribution to deforestation.  To provide a year-on-year assessment (as is 
conducted for the existing deforestation layer) sensible assumptions about the time-period 
over which initial forest loss can be attributed to mining products would need to be adopted 
(as opposed to a total deforestation sum as published in the WWF study).  If the use of 
mine-specific production data was deemed to be too complex, a further basic assumption 
could be made that this general ‘mining activity’ assessment constitutes the measurable 
deforestation footprint of mining associated with a country, which could be linked to all 
(appropriate) aggregated national mining production estimates in that country before linkage 
to the hybrid-MRIO framework.  Whilst limiting, this assumption would likely improve, for 
example, upon the Hoang and Kanemoto (2021) approach but would lack the specificity of 
the WWF (Kramer et al. 2023) approach. 

A more powerful option would be, as per the WWF work, to attempt to link geospatial mining 
activities to commodity-specific outputs where possible (at either the individual polygon or 
polygon-cluster level).  Jasansky et al. (2023) provide an open database on global coal and 
metal mine production which has the potential to facilitate this, which ongoing work through 
the EU RAWCLIC project is aiming to update.  They provide an open database of mining 
production at the level of 1171 individual mines (artisanal and small-scale mining is not 
included), reporting for 80 different materials in the period 2000–2021.  Data were gathered 
manually from public records (mainly sustainability reports from mining companies).  Within 
the accounting framework used for the dataset, annual data on the extraction and production 
of coal, metal order, metal concentrates and non-metallic minerals are collected.  These data 
may also be valuable in refining estimates of ore/concentrate levels in international trade 
statistics - see section above.  This database is not comprehensive - it misses information 
which is not placed in the public domain.  A comparison was made by the authors with the 
International Resource Panel global production dataset, revealing that (including China 
where coverage within the open database is poor) coverage for copper is reasonably good 
(60–70% over the time period analysed) but for gold is around 30–40%, with potential for 
high year-on-year variability.  As such, it will only provide a partial picture of production 
within a country (some countries’ estimates are much better than others), and an uncertain 
picture over time.  Nonetheless, where records can be cross referenced to geospatial land-
occupation (e.g. Maus et al. 2022) and material outputs derived, it would theoretically be 
possible to attribute deforestation to some, specific, mined commodities.  Further 
assumptions would likely be needed on co-products/poly-metallic outputs from mines which 
may not be fully reported by companies, or instances where multiple mines are clustered into 
‘areas’ in the disclosed records. 

Both the Jasansky et al. (2023) and Maus et al. (2022) datasets are available via the 
FinePrint project website.  This example, shows a bauxite facility in Brazil which is 
associated with a geospatial mining polygon appropriate for overlaying with tree cover 
information.  (Note that this has not been conducted here; the mine sits within the Amazon 
biome and would therefore be associated with deforestation but was established in 1979 and 
therefore tree cover loss would likely have been historic, prior to the GEIC timeseries).  
Polygons may, however, not align perfectly (or at all) with the open database’s geospatial 
information.  Therefore, careful alignment will be necessary between data resources to link 
any tree cover loss through to production and trade.  We understand that WU Vienna are in 
the process of trying to consolidate these datasets themselves, which would reduce potential 
workloads in any preparation for GEIC. 

Ultimately, it appears that - with recent, and short-term future, data releases - there may be 
sufficient data in the public domain to provide reasonable - if still partial - allocations of 

https://www.rawclic.eu/home
https://www.resourcepanel.org/
https://www.fineprint.global/
https://www.fineprint.global/visualisations/global-coal-and-metal-mining-viewer/?_inputs_&facility_id=%22COM00861.00%22
https://www.fineprint.global/visualisations/global-coal-and-metal-mining-viewer/?_inputs_&facility_id=%22COM00861.00%22
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deforestation through to mined-commodity production.  However, third-party resources 
remain at a stage where there is no ‘off-the-shelf’ data availability to do so and therefore 
further development work would be needed to integrate information into a deforestation-
linked dataset.  A potential approach to progressing work within the context of the GEIC 
indicator and/or more broadly via collaboration with the Chalmers University of Technology, 
therefore, is to focus initially on commodities which are both of high-interest and have 
reasonable data-quality.  For the former, the EAC recently called for gold mining to be 
investigated in more detail as a source of deforestation risk (House of Commons 2024).  For 
the latter, Jasansky et al. (2023)’s dataset indicates that whilst coverage of global gold mines 
is in the region of 30–40%, it does benefit from being a specific metal product covered 
individually in the dataset.  Thus, we now turn to gold mining information in more detail. 

