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Summary 
This report outlines a proposed method for a soil health indicator for England.  It is planned 
that this method will be used to produce results for use against the 25 Year Environment 
Plan’s Outcome Indicator Framework, to be published by JNCC as an Official Statistic in 
Development.  Such results are not presented within this document itself, as the field data 
required to feed into the models are not yet publicly available.  The planned approach is 
published here to facilitate early user input and feedback.  An updated version of this 
document (including any further method changes made between this proposal and final 
methods used to calculate the indicator) will be published as the accompanying technical 
document alongside the ultimate Official Statistic in Development publication. 

Many ecosystem services (ES) rely on healthy soils for their delivery.  The importance of 
monitoring and managing soil health is highlighted in a number of recent policy documents 
and government work areas, such as the Environmental Improvement Plan, the ‘State of the 
Environment: Soil’ report and the Net Zero Strategy.  Understanding progress against such 
policies requires the ability to measure and track changes in soil health over time.  This 
project therefore aims to outline a proposed method for an indicator of soil health in England.  
It builds on a previous proof-of-concept project (Harris et al. 2023), but aims to apply the 
concepts developed there to produce a national statistic, rather than a mapped output aimed 
at local scale stakeholders.  The next step will be to publish an initial, interim statistic, which 
can be improved on iteratively. 

For the purposes of this project, soil health is defined as “soils’ contributions to ecosystem 
service delivery”.  Models have been developed to describe soils’ contribution to three 
ecosystem services: climate regulation, water regulation, and sustainable production of 
food/fibre. 

It is proposed that results will be shown on a ‘gauge’ style visualisation (see Figure 2, 
Section 2), which allows the user to gain an understanding of both modelled probability of 
absolute ES delivery being high and the potential to increase that probability.  This is 
because, for example, a sandy soil in good condition will store less carbon than a peaty soil 
in poor condition; so understanding both overall performance and performance against what 
is possible is important. 

https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/guidetoofficialstatisticsindevelopment
https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/guidetoofficialstatisticsindevelopment
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1. Introduction 
This report starts by outlining the background and context for developing a national-scale 
indicator of soil health, explaining why this is important and how it links to current national 
policies, and elaborating on the aims and scope of the current work (Section 1).  It then 
describes the general concept being proposed, including the definition of soil health that is 
being used in the context of this work and descriptions of what an indicator is, how a 
national-scale indicator differs from a local-scale tool, planned visualisations for presentation 
of the indicator, and the process that has been used to develop the method (Section 2).  
Following this, technical detail is provided on the method proposed for each of the three 
aspects of soil health (soils’ contribution to water regulation, soils’ contribution to long-term 
carbon storage, and soils' contribution to sustainable food/fibre provision) that will be 
reported on initially, as well as early comments about ongoing work to develop a soil 
biodiversity indicator (Section 3).  Finally, conclusions and next steps are outlined (Section 
4) and a glossary is provided, before three appendices give supplementary information on 
each of the three models proposed. 

1.1. Background and context 

Many ecosystem services (ES) rely on healthy soils for their delivery.  For example, soils are 
an essential part of the water regulation system, contributing to runoff reduction and drought 
resilience (Keesstra et al. 2021).  Soils store three times as much carbon as the atmosphere 
does, playing a crucial role in carbon cycling and climate regulation (Ontl & Schulte 2012).  
Soils are also key for the provision of food and fibre, with an estimated 95% of the global 
food supply produced, directly or indirectly, on soils (FAO 2015). 

The importance of monitoring and managing soil health is highlighted in a number of recent 
policy documents and government work areas, including: 

• The Government’s 25 Year Environment Plan (Defra 2018), and its first revision, the 
Environmental Improvement Plan (Defra 2023), which commit to including an 
indicator on “healthy soils” as one of 66 indicators of environmental change in their 
associated Outcome Indicator Framework (Defra 2021); 

• The ‘State of the Environment: Soil’ report (Environment Agency 2021), which 
stated that “there are insufficient data on the health of our soils”; 

• The Sustainable Farming Incentive (Defra 2022), which rewards famers for various 
actions that improve soil health; 

• The Net Zero Strategy, which refers to soils’ potential to help meet climate targets, 
especially peat soils (UK Government 2021); 

• The State of Natural Capital Report for England 2024 (Lusardi et al. 2024) which 
highlights the importance of soil health in reducing a range of risks to natural 
capital; 

• The latest Office for Environmental Protection report which highlights that “there is 
uncertainty around delivering sustainable soils due to the lack of an available soil 
health indicator” (OEP 2025). 

Understanding progress against such policies requires the ability to measure and track 
changes in soil health over time.  However, assessing and monitoring soil health presents a 
significant challenge due to its complex nature, encompassing physical, chemical, and 
biological properties.  England’s soils also have a diverse range of soil types, climates, and 
land uses.  Consequently, a national soil health indicator is currently lacking. 
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This report therefore aims to outline a proposed method for a national-scale indicator of soil 
health in England, addressing these complexities.  It will act as a first step towards fulfilling 
the clear policy need for a soil health indicator.  The commitment to publishing an indicator 
as part of the Outcome Indicator Framework is the work’s primary policy driver. 

1.2. Aims and scope 

The aim of the current work is to produce a national-scale indicator for use in Defra’s 
Outcome Indicator Framework.  It seeks a way to provide a nationally representative 
baseline statistic estimating soil health for England as a whole, with the view to repeating the 
same analysis in future to track change over time.  As such, the indicator will not provide a 
mapped output, but rather a numerical score indicating soil health for the country as a whole, 
and for subsets of the data related to each land cover and soil type combination.  The 
purpose of this is to be used by those designing and implementing national scale policy, 
rather than by landowners and local scale decision makers. 

The current report aims only to present the proposed method for the indicator; presentation 
of results is out of scope at this stage.  It is planned that an initial, interim statistic will be 
published in 2026. 

It should be noted that this scope differs significantly from JNCC’s previous soil health 
indicator work (Harris et al. 2023), which aimed to produce a local-scale decision support 
tool, rather than a nationally representative indicator.  However, it does build on this work in 
terms of aligning with the definitions and modelling frameworks that were developed. 
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2. The concept 

2.1. Defining soil health 

For the purposes of this project, soil health is defined as “soils’ contributions to ecosystem 
service delivery,” as proposed in Harris et al. 2023.  Three ecosystem services were 
selected for consideration: climate regulation through soils’ contribution to long-term carbon 
storage, water regulation through soils’ contribution to runoff reduction, and food/fibre 
provision through soils’ contribution to sustainable production of food/fibre.  Metrics relating 
to soil biodiversity are also under development, but are at an earlier stage due to data 
availability and so are not presented within this proposal.  The final indicator will present 
results from these four themes separately.  This will allow users to understand soil health 
from a variety of perspectives and more effectively target action. 

Also core to the project’s concept of soil health is the idea that not all soils will have the 
same inherent capability of delivering ecosystem services.  For example, a sandy soil in 
good condition will store less carbon than a peaty soil in poor condition (BSSS 2021).  It is 
therefore important to report on how the soil is performing relative to its potential, rather than 
only in absolute terms.  This concept is explained further in Section 2.4 below. 

2.2. What is an indicator? 

An indicator is a statistic that describes change through time.  This change may relate to a 
driver (e.g. how are human population levels and demand for food production changing 
through time?), a pressure (e.g. how are tillage practices changing through time?), a state 
(e.g. how are the physical, chemical and biological properties of the soil changing through 
time?), an impact (e.g. how are soils’ contributions to ecosystem services changing through 
time?), or a response (e.g. how many farmers are taking up soil actions under agri-
environment schemes?).  Indicators aim to be representative, for example aggregating data 
from a random selection of samples, or from a selection of samples that are stratified to 
ensure that samples from all groups of interest (e.g. habitats for environmental indicators, 
socio-demographic groups for social science indicators) are included in a representative 
proportion.  Indicators can be either measured (e.g. presenting information aggregated 
directly from a sample of earthworm counts) or modelled (e.g. bringing these earthworm data 
together with other data sources to predict the impact of these factors on soils’ contribution 
to water regulation).  In both of these cases, the results are based on assumptions that must 
be clearly understood when interpreting them. 

For the purposes of this project, the water, food/fibre and one of the two carbon metrics 
presented will be based on modelled impact indicators.  In the case of the other carbon 
metric, and eventually the biodiversity metrics, state indicators will be used instead. 

The primary focus on impact indicators is linked to the definition of soil health stated above 
(soils’ contribution to ecosystem service delivery).  This definition arose from the fact that 
state indicators (e.g. the physical, chemical and biological properties of soil) can be difficult 
to interpret in the context of ‘health’ (i.e. is it good or bad that this variable is at that level?).  
In contrast, bringing these factors together alongside pressure variables (e.g. management 
options) to provide a prediction of ultimate impact on ecosystem service delivery against a 
potential, can be more meaningfully understood. 

The modelled approach was chosen because it is difficult to measure soils’ contribution to 
ecosystem service delivery directly.  For example, it is possible to measure flooding over 
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time, but it is not possible to measure how much of this flooding was linked to soil health 
specifically, compared to other factors. 

In the case of biodiversity, a state indicator approach was considered more appropriate, as 
data are currently being collected on biodiversity directly.  In the case of carbon storage, 
both a state indicator reporting current carbon content of the soil and a model predicting the 
impact of other factors on how likely that delivery of this ecosystem service will continue into 
the future are proposed.  This makes use of measured carbon data, whilst also responding 
to warnings in the literature that current carbon levels may have little relevance to stability 
and therefore long-term ecosystem service delivery. 

In the case of this project, the initial aim is to produce a baseline statistic.  It will not be 
possible to describe change through time until the analyses have been re-run with additional 
data cycles to be collected into the future.  This baseline statistic will be national in scope 
aiming to be representative for England as a whole, based on bringing together field data 
from the Natural Capital and Ecosystem Assessment (NCEA) programme’s England 
Ecosystem Survey (EES) and National Forest Inventory Plus survey (NFI+; the equivalent 
for forested locations), with averages taken from other national data sources (e.g. spatial 
data such as GIS layers and farmer surveys).   

2.3. Scaling up 

The current phase of work has focused on scaling up the modelling approach that was 
developed in the proof-of-concept (Harris et al. 2023) to be nationally, rather than locally, 
applicable.  One key change that has resulted relates to the data sources used.  A national-
scale indicator will not be able to rely on local knowledge and management decisions to 
input into the model, as was done in the proof-of-concept study.  It will require data that are 
applicable to the entire country, but the data do not need to be as detailed as in a land 
parcel scale indicator.  For example, instead of knowing whether a certain management 
practice is taking place in a particular field, the national model needs to know what 
proportion of the country that management practice is taking place in.  Much of the work 
related to scaling up the concept has therefore been around identifying and assessing 
potential data sources for these factors (see Appendices 1 to 3). 

Much of these data will be provided through surveys that are currently underway as part of 
Defra’s NCEA programme, which will allow for nationally representative analyses to be 
undertaken.  These include the NCEA’s EES and the NFI+ surveys.  However, other data 
sources have also been identified, such as the use of soil moisture data from Copernicus 
and farm survey data for management practices (see Figure 1 for a visual representation of 
data sources used, and Appendices 1 to 3 for a detailed list of data sources against each 
variable that is included).  A key requirement in identifying these data sources was for them 
to be openly available, to ensure transparency. 

Section 3.1.1 provides further information about how scaling up is addressed within the 
modelling process itself. 

 

 

https://naturalengland.blog.gov.uk/2024/04/03/england-ecosystem-survey-introducing-englands-largest-ever-field-survey/
https://naturalengland.blog.gov.uk/2024/04/03/england-ecosystem-survey-introducing-englands-largest-ever-field-survey/
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Figure 1. A visual representation of the data sources used, and how these are combined 
into the ultimate Bayesian Belief Network development and modelling (CPT = conditional 
probability tables, see Section 3 for further information). 

2.4. Visualisation of results 

2.4.1. Headline results 

Each of the three ecosystem services (soils’ long-term carbon storage, soils’ contribution to 
water regulation through runoff reduction, and soils’ contribution to food/fibre provision – see 
Sections 3.2 to 3.4 for further details) will have a headline result representing the probability 
that ES delivery is high.  In addition, carbon will also have a second headline result, which 
simply reports on actual carbon stocks, as measured in the field by the EES.  Having both 
measured and modelled versions for carbon is useful, as the measured values provide a 
snapshot in time of current levels of carbon being stored in our soils, whereas the modelled 
values predict the likely stability of this carbon, and ability of the soils to continue storing it 
longer term.  Measured values for biodiversity will also be included within the suite of 
headline indicators presented, but are not discussed here as the approach to be taken 
remains at an earlier stage of development. 

Each of the headline results will be presented as a gauge style visualisation, as illustrated in 
Figure 2. 
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Figure 2. Mockup visualisation illustrating how results will be presented for each Ecosytem 
Service (ES) of interest.  In this example, the pointer is to the left of middle, showing middle-
low probability of high ES delivery.  However, the pointer is fairly far to the right within the 
context of the range, suggesting that there is not great scope to increase the probability of 
high ES delivery.  This would suggest that England’s soils have significant inherent 
constraining factors on delivery of this ES (as the range is situated towards the left), but that 
factors that it is possible to influence (such as management) are being optimised relatively 
well within that context. 

The pointer on the gauge shows the probability of high ES delivery, with this increasing as 
the pointer moves towards the right of the dial.  The range shows how that estimate sits 
within the constraints of what is possible based on the inherent properties of England’s soils.  
For example, it is difficult to influence soil texture or climatic factors, and so the variation 
possible based on these factors is not included within the range; whereas it is possible to 
influence other factors such as management, and so the variation possible related to these 
factors is included within the range. 

It is important to understand both the absolute (pointer) and potential (range) values 
associated with the probability of ES delivery being high, because this can mean different 
things in different places.  For example, if the country being analysed were to have a very 
high proportion of peaty soils, the range (what is possible) would sit towards the right of the 
gauge when estimating carbon storage.  In contrast, if it had very sandy soils which 
inherently contain lower levels of carbon, it would sit towards the left of the gauge.  The 
absolute value therefore allows for assessment of how great a contribution soils are making 
to the probability of ES delivery being high overall, presented on a comparable and 
consistent scale that can be used across measurements (e.g. if comparing the England 
value to a regional subset, to a subset of the data consisting of only a particular land use 
type, or to application of the same method in another UK country). In contrast, comparing the 
probability that ES delivery is high to the range of potential values allows for an 
understanding of how well England is doing at protecting ES delivery, as far as is in our 
control.  For example, if the pointer is sitting towards the right of the range, then there is a 
high probability that ES delivery is high in comparison to what is possible, regardless of 
where on the gauge the range itself lies. 

Mock data to illustrate planned
visualisation – these are NOT

actual indicator results

Key The ‘pointer’: an estimate of
the probability that ES delivery
will be high.
The ‘dial’: the scale of
probability that the pointer is
measuring against. The further
right the pointer on the scale,
the greater the probability of
high ES delivery.
The ‘range’: the maximum and
minimum probabilities of high ES
delivery possible, given
constraints of the system being
measured. The further right the
pointer within this range, the
closer ES delivery is to reaching
its potential through optimal
management.
The ‘gauge’: the visualisation as
a whole, made up of the dial, the
pointer, and the range.

0.1

0

0.2

0.3

0.4 0.5

0.7

0.6

0.8

0.9

1



JNCC Report 793 

7 

A greater probability of high ES delivery is therefore illustrated on the visualisation as the 
pointer being further to the right of the dial; whilst a greater probability of high ES delivery 
against its potential is illustrated on the visualisation as the pointer being further to the right 
of the range.  Users of the data should consider both of these factors. 

To show change through time, as will be required once data from a second time point are 
available, a second visualisation will be needed.  Consultation is ongoing regarding the 
clearest way in which to present this. 

2.4.2. Additional results within the indicator webpage 

In addition to the national results presented as headline results, the indicator webpage will 
include a series of visualisations showing a more detailed breakdown of the data, within a 
later section.  This will include the same styles of visualisation as described in Section 2.4.1, 
but with a separate gauge presented for each land cover and soil type combination.  This will 
allow users to explore what is influencing the national-scale trends. 

2.4.3. Additional results within the technical documentation 

The results from the modelling will provide three probabilities, which sum to one.  These 
represent the likelihood that ES delivery is low, medium and high, given the data that were 
input into the model.  Feedback from the expert panel sessions and wider stakeholder 
engagement suggested that this concept, with its three separate pieces of information, was 
too complex to communicate and visualise simply.  Therefore, the headline results, as 
described above, will focus only on the probability that ES delivery will be high.  This does 
lose some information compared to what is available.  However, that additional information 
will be available as an Appendix to the technical documentation for anyone who is 
interested.  This will be presented as a series of histograms associated with each model 
node (Figure 3). 
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Figure 3. Mockup visualisations of the more detailed results that will be presented within an 
Appendix to the technical documentation when results are available (note that the above 
graphs are entirely illustrative and do not represent actual indicator results).  At each input, 
intermediate, and final ES delivery node within the model, a histogram will be presented to 
represent the probability of that node being high, medium or low, based on the input data 
collated (for the input nodes), or the results of the BBN modelling (for intermediate and final 
nodes). 
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3. The underpinning models 
This section provides an introduction to the type of modelling that will underpin the estimates 
for each of the three ecosystem services selected (water, carbon and food/fibre provision); 
and a summary of how this modelling will be employed and presented in each of these three 
cases.  Further detail on the data sources that will be used, justification of the variables 
included, and the weightings and groupings that will be applied to these three models can be 
found in Appendices 1 to 3.  The methods behind the proposed biodiversity part of the 
indicator suite are not presented here in full, but brief comment is made on the likely general 
approach to be taken. 

3.1. An introduction to Bayesian Belief Networks 

The type of modelling that will underpin the estimates of ecosystem service delivery is 
known as Bayesian Belief Network (BBN) modelling (Barbrook-Johnson & Penn 2022).  
Bayesian networks are a type of probabilistic model based on Bayes theorem, which 
mathematically describes what the probability of an event occurring is, based on prior 
knowledge of conditions that might be related to the event.  BBNs can be represented 
visually (Figure 4), in a graphical ‘flow chart’ style known as a directed acyclic graph (DAG).  
This consists of ‘nodes’ (the variables) and ‘edges’ (the relationships between the variables).  
The relationships between two nodes (‘conditional probabilities’) can be defined based on 
training data, or manually based on values from the literature or expert knowledge.  Specific 
relationships between variables can be modelled; for example, if one variable has a non-
linear effect when interacting with another variable, conditional probabilities can be used to 
account for those specific interactions. 

 

Figure 4. An illustrative example of a Bayesian Belief Network (BBN) in its graphical ‘flow 
chart’ style format, known as a directed acyclic graph (DAG).  In this case the nodes consist 
of occupation, age, and medical history.  The model will use conditional probabilities to 
predict the likelihood of admission to hospital based on these factors. 

BBNs were selected as the modelling approach to use for a number of reasons.  Their use 
makes it possible to integrate different types of knowledge, including spatial data and 
stakeholder expertise.  Whilst data on the relationships between some soil variables are 
available, this is not true across the board.  Being able to use expert input where required is 
therefore important.  This flexibility will also allow for enhancement of the model in future as 
improved data sources are published. 

Risk of heart 
attack

Family history

Diet

Age

Smoking
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The probabilistic nature of BBNs also allows them to inherently report on uncertainty.  The 
most likely outcome of a particular combination of factors is often not the only possible 
outcome.  Understanding the probability associated with this outcome is therefore important 
to gain a risk-based understanding of the issue.  

3.1.1. Application of Bayesian Belief Networks within the indicator 

At the time of writing, the methods for running the models are still in development. However, 
they will be based on the directed acyclic graphs (DAGs) illustrated within Sections 3.2 to 
3.4, which were created based on literature review and expert panel consultation.  Each 
initial node in the DAGs will have an associated input dataset. In preparation for input into 
the model, the data will be cleaned and classified according to the methods provided in 
Appendices 1, 2, and 3.  Conditional Probability Tables (CPTs) for the model will also be 
created for the DAG based on input from experts on the effect of each node on the others, 
with the potential for some automation of this process in R.  

The BBN will be created in R by combining the DAGs and CPTs, and results will likely be 
obtained through a query to the network that uses the prepared input data to update the 
probabilities of each input node and propagate this through the network.  This may be 
through querying the model using data collected at known locations to “set” the nodes to a 
certain value, or by calculating averages across England for each input data node and using 
this to update the model.  The output for the model will be the probability of the final node 
representing ecosystem service provision being high, medium, or low, all represented in 
decimal form, with particular emphasis for the purposes of the indicator being placed on the 
probability of the node being “high”. 

3.2. Water: soils’ contribution to runoff reduction 

3.2.1. What the results will show 

As explained in Section 2.4., the headline results for the water model will capture two key 
pieces of information: 

• How much are soils contributing to reduction of runoff risk in England?  This will 
constitute the probability of high ecosystem service delivery, presenting the output of the 
water model, and represented by the pointer as shown in Figure 2 (Section 2.4.1).  The 
specific interest chosen here is in understanding what role soil would play overall in 
mitigating flood risk in an intense weather event (not modelling the full hydrological 
system; for example, not for use in response to weather events to predict where flooding 
will take place).  This will be calculated by running data from the NCEA programme and 
other sources through the BBN model outlined in Section 3.2.2. 

• How do these current levels of soils’ contribution to reduction of runoff risk 
compare to what is possible?  This information helps to put the previous bullet point 
into context.  This is represented by comparing the pointer to the range shown in Figure 
2 (Section 2.4.1).  The ends of the range will be calculated by running the model 
described in Section 3.2.2 with real data for any variables that are inherent and not 
possible to change, but artificial data set to the highest and lowest possible values for 
any variables that are possible to influence with management. 

In a separate part of the publication, a breakdown of results by land cover and (if possible 
based on data available at point of publication) soil type will also be presented.  This 
breakdown will also incorporate the two types of result described above. 
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3.2.2. The model network 

The structure of the water model is shown in Figure 5.  The model predicts the probability 
that soils’ contribution to reduction of runoff risk will be high.  Two intermediate modelled 
nodes, surface runoff and subsurface runoff, feed into this final runoff risk node.  The 
subsurface runoff node is based on data inputs relating to soil texture (grouped by runoff risk 
category based on the Defra soil classification framework) from samples taken deeper than 
30 cm, soil depth, and bulk density to represent compaction.  The surface runoff node takes 
into account soil texture (grouped by runoff risk category based on the Defra soil 
classification framework) from samples taken shallower than 30 cm, slope, and an 
intermediate modelled node representing infiltration rate.  The infiltration rate node relies on 
input data on anecic earthworms (although the initial interim statistic may rely on total 
earthworms depending on data availability), soil moisture, land cover, and soil organic 
matter. 

More detailed information, for example planned data sources, literature review references, 
and justification of variables included and excluded from the model network, can be found in 
Appendix 1. 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.farmingadviceservice.org.uk%2Fcsf%2Ftools&data=05%7C02%7Cmaddie.harris%40jncc.gov.uk%7C70f52fba90624e30ce7208dd5721bb3f%7C444ee4e8b2fd491d8c318b0508370a6b%7C0%7C0%7C638762525255216532%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=hrJeh%2FjLN2yEdoJryEco6eB1EwcQP98DIo587XUiLfw%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.farmingadviceservice.org.uk%2Fcsf%2Ftools&data=05%7C02%7Cmaddie.harris%40jncc.gov.uk%7C70f52fba90624e30ce7208dd5721bb3f%7C444ee4e8b2fd491d8c318b0508370a6b%7C0%7C0%7C638762525255216532%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=hrJeh%2FjLN2yEdoJryEco6eB1EwcQP98DIo587XUiLfw%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.farmingadviceservice.org.uk%2Fcsf%2Ftools&data=05%7C02%7Cmaddie.harris%40jncc.gov.uk%7C70f52fba90624e30ce7208dd5721bb3f%7C444ee4e8b2fd491d8c318b0508370a6b%7C0%7C0%7C638762525255216532%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=hrJeh%2FjLN2yEdoJryEco6eB1EwcQP98DIo587XUiLfw%3D&reserved=0
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Figure 5.  A visual representation of the nodes and edges in the water regulation model.
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3.3. Carbon: soils’ contribution to long-term carbon storage 

3.3.1. What the results will show 

As explained in section 2.4., the headline results for the carbon model will capture three key 
pieces of information: 

• How much carbon is the soil currently storing?  This will report on total estimated 
carbon stocks in tonnes per unit area.  This will be calculated from the absolute values of 
carbon percentage per volume of soil across varying depths and the soil density 
measurements collected by the NCEA programme, alongside soil depth data from the 
UK Soil Observatory. 

• How much are our soils contributing to long-term carbon storage?  This will 
constitute the ecosystem service delivery estimate, presenting the output of the carbon 
model, and represented by the pointer as shown in Figure 2 (Section 2.4.1).  The interest 
here is in understanding what role soil, in its current condition, would play in storing 
carbon long term.  This is important because current levels of carbon in soil can bear 
little relation to its stability and ability to store that carbon long term, thereby contributing 
to ecosystem service delivery, with continued management required to permanently 
maintain them (Bellamy et al. 2005; BSSS LUNZ Hub 2023).  Therefore, understanding 
both the current values and the probability of high predicted long-term storage values are 
important for gaining a balanced picture of soil health.  This will be calculated by running 
data from the NCEA programme and other sources through the BBN model outlined in 
Section 3.3.2. 

• How much are our soils contributing to long term carbon storage, compared to 
what is possible?  This information helps to put the previous bullet point into context.  
This is represented by comparing the pointer to the range as shown in Figure 2 (Section 
2.4.1).  The ends of the range will be calculated by running the model described in 
Section 3.3.2 with real data for any variables that are inherent and not possible to 
change, but artificial data set to the highest and lowest possible values for any variables 
that are possible to influence with management. 

In a separate part of the publication, a breakdown of results by land cover and soil type 
combination will also be presented.  This breakdown will also incorporate the three types of 
result described above. 

3.3.2. The model network 

The structure of the carbon model is shown in Figure 6.  The model predicts the probability 
that soils’ contribution to long-term carbon storage will be high.  Soil texture, and two 
intermediate modelled nodes (inputs and turnover) feed into this final carbon storage node.  
Data on the soil moisture, crop rotation, cover crops, manure and land cover feed into the 
input node.  We hope to also include data on the ratio of respiration to microbial biomass, 
but this may not be possible in the initial interim statistic due to data availability.  Data on 
erosion and tillage feed into the turnover node. 

The model is currently optimised for results related to cropland.  Work to integrate data and 
management options of relevance to forestry and other land cover types is ongoing. 

More detailed information, for example planned data sources, literature review references, 
and justification of variables included and excluded from the model network, can be found in 
Appendix 2. 
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Figure 6.  A visual representation of the nodes and edges in the long-term carbon storage model.
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3.4. Food/fibre: soils’ contribution to sustainable food/fibre 
provision 

3.4.1. What the results will show  

As explained in Section 2.4, the headline results for the food/fibre model will capture two key 
pieces of information: 

• How much are our soils contributing to sustainable food and fibre provision?  This 
will constitute the probability of high ecosystem service delivery, presenting the output of 
the food/fibre model, and represented by the pointer as shown in Figure 2 (Section 
2.4.1).  This will be calculated by running data from the NCEA programme and other 
sources through the BBN model outlined in Section 3.4.2. 

• How do these current levels of soils’ contribution to food/fibre provision compare 
to what is possible?  This information helps to put the previous bullet point into context.  
This is represented by comparing the pointer to the range as shown in Figure 2 (Section 
2.4.1).  The ends of the range will be calculated by running the model described in 
Section 3.4.2 with real data for any variables that are inherent and not possible to 
change, but artificial data set to the highest and lowest possible values for any variables 
that are possible to influence with management. 

In a separate part of the publication, a breakdown of results by land cover and soil type 
combination will also be presented.  This breakdown will also incorporate both types of result 
described above. 

3.4.2. The model network 

The structure of the food/fibre model is shown in Figure 7.  The model predicts the 
probability that soils’ contribution to sustainable food and fibre provision will be high.  Land 
cover, soil organic matter, risk of soil-borne pathogens and disease, earthworm counts, 
nutrient uptake and ALC (Agricultural Land Classification) for cropland or ESC (Ecological 
Site Classification) and Woodland Carbon Code biomass tables for forested areas, all feed 
into this final node food/fibre provision node.  Nutrient uptake is a modelled intermediate 
node, requiring data inputs on percentage nitrogen, Olsen P measurements for available 
phosphorus, bulk density to represent compaction, erosion, and pH.  Risk of soil-borne 
pathogens and disease is a modelled intermediate node, requiring data inputs on crop 
rotation, soil moisture and bulk density to represent compaction.  It should be noted that 
different soil-borne pathogens and diseases will respond in different ways, and the factors 
modelled here are those commonly cited in the literature as widely associated with a range 
of pathogens and diseases. 

The model is currently optimised for results related to agricultural cropland systems.  Work to 
integrate data and management options of relevance to forestry and grazing land is ongoing. 

The word ‘sustainable’ is included in the terminology to reflect the fact that the focus is on 
maximising long-term food/fibre provision, rather than short-term yields at the expense of 
future harvests.    

More detailed information, for example planned data sources, literature review references, 
and justification of variables included and excluded from the model network, can be found in 
Appendix 3. 
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Figure 7.  A visual representation of the nodes and edges in the food and fibre provision model.
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3.5. Biodiversity 

It is planned that data on biodiversity will ultimately be included within the indicator suite.  
These will be measured state data from the EES and NFI+, rather than modelled predictions.  
However, as the authors have not yet seen a sample of this part of the data due to the 
additional processing required (e.g. laboratory identifications), it has not been possible to 
propose a specific method for its inclusion at this stage. 
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4. Limitations, assumptions and uncertainty 
For accurate interpretation of the results presented within this indicator, it is necessary to 
understand the following caveats: 

• Limitations of the interim field datasets that will be used within the interim indicator in 
2026: 

• The EES is producing a 5-year baseline.  Monads are selected using random 
stratification based on Institute of Terrestrial Ecology Land Class, supplemented 
by an Inclusion Probability approach to increase chances of capturing rare 
classes of interest.  This sampling design allows for statistical weightings to 
ensure results are representative of the sample population (England) or a subset, 
such as a specific geographical region.  However, the sample is incomplete until 
the 5-year baseline is finished.  Interim data may over- or under-represent some 
land classes, and this should be considered before drawing conclusions. 

• Certain land types, including dense urban areas, open water bodies over 
2 hectares, and areas below Mean High Water, are excluded from the survey. 

• Modelling assumptions: 

• The models are limited to considering only the variables shown in Figures 5, 6 
and 7.  Whilst other factors will undoubtedly affect soil health, the models assume 
that this is not the case.  Variables were included where clear evidence of their 
effect could be found, and excluded where this was not the case (see 
Appendices 1 to 3 for detail on justifications for these decisions). 

• All variables within the models are grouped into categorical states.  For example, 
land use in the water model is grouped into forest, grass/shrubland and cropland, 
or soil moisture into ‘high,’ ‘medium’ and ‘low’.  The model is assuming that 
anything within the same category (e.g. something at the top end of ‘medium’ and 
something at the bottom end of ‘medium’) will respond in the same way.  This 
limits the sensitivity of results.  It is hoped that future development work will 
increase the number of categories available, thereby increasing the sensitivity of 
the models. 

• The relationship between the variables in the models is defined within the 
conditional probability tables based on information found within the literature or 
through the expert panel process.  For example, if it is found that variable ‘a’ 
interacts with variable ‘b’ to give a non-linear response, then this can be defined.  
Similarly, if it is considered that variable ‘x’ has twice as large an effect size on 
ES delivery as variable ‘y’, this can be defined for the model to take into account.  
However, if no information is available to be able to define such interactions or 
weightings, it is assumed that there is no interaction and that effect sizes are 
equal to variables where effect size is considered ‘standard’ or ‘medium’. 

• Soils contribute to a wider range of ecosystem services than those presented 
here.  For example, drought regulation, climate regulation through control of 
greenhouse gases beyond carbon, and soils’ contribution to human health will not 
be considered within the initial indicator. 

• The models combine spatial and non-spatial data, and assumes that these data 
can be treated in the same way.  For example, sampled spatial data are used to 
derive the probability of a given parcel having high, medium, or low values for 
those data, while surveyed non-spatial data on farm management practices are 
used to determine the same thing.  However, there may be patterns in the non-
spatial data that are particular to nodes in the spatial data which were not picked 
up by the DAG, representing a limitation in the model. 
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5. Next steps 
The planned next steps for the work are as follows: 

• Publication of an initial, interim statistic in 2026.  This will be based on the methods 
presented in this document, combined with any further improvements possible to 
integrate prior to publication.  It will use data published from the first year (of a five-year 
baseline) of EES data collection, carried out in spring/autumn 2023 and winter 2023/24.   

• Further development work.  Work is planned to increase and test the sensitivity of the 
models, and to integrate more factors of relevance.  The initial, interim models proposed 
here are of most relevance to cropland systems.  For example, where management 
factors are considered within the models, these are currently actions that would only be 
appropriate to undertake on agricultural land.  The effect of actions being undertaken in, 
for example, forest environments, is therefore not captured in the current proposal.  The 
incorporation of more factors of relevance to other land-use types will therefore be an 
important development for the future to ensure that the model is appropriately sensitive.  
Data from Forest Research’s National Forestry Inventory Plus programme are expected 
to be available in the near future to allow for this inclusion.  Interim updates based on 
these improvements and integrating additional years of EES data may be released 
between publication of the initial statistic and final statistic. 

• Publication of a final baseline statistic in approximately 2029.  This will be based on 
data from the full five-years of EES data collection, and so will be nationally 
representative. 

• Publication of data for subsequent timepoints on the graph.  This will take place 
once further data collection has been completed.  This would eventually enable trends to 
be assessed. 

As improvements will be made iteratively, we encourage readers to get in contact 
(feedback@jncc.gov.uk) with any feedback they may have on the value and use of the 
indicator or any improvements that could be made in subsequent publications. 

  

mailto:feedback@jncc.gov.uk
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Weblinks 

Table 1. Full URLs for weblinks used in the text. 

Weblink text Full URL 
ALERT Tool https://www.farmingadviceservice.org.uk/csf/tools  

AgZero Soil 
Moisture Map 

https://agzeroplus.org.uk/soil-moisture-app  

Defra Soil 
Classification 
Framework 

https://www.farmingadviceservice.org.uk/csf/tools  

NCEA’s England 
Ecosystem Survey 

https://naturalengland.blog.gov.uk/2024/04/03/england-ecosystem-
survey-introducing-englands-largest-ever-field-survey/  

Natural Capital and 
Ecosystem 
Assessment 

https://www.gov.uk/government/publications/natural-capital-and-
ecosystem-assessment-programme  

Official Statistic in 
Development 

https://www.ons.gov.uk/methodology/methodologytopicsandstatisti
calconcepts/guidetoofficialstatisticsindevelopment  

Scimap https://scimap.org.uk/  

UK GHG Inventory https://naei.energysecurity.gov.uk/reports?title=&field_categories_t
arget_id=13  

 

https://www.farmingadviceservice.org.uk/csf/tools
https://agzeroplus.org.uk/soil-moisture-app
https://www.farmingadviceservice.org.uk/csf/tools
https://naturalengland.blog.gov.uk/2024/04/03/england-ecosystem-survey-introducing-englands-largest-ever-field-survey/
https://naturalengland.blog.gov.uk/2024/04/03/england-ecosystem-survey-introducing-englands-largest-ever-field-survey/
https://www.gov.uk/government/publications/natural-capital-and-ecosystem-assessment-programme
https://www.gov.uk/government/publications/natural-capital-and-ecosystem-assessment-programme
https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/guidetoofficialstatisticsindevelopment
https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/guidetoofficialstatisticsindevelopment
https://scimap.org.uk/
https://naei.energysecurity.gov.uk/reports?title=&field_categories_target_id=13
https://naei.energysecurity.gov.uk/reports?title=&field_categories_target_id=13
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Glossary 

Table 2. Glossary of terms. 

Term  Definition 
Agricultural Land 
Classification (ALC) 

A system used within the UK to assess the quality of 
agricultural land based on unchangeable factors, such as soil 
type and slope. 

Anecic earthworms Deep-burrowing earthworms, that make deep, permanent 
and vertical burrows in the soil, surfacing to feed on leaves. 

Assumption Something that is accepted as true without question or proof. 
All models are based on assumptions in order to function. 

Baseline statistic A measurement or calculation acting as a starting point for 
comparison.  For example, an indicator can only be 
considered an indicator once it shows change through time, 
so the first time point collected would be termed a baseline 
statistic until further time points are added. 

Bayesian Belief Network 
(BBN) 

A type of probabilistic model based on Bayes theorem, which 
mathematically describes what the probability of an event 
occurring is, based on prior knowledge of conditions that 
might be related to the event. 

Biodiversity The variability of life on Earth.  It can encompass diversity 
from a genetic, species, ecosystem or functional perspective.  

Bulk density Mass divided by volume. 

Compaction Occurs when pore space between soil particles is reduced 
due to mechanistic pressure. 

Conceptual model A high-level representation of a system.  For example, in this 
study, conceptual models of soils’ contributions to ecosystem 
services are constructed.  These consist of the factors 
deemed likely to be most significantly contributing to ES 
delivery.  Conceptual models can be visualised graphically, 
for example as a flow chart linking factors that influence each 
other. 

Conditional probability The relationships between two nodes.  Can be defined based 
on training data, or manually based on values from the 
literature or expert knowledge.  Specific relationships 
between variables can be modelled; for example, if one 
variable has a non-linear effect when interacting with another 
variable, conditional probabilities can be used to account for 
those specific interactions. 

Dashboard A tool displaying data in an easy-to-understand manner. 
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Term  Definition 
Data cycle The period of time over which one time point of data is 

collected. 

Directed acyclic graph 
(DAG) 

A visual representation of a BBN, in a graphical ‘flow chart’ 
style.  This consists of ‘nodes’ (the variables) and ‘edges’ 
(the relationships between the variables). 

Dumas combustion Burning a sample at a high temperature in pure oxygen, in 
order to determine the relative amounts of various 
constituents of the sample (e.g. nitrogen, carbon). 

Ecological Site 
Classification (ESC) 

A decision support system to help forest managers and 
planners select tree species that are ecologically suited to 
particular sites. 

Ecosystem Service (ES) The direct and indirect contributions that ecosystems provide 
which benefit humans (e.g. flood prevention, food/fibre 
provision). 

Edge In the context of a BBN, edges are the relationships between 
the variables. 

England Ecosystem 
Survey (EES) 

An England-wide survey of soils, vegetation and landscape 
change being undertaken by Natural England, using a 
stratified random sampling approach combined with use of 
inclusion probability weightings.  Part of the Natural Capital 
and Ecosystem Assessment (NCEA) programme funded by 
Defra. 

Inclusion probability A statistical setup in which each data point collected is given 
a weighting for use in final analysis according to its 
probability of being selected as part of the original sampling 
process.  For example, if points from rare land classes and 
soil types were included in the original sample to ensure 
adequate coverage to understand trends relating to that soil 
or land type, these would be given a lower weighting in 
national analyses, to ensure that they do not bias results. 

Indicator A statistic that describes change through time. 

Infiltration Permeation of a liquid into something by filtration. 

Inherent A permanent and unchangeable characteristic.  For example, 
soil type is an inherent characteristic of soil; we cannot 
fundamentally change or influence it with human 
interventions or management. 

Land cover The physical characteristics of the Earth’s surface, such as 
grassland, forest, or bare soil. 

Land use The human activities taking place on the Earth’s surface, 
such as agriculture, urban, or forestry. 

https://naturalengland.blog.gov.uk/2024/04/03/england-ecosystem-survey-introducing-englands-largest-ever-field-survey/
https://naturalengland.blog.gov.uk/2024/04/03/england-ecosystem-survey-introducing-englands-largest-ever-field-survey/
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Term  Definition 
Long-term carbon storage The ability of a system to hold carbon in a stable form for 

decades to come. 

Management Actions undertaken by humans with the intention of achieving 
a particular aim.  For example, agricultural management 
covers actions typically aiming to increase yields, such as 
tillage and fertiliser application. 

Microbial biomass A measure of the mass of the living component of soil 
organic matter. 

National Forest Inventory 
Plus survey 

The National Forest Inventory survey is a rolling programme 
designed to provide accurate information about our forests 
and woodlands, and the changes taking place in them 
through time.  National Forest Inventory Plus is aiming to 
collect additional information within forests, such as data on 
soils, as part of the Natural Capital and Ecosystem 
Assessment programme. 

Node In the context of BBNs, a node refers to any one of the 
variables included within the DAG. 

Olsen P A measure of the amount of soil phosphorus available to 
plants.  The Olsen P test uses sodium bicarbonate to extract 
P chemically from a soil solution.  

Soil respiration The production of carbon dioxide when soil organisms 
respire. 

Runoff reduction A decrease in the amount of water (and substances carried 
within it) that drains away from an area of land.  Reducing 
runoff helps to prevent flooding downstream. 

Soil health Soils’ contributions to ecosystem service delivery 

Soil type A group of soils with similar properties; a taxonomic group of 
soil. 

Spatially explicit Mapped. 

Stratified A type of statistical sampling that involves dividing a 
population into groups based on known characteristics, and 
selecting samples independently from each of these groups, 
to ensure representation from all groups of interest. 

Subsurface Based on data inputs from samples taken deeper than 
30 cm.  
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Term  Definition 
Sustainable food/fibre 
provision 

The ability to produce high yields of food and fibre in a way 
that can continue long-term into the future (i.e. that is 
optimising yields against ecosystem services, rather than 
optimising yields at the expense of ecosystem services and 
thereby degrading the system for future use). 

Trend Measurable change through time. 

Woodland Carbon Code 
biomass tables 

Data tables developed to carry out a prediction of carbon 
sequestration for a woodland project. 

https://woodlandcarboncode.org.uk/images/PDFs/WCC_CarbonCalculation_Guidance_V2.0_March2018.pdf
https://woodlandcarboncode.org.uk/images/PDFs/WCC_CarbonCalculation_Guidance_V2.0_March2018.pdf
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Appendix 1: Supplementary detail on the water model 
This appendix provides information about the variables that were included in, and 
considered but excluded from, the water regulation model illustrated in the main report 
(Figure 5), including justification and references for doing so.  It also provides additional 
information about data sources planned to be used, how variables will be categorised, and a 
proposal for how they will be weighted (although weightings will be further tested in a sense-
check exercise, in which the expert panel will identify whether a given combination of inputs 
produce an expected output result).  These decisions were taken as the result of a literature 
review and expert panel process (see ‘Acknowledgements’ section on the inside cover of the 
report for information on panel representation). 

Variables included in the model 

Anecic earthworm biomass if available, or counts if not 
• Justification for inclusion: The expert panel suggested that this should be added, 

provided that it was restricted to anecic (deep burrowing) earthworms, rather than 
all earthworms.  Targeted reading following this suggestion found evidence to 
support this inclusion, especially relating to biomass rather than counts (Bouché & 
Al-Addan 1997; Clements et al. 1991; Ehlers 1975; Fischer et al. 2014), although 
noted that the effect may vary throughout the year (Blouin et al. 2013). 

• Data source: NCEA data (EES and NFI+ data).  The data will be divided evenly 
into categories of ‘high’, ‘medium’ and ‘low’, based on the top, middle and bottom 
thirds of the values within the dataset overall. 

• Relationship, interactions and weightings: More anecic earthworm 
biomass/counts will be considered to increase infiltration rate (and through this 
reduce surface runoff, which increases soils’ contribution to reduction of runoff risk).  
A standard weighting will be applied. 

Soil depth 

• Justification for inclusion: The panel initially suggested that depth to groundwater 
should be added.  Targeted reading following this suggestion found evidence to 
support it (Bouwer & Rice 1989; Locatelli et al. 2015; Mangangka 2008).  However, 
openly available data on depth to groundwater were not found.  Soil depth has 
therefore been included in its absence, as a variable that was excluded by the panel 
only because it was considered to affect water regulation through the same 
mechanism as depth to groundwater.  The literature review largely supported the 
importance of soil depth on water regulation, although conclusions were somewhat 
mixed, with some sources suggesting it as a main explanatory variable of infiltration 
rate but others suggesting little effect (Lyons & Gifford 1980; McGinty et al. 1979).   

• Data source: UK Soil Observatory. 
• Relationship, interactions and weightings: A higher depth to groundwater will be 

considered to reduce subsurface runoff / increase storage capacity, thereby 
increasing soils’ contribution to reduction of runoff risk.  A standard weighting will be 
applied. 

Land cover 

• Justification for inclusion: Both the literature review and the expert panel process 
provided clear evidence that different land covers will have different infiltration rates, 
with forests leading to the highest infiltration rates, shrubland/grassland leading to 
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intermediate infiltration rates, and cropland leading to the lowest infiltration rates 
(Archer et al. 2012; Marshall et al. 2014; Milazzo et al. 2023; Sun et al. 2018; Yimer 
et al. 2008). 

• Data source: NCEA data (EES and NFI+ data), with land cover categories 
aggregated into ‘tree cover’, ‘shrub/grassland’, ‘cropland’ and (if possible based on 
final data) ‘wetland’.  We note that EES data do not cover urban areas.  

• Relationship, interactions and weightings: Infiltration will be considered to be 
higher in forests > shrubland/grassland > cropland.  A double weighting will be 
applied to this variable based on expert panel input. 

Soil organic matter 

• Justification for inclusion: The literature review concluded that increased organic 
matter improves infiltration (Ankenbauer & Loheide II 2017; Boyle et al. 1989; 
Haghnazari et al. 2015; Lal 2020; Liu et al. 2019b).  The expert panel agreed and 
added that higher organic matter levels also increase the soil’s resilience to 
perturbation such as compaction and sealing. 

• Data source: NCEA data (EES and NFI+ data).  The data will be divided evenly 
into categories of ‘high’, ‘medium’ and ‘low’, based on the top, middle and bottom 
thirds of the values within the dataset overall. 

• Relationship, interactions and weightings: Higher levels of organic matter will be 
considered to increase infiltration rate (and through this reduce surface runoff, 
which increases soils’ contribution to reduction of runoff risk).  A standard weighting 
will be applied. 

Soil moisture 

• Justification for inclusion: In the proof-of-concept study, soil moisture was 
modelled based on a number of other factors.  Given direct data on soil moisture 
are available, the decision was taken to replace this modelled node with observed 
data.  Literature review reading and expert panel consultation confirmed a 
relationship between soil moisture and infiltration rate (Gray & Norum 1967; Hino et 
al. 1988; Liu et al. 2011, 2019a; Philip 1957; Ruggenthaler et al. 2016; Wei et al. 
2022). 

• Data source: Copernicus soil water index (Copernicus 2024).  We also considered 
the COSMOS dataset, but found the Copernicus data to have greater spatial 
resolution and to provide deeper data.  The data will be divided evenly into 
categories of ‘high’, ‘medium’ and ‘low’, based on the top, middle and bottom thirds 
of the values within the dataset overall. 

• Relationship, interactions and weightings: Increased soil moisture is considered 
to reduce infiltration rate (and through this increase surface runoff, which reduces 
soils’ contribution to reduction of runoff risk).  A standard weighting will be applied. 

Slope 

• Justification for inclusion: The expert panel considered slope an essential 
variable to add.  Whilst the initial literature review had suggested a very mixed 
picture, this had focused on how slope affects infiltration rates (based on where this 
variable was included in the proof-of-concept study.  Subsequent targeted research 
on how slope affects runoff rates returned more significant evidence for its inclusion 
as an input to the surface runoff node instead (Chen et al. 2022; Duley & Hays 
1933; Fang et al. 2015; Haggard & Moore 2005; Jourgholami et al. 2021; Rehman 
et al. 2015).  Slope was included over more complicated/complete topography 
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information, as the model is relating to runoff risk, rather than to detailed mapping of 
where is likely to flood. 

• Data source: A satellite derived digital elevation model will be used.  The data will 
be divided into categories of ‘high,’ ‘medium’ and ‘low,’ aligning with those used in 
the ALERT tool (less than 3 degrees = low, 3–7 degrees = medium, and over 7 
degrees = high). 

• Relationship, interactions and weightings: Increased slope will be considered to 
increase surface runoff (and through this, reduce soils’ contribution to reduction of 
runoff risk).  The expert panel highlighted an interaction between this factor and soil 
texture.  The weightings in the conditional probability table will therefore be applied 
in such a way that slope will have little effect when the soil texture class is peaty, 
but will have a greater effect in cases where soil texture is not classed as peaty. 

SSS runoff risk category based on soil texture data for shallow samples 

• Justification for inclusion: Soil Structure Survey groupings were suggested by 
the expert panel to group the soil texture classes, as they are designed to group 
texture classes by runoff risk already.  Based on this, heavy and light soils are 
considered to be high risk, with medium texture soils considered moderate risk, and 
peat soils high risk but unaffected by slope.  Both the panel and the literature 
provided evidence for the inclusion of soil texture, but highlighted the importance of 
breaking this down into surface texture and subsurface texture (Jourgholami & 
Labelle 2020; Kemper & Noonan 1970; Li et al. 2016; Mamedov et al. 2001; 
Mazaheri & Mahmoodabadi 2012). 

• Data source: NCEA data from samples taken at depths of between 0 cm and 
30 cm (EES and NFI+ data), grouped into high/medium/low risk for runoff based on 
SSS guidance.  Possibility in future to consider use of the SSS map instead once 
available, depending on resolution. 

• Relationship, interactions and weightings: Increased risk level will be 
considered to increase surface runoff (and through this, reduce soils’ contribution to 
reduction of runoff risk).  Weightings for this factor will interact with slope, as 
described in the slope section. 

SSS runoff risk category based on soil texture data for deeper samples 

• Justification for inclusion: Soil Structure Survey groupings were suggested by 
the expert panel to group the soil texture classes, as it is designed to group texture 
classes by runoff risk already.  Based on this, heavy and light soils are considered 
to be high risk, with medium texture soils considered moderate risk, and peat soils 
high risk but unaffected by slope.  Both the panel and the literature provided 
evidence for the inclusion of soil texture, but highlighted the importance of breaking 
this down into surface texture and subsurface texture (Jourgholami & Labelle 2020; 
Kemper & Noonan 1970; Li et al. 2016; Mamedov et al. 2001; Mazaheri & 
Mahmoodabadi 2012). 

• Data source: NCEA data from samples taken at depths greater than 30 cm (EES 
and NFI+ data), grouped into high/medium/low risk for runoff based on SSS 
guidance.  Possibility in future to consider use of the SSS map instead once 
available, depending on resolution. 

• Relationship, interactions and weightings: Increased slope will be considered to 
increase subsurface runoff (and through this, reduce soils’ contribution to reduction 
of runoff risk).  A standard weighting will be applied. 

https://www.farmingadviceservice.org.uk/csf/tools
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Bulk density to represent compaction 

• Justification for inclusion: The expert panel considered compaction an essential 
variable to include, but suggested representing this with bulk density as this will be 
available as part of the NCEA data.  Whilst VESS was also considered, the panel 
concluded that bulk density would provide a more consistent and quantifiable 
measure to use.  The literature review found evidence that infiltration rates are 
negatively correlated with bulk density (Khaerudin et al. 2017; Li et al. 2009; Pugh 
2020; Sharda 1977). 

• Data source: NCEA data (EES and NFI+ data).  The data will be divided evenly 
into categories of ‘high’, ‘medium’ and ‘low’, based on the top, middle and bottom 
thirds of the values within the dataset overall. 

• Relationship, interactions and weightings: Higher bulk density will be considered 
to lead to lower infiltration rates.  A standard weighting will be applied. 

Variables that were considered, but excluded from the model 

• AgZero soil moisture map: This was suggested as a possible data source in 
follow-up discussions after the expert panel workshops.  However, it was found to 
provide data for the current day only, and is based on a hydrological model that is 
aiming to show water storage capacities and river flows at any one point in time.  As 
such, it is mainly focused on detailed rainfall inputs, so was not considered 
appropriate for our more general use case. 

• Capping / sealing extent: The expert panel considered this important to include, 
and the literature review found clear evidence that more sealing leads to slower 
infiltration (Assouline 2004; Assouline & Mualem 1997; Baumhardt et al. 1990; Di 
Prima et al. 2018; Nciizah & Wakindiki 2015).  However, direct data on this are not 
available.  The closest proxy for capping is urban vs. not urban land use, but as the 
EES excludes urban areas, we will not have data available to link this to each data 
point within the model. 

• Compaction: Bulk density is being used as a proxy for compaction, in the absence 
of data measuring compaction directly. 

• Depth to groundwater: Openly available data were not found. 
• Drainage: The expert panel suggested that this would be reflected by the soil 

texture, and so we did not need to include both. 
• The Environment Agency’s Scimap: This was suggested by the expert panel as a 

possible replacement to the model overall.  However, it is designed to assess risk 
when a particular flood event is occurring (e.g. you input rainfall pattern maps from 
specific dates and it runs this through a full hydrological model for a particular 
catchment) and so does not meet the more generalised use case of a national 
indicator of soils’ contribution to runoff reduction. 

• Evapotranspiration: There was consensus among the expert panel that 
evapotranspiration has a large or medium effect.  Strong evidence was also found 
in the literature review ((Eagleman & Decker 1965; Verstraeten et al. 2008; Wang et 
al. 2021).  However, given this was a variable being used to model soil moisture, 
and data on soil moisture are available directly, it was considered simpler and more 
accurate to replace that section of the model with measured soil moisture data. 

• Excess rainfall: Given this was a variable being used to model soil moisture, and 
data on soil moisture are available directly, it was considered simpler and more 
accurate to replace that section of the model with measured soil moisture data. 

https://agzeroplus.org.uk/soil-moisture-app
https://scimap.org.uk/
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• Humidity: The panel suggested that this would be a useful variable to add to better 
understand evapotranspiration.  However, given that the evapotranspiration node 
was cut as part of the simplification of the soil moisture section of the model, it is no 
longer relevant to include. 

• Plant / crop type: The panel suggested that this could be interesting to include 
because of the different types of rooting system that influence water catchment.  
However, they agreed that this will add too much complexity to the model, 
especially in the context of a national scale indicator. 

• Porosity: The panel suggested porosity should be included, but then conceded that 
if already including bulk density or VESS then this would be superfluous. 

• Soil profile: This represents the soils’ physical properties overall.  Given that each 
of the relevant individual properties (e.g. texture) have been considered separately, 
this was not included. 

• Soil water content: Concerns were raised over the use of the NCEA soil water 
content data, as this will be captured at one point in time and so will not be 
representative of the site over the year.  The Copernicus soil moisture dataset is 
therefore being used instead (see soil moisture, above). 

• Rainfall: Given this was a variable being used to model soil moisture, and data on 
soil moisture are available directly, it was considered simpler and more accurate to 
replace that section of the model with soil moisture data (estimated from 
Copernicus satellite data). 

• Temperature: Given this was a variable being used to model soil moisture, and 
data on soil moisture are available directly, it was considered simpler and more 
accurate to replace that section of the model with measured soil moisture data. 

• Tillage direction: Data on this variable were not available at a national scale. 
• Vegetation: Whilst vegetation would increase interception, it was considered out of 

scope, as it is not part of soils’ contribution to the ES – it is a separate part of the 
system. 

• VESS: VESS was considered by the expert panel as a potential proxy for 
compaction.  However, bulk density was selected in its place, as a more consistent 
and quantifiable metric. 
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Appendix 2: Supplementary detail on the carbon model 
This appendix provides information about the variables that were included in, and 
considered but excluded from, the carbon storage model illustrated in the main report 
(Figure 6), including justification and references for doing so.  It also provides additional 
information about data sources planned to be used, how variables will be categorised, and 
how they will be weighted. 

Variables included in the model 

Cover crops 

• Justification for inclusion: Evidence from both the literature review and the expert 
panel process was in agreement that cover crops increase soils’ contribution to long 
term carbon storage (Jordon et al. 2022; McClelland et al. 2021; Poeplau & Don 
2015; Schjønning et al. 2007), although some literature review evidence suggested 
that this was only the case over long timescales and that claims about the 
magnitude of impact may be inflated by factors such as the fact that many studies 
only measure carbon in the top 30 cm of soil (Chaplot & Smith 2023).  

• Data source: Storr et al. 2019. This provides data for a single point in time so will 
be used for the initial baseline statistic.  A new data search will take place to identify 
whether more recent data are available to use for the second time point when this is 
required (approximately five years after the first time point).  This will include 
searching for data that consider whether it is the first time growing cover crops, or 
whether they have been included for many iterations in a rotation.  For the initial 
release, cover crops will be assessed categorically as either present or absent for 
samples from cropland. 

• Relationship, interactions and weightings: Presence of cover crops will be 
considered to increase carbon inputs.  As spatial data are not available, this will 
need to be treated in the model separately.  This node is only relevant to arable land 
use types, not plots with other land use types, so it will only be applied to a subset 
of the overall dataset.  Whilst the proof-of-concept project weighted this node in a 
way that considered the interactions between this and other management factors, 
for the indicator it will just be given a standard weighting, as the lack of spatial data 
means it is not possible to tell whether each management practice is taking place at 
the same location or not. 

Crop rotation 

• Justification for inclusion: Evidence from both the literature review and the expert 
panel process was in agreement that in general, crop rotation increases soils’ 
contribution to long term carbon storage (Jordon et al. 2022; Schjønning et al. 2007; 
Zani et al. 2023). 

• Data source: We plan to estimate crop rotation based on the UKCEH Land Cover 
plus Crops dataset, using the concept described in Upcott (2019).  For the initial 
interim release, crop rotation will be assessed categorically as either present or 
absent for samples from cropland. Ongoing work will continue to search for 
improved datasets. 

• Relationship, interactions and weightings: Presence of crop rotation will be 
considered to increase carbon inputs.  As spatial data are not available, this will 
need to be treated in the model separately.  This node is only relevant to arable land 
use types, not plots with other land use types, so it will only be applied to a subset 
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of the overall dataset.  Whilst the proof-of-concept project weighted this node in a 
way that considered the interactions between this and other management factors, 
for the indicator it will just be given a standard weighting, as the lack of spatial data 
means it is not possible to tell whether each management practice is taking place at 
the same location or not.  Whilst some literature review evidence flagged that the 
optimum crop-rotation system will vary between contexts, we will be unable to 
include this level of nuance in the initial indicator due to data constraints. 

Erosion 

• Justification for inclusion: Evidence from both the literature review and the expert 
panel process was in agreement that erosion reduces soils’ contribution to long 
term carbon storage at site level (Quinton et al. 2006).  However, we note some 
debate in the literature about the overall impacts of erosion/soil redistribution 
dynamics and whether this results in a net sink or net source of carbon (Quine & 
Van Oost 2007). 

• Data source: Pan European Soil Erosion Risk Assessment – PESERA (described 
in Kirkby et al. 2004; 2008).  The data will be divided evenly into categories of ‘high’, 
‘medium’ and ‘low’, based on the top, middle and bottom thirds of the values within 
the dataset overall. 

• Relationship, interactions and weightings: Erosion risk will be considered to 
increase carbon turnover (thereby decreasing soils’ contribution to long term carbon 
storage).  As the dataset used is a modelled dataset itself, taking into account a 
variety of factors to estimate erosion risk, all factors raised as potential interactions 
by the expert panel (e.g. texture, land use) are already accounted for within the 
dataset being used.  As such, the conditional probability tables (which define 
interacting relationships between the model variables) will give this a standard 
weighting and do so evenly, rather than changing its weight based on the state of 
other variables within the model. 

Land use 

• Justification for inclusion: Evidence from the literature review was conclusive 
(and found that the difference between each land use type was larger than that for 
other variables assessed) and so the expert panel were not consulted (Antony et al. 
2022; Feeney et al. 2023; Ostle et al. 2009). 

• Data source: NCEA data (EES and NFI+ data), aggregated into cropland, 
woodland grassland/shrubland, and (if possible based on final data) wetland. 

• Relationship, interactions and weightings: This variable will be weighted more 
strongly than others within the model.  Data from figure 2a of Ostle et al. (2009) will 
be used to define the difference between each land-use type, with cropland leading 
to significantly lower carbon inputs than the other two categories, and woodland 
leading to slightly higher carbon inputs than grassland/shrubland.  The conditional 
probability tables will ensure that cropland always has a lower predicted carbon 
value than the other two land use types, whatever the combination of other factors 
are. 

Manure application 

• Justification for inclusion: Evidence from both the literature review and the expert 
panel process was in agreement that manure application increases soils’ 
contribution to long term carbon storage (Gross & Glaser, 2021; Maillard & Angers, 
2014; Poulton et al. 2018; Powlson et al. 2012).  However, the literature review 
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recognised that this is only relevant over a timeframe of several decades; after that 
point a new equilibrium is reached (Poulton et al. 2018). 

• Data source: Defra estimates of fertiliser use on farms in England sourced from the 
Farm Business Survey (Defra 2024).  Manure application will be assessed 
categorically as either present or absent, as further categorisation (e.g. to high, 
medium and low) is not possible based on the data available. 

• Relationship, interactions and weightings: Presence of manure application will 
be considered to increase carbon inputs.  As spatial data are not available, this will 
need to be treated in the model separately.  This node is only relevant to arable land 
use types, as the Farm Business Survey only covers arable land, so it will only be 
applied to a subset of the overall dataset (excluding plots with grassland/shrubland 
and forest land cover).  Whilst the proof-of-concept project weighted this node in a 
way that considered the interactions between this and other management factors, 
for the indicator it will just be given a standard weighting, as the lack of spatial data 
means it is not possible to tell whether each management practice is taking place at 
the same location or not. 

Ratio of respiration and microbial biomass 

• Justification for inclusion: This is included as a proxy for carbon use efficiency. 
Whilst this was not included in the proof-of-concept, original literature review or 
expert panel process, it was subsequently highlighted as a key gap to include in 
targeted follow-up discussions.  Targeted reading to validate this suggestion found 
significant evidence in the literature to back this up (e.g. Anthony et al. 2020; Tao et 
al. 2023). 

• Data source: Data sources for this variable, such as whether it may be possible to 
calculate from NCEA data, are still being explored.  It may be necessary to exclude 
this from analysis depending on the final data that NCEA provide.  The data will be 
divided evenly into categories of ‘high’, ‘medium’ and ‘low’, based on the top, middle 
and bottom thirds of the values within the dataset overall. 

• Relationship, interactions and weightings: A higher ratio of respiration to 
microbial biomass (i.e. high levels of respiration for each unit of biomass present) 
will be considered to reduce carbon inputs.  One study found that “CUE is at least 
four times as important as other evaluated factors, such as carbon input, 
decomposition or vertical transport, in determining SOC storage and its spatial 
variation across the globe” (Tao et al. 2023).  This factor will therefore be weighted 
strongly in the model; to be conservative (as it did not come up at all in initial 
discussions and the factors listed in the study do not match perfectly with the other 
factors we are considering), we will weight it in the conditional probability tables as 
twice as important as the variables given a ‘standard’ weighting. 

Soil moisture 

• Justification for inclusion: In the initial literature review, expert panel session and 
subsequent email exchanges, the temperature, rainfall and drainage nodes caused 
some disagreement.  Further targeted reading concluded that the mechanism by 
which these factors principally influence soil carbon is through soil moisture content, 
and so this node was included in their place (Hunde 2015; Kerr & Ochsner 2020; W. 
Qu et al. 2021; Wang et al. 2016).  It is noted that some sources suggest that the 
causation is in the opposite direction, with high SOC leading to higher water 
retention and therefore soil moisture rather than high soil moisture causing high 
SOC (Hugar et al. 2012).  However, either way a clear correlation between the 
measured variable and the predicted variable exists and so for the purposes of this 
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work, higher soil moisture can be considered to be likely associated with higher 
carbon storage. 

• Data source: Copernicus soil water index (Copernicus 2024). We also considered 
the COSMOS dataset, but found the Copernicus data to have greater spatial 
resolution and to provide deeper data. 

• Relationship, interactions and weightings: Increased soil moisture will be 
considered to increase carbon inputs.  A standard weighting will be applied. 

Soil organic carbon (not included within the model, but presented as separate 
results, alongside results from the model) 

• Justification for inclusion: The literature review considered this to be a factor that 
varies and is context dependent in terms of its contribution to long term carbon 
storage (Bellamy et al. 2005); higher carbon can lead to higher release of carbon 
depending on the other conditions, so a higher stock at one point in time does not 
necessarily mean higher long-term storage or contribution to ES delivery.  In the 
proof-of-concept model, it was included as a node feeding into the final node 
alongside the intermediate nodes of input and turnover (i.e. long-term carbon 
storage depends on current levels of soil organic carbon, and on the carbon cycling 
relating to both processes adding to the carbon stock and removing carbon from the 
stock).  However, this presentation caused considerable confusion at an April 2024 
meeting of the Defra Family Soil Science Network (attended by those working on 
soil across organisations within the Defra group).  All consulted considered this an 
essential variable to include, as it is so close in concept to the model outcome, but 
there was some confusion around why a model was required at all.  Subsequent 
targeted discussions landed on a solution of presenting the soil organic carbon 
values separately from the model outputs, and framing these as current carbon 
stocks, with the model estimating how likely is it that the current levels of carbon will 
be maintained into the future assuming current conditions continue, and how this 
compares to what is possible given constraining factors such as soil texture.  Data 
on soil organic carbon will therefore be presented alongside outputs from the 
model, but not included within the model network itself. 

• Data source: NCEA data (EES and NFI+ data), reporting the averaged absolute 
values of carbon per volume of soil. 

• Relationship, interactions and weightings: Not applicable – not part of the main 
model. 

Soil texture 

• Justification for inclusion: Evidence from both the literature review and the expert 
panel process was in agreement that soil texture affects soils’ contribution to long 
term carbon storage (Augustin & Cihacek 2016; Hamarashid et al. 2010; Kerr & 
Ochsner 2020; Wan et al. 2018).  In particular, clay soils have higher capacity to 
retain carbon.  Organic/peat soils behave differently to inorganic soils, and so 
should be treated differently in the model. 

• Data source: NCEA data (EES and NFI+ data), grouped into ‘heavy’, ‘medium’, 
‘light’ and ‘peaty’ soils. 

• Relationship, interactions and weightings: Heavier soil classes will be 
considered to increase soils’ contribution to long term carbon storage.  As this factor 
was considered particularly important and following a similar approach in the 
original proof-of-concept study, a weighting of double the standard will be applied.  
Peaty soils will be excluded from the initial interim output, as our current literature 
review focused on mineral soils.  However, the conditional probability tables will 
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eventually allow us to define different relationships for peat soils with the other 
factors in the network compared to the other three classes. 

Tillage 

• Justification for inclusion: The expert panel gave strong evidence to include 
tillage. The literature review found that typically, minimum and no tillage increases 
SOC compared to conventional tillage, but that the magnitude of the effect is small 
(Brown et al. 2021; Cooper et al. 2020; Fornara & Higgins 2022; Powlson et al. 
2012; van Groenigen et al. 2011).  However, we note that the UK GHG Inventory 
does not differentiate between tillage practices in their calculations as they found 
minimal effects in UK environments in relation to emissions (rather than long-term 
storage potential).  It should also be noted that different cultivation methods can 
result in different distributions of SOC in the soil profile. 

• Data source: Alskaf et al. 2019. This provides data for a single point in time so will 
be used for the initial baseline statistic.  A new data search will take place to identify 
whether more recent data are available to use for the second time point when this is 
required (approximately five years after the first time point).  Tillage will be assessed 
categorically as conventional, minimum or no tillage. 

• Relationship, interactions and weightings: Higher levels of tillage will be 
considered to increase carbon turnover (thereby decreasing soils’ contribution to 
long term carbon storage).  As spatial data are not available, this will need to be 
treated in the model separately.  This node is only relevant to arable land use types, 
not plots with other land use types, so it will only be applied to a subset of the 
overall dataset.  Whilst the proof-of-concept project weighted this node in a way that 
considered the interactions between this and other management factors, for the 
indicator it will just be given a standard weighting, as the lack of spatial data means 
it is not possible to tell whether each management practice is taking place at the 
same location or not. 

Variables that were considered, but excluded from the model 

• Application of mulch/residues: This was considered important to include in the 
expert panel process and a clear link (although small in magnitude) was identified in 
the literature review (Powlson et al. 2012; van Groenigen et al. 2011).  However, no 
data were found that would enable its inclusion in the model. 

• Atmospheric emissions: This was considered in the literature review, with the 
hypothesis that increased atmospheric concentrations of carbon may affect carbon 
cycling within the soil, and so may be an important factor to consider from a climate 
change resilience perspective.  However, any effects identified in the literature were 
found to be variable, context dependent, and/or impacting soil carbon through other 
factors, such as microbial activity or plant primary productivity ((Hyvönen et al. 
2007). 

• Biological activity (e.g. earthworm counts, eDNA): The literature review gave 
some conflicting evidence on the relevance of this, but overall concluded that any 
effects vary and are context dependent, so identifying a generalisable effect to 
include in the model was not possible (Angst et al. 2019; de Graaff et al. 2015; 
Lubbers et al. 2013; Thomas et al. 2020). 

• Bulk density: The literature review found soil bulk density to be negatively 
correlated with soil carbon concentration (Fornara & Higgins 2022; Hunde 2015; 
Kerr & Ochsner 2020), but was unable to establish a clear link with SOC stocks per 
hectare, as more compact soils, by definition, are higher density per unit area.  The 

https://naei.energysecurity.gov.uk/reports?title=&field_categories_target_id=13
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review also found it to be highly correlated with soil moisture.  As moisture is 
already included in the model, bulk density was not added as well.  It was not raised 
as a priority to add within the expert panel discussion. 

• Drainage: The literature review did not find evidence for drainage effecting soil 
carbon storage within the UK.  Some minimal evidence was found from elsewhere 
in the world, but typically with minimal effects (Kumar et al. 2014).  In contrast, the 
expert panel did consider this an important factor to retain.  However, discussions 
suggested that the mechanism by which this would affect carbon storage was 
through soil moisture.  Given that soil moisture has now been added to the model 
itself, drainage is not included as well. 

• Exchangeable cations: Evidence from the literature review was unclear, but 
suggested a possible effect in forest environments ((López-Marcos et al. 2018; 
Solly et al. 2020).  The expert panel considered it a low priority to include. 

• Heavy metal content: Limited and variable evidence was found related to heavy 
metal content impacts on soil carbon storage within the literature review ((Enya et 
al. 2020; Xu et al. 2021).  The expert panel considered it a low priority to include. 

• Inorganic fertilisers / biostimulants: Some evidence was found linking 
biostimulants to soil carbon storage ((Debska et al. 2022; Sible et al. 2021; 
Wadduwage et al. 2023).  However, data on this were not available.  Inconclusive 
evidence was found linking inorganic fertilisers to long term soil carbon storage 
(although many papers did link them to increased biomass production, and so this 
will be kept under review for future iterations). 

• Intercropping: The literature review found evidence that intercropping increases 
soil carbon (Cong et al. 2015; Li