Gold mining as a source of deforestation and potential data 
availability 

There are a handful of studies that show links between gold mining and deforestation, 
including the WWF study noted above (Kramer et al. 2023), which (from an economic-
allocation standpoint) determines gold to be the leading mining-driver of deforestation.  
Illegal gold mining is also an issue, having increased in recent years, particularly in South 
America around the Amazon (Asner et al. 2013; Alvarez-Berríos & Aide 2015; Asner & 
Tupayachi 2016) driven by increases in gold prices in international markets and in some 
countries such as Brazil, encouraged by political support.  Where forests are not cleared, 
they are significantly degraded by gold mining activities (Espejo et al. 2018), severely limiting 
the potential for ecosystem recovery (Kalamandeen et al. 2020) with mines often abandoned 
once their reserves have been exhausted.  

Research has also been conducted in West Africa (e.g. Ghana; Schueler et al. 2011) on the 
impacts of gold mining on the environment.  However, there appear to have been fewer 
studies in recent years.  Small scale gold mining is difficult to detect and has received little 
attention compared to agricultural activities due to the comparatively small geographical 
extent it covers (Alvarez-Berríos & Aide 2015).  As above, satellite imagery has recently 
been utilised to detect gold mines and create datasets on where these activities are 
occurring.  As things stand, however, these still mainly cover large scale mining.  
Furthermore, gold is often mined in combination with other metals, which makes it 
challenging to attribute deforestation directly to a single commodity. 

Australia and Russia are the two countries with the highest gold reserves, followed by South 
Africa, USA and China (Statista).  However most gold-related deforestation comes from four 
countries: Peru, Suriname, Russia and Brazil (Kramer et al. 2023).  In order to examine 
whether available data can be used to explore gold mining as a source of deforestation, we 
have undertaken work to screen the previously mentioned datasets (via the Fineprint Data 
Visualisation tool) in order to understand the level of alignment between the two.  The share 
of production covered by spatially explicit data for gold mining operations lies roughly 
between 30–40%, which is calculated by comparing production data from the open mining 
database (Jasansky et al. 2023) on global coal and metal mine production, to national 
production data.  These data were cross referenced with the spatial data on the extent of the 
gold mines provided by Maus et al. 2022. 

Although the share of gold production globally covered by the data is relatively low, there is 
reasonable coverage in terms of spatial data for the gold mines with production data 
provided by Jasansky et al. (2023).  For example, for 2018, there are 183 listed mines in the 
open database on global coal and metal mine production which include gold as a 
commodity.  When cross referenced with the Maus et al. (2022) dataset, only 5% of data 
points are not directly aligned with spatial information on the extent of mining activities.  Of 

https://www.statista.com/statistics/267998/countries-with-the-largest-gold-reserves/
https://www.fineprint.global/visualisations/viewer/
https://www.fineprint.global/visualisations/viewer/
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these mines, the vast majority show polygons nearby the mining data points which could be 
assumed to be those matching the production dataset.  In a handful of examples, a greater 
mismatch exists.  As an example, facility COM01256.00 located in Australia shows the 
spatial location of the mine as approximately 40km from where the data point coordinates 
are listed.  Satellite imagery confirms there is a mine in the location of the spatial polygon 
(Figure 6).  However, it also shows mining activity where the data point is located which is 
not covered in the spatial data. 

 
Figure 6. Facility COM01256.00 located in Australia, showing the spatial location of the 
mine as approximately 40km from where the data point coordinates are listed. Image 
reproduced from Fineprint Geovisualisations under CC BY-NC-SA 4.0 license. 

In conclusion, our explorations show a reasonably high degree of alignment between the two 
datasets, however in a small percentage of cases the full extent of mining activities is not 
covered by the spatial data.  Overall, this indicates that whilst the global coverage of gold 
production is not high, there is potential to use spatial data on gold mining to explore 
associated deforestation from this (and other mined) commodities. 

https://www.fineprint.global/visualisations/viewer/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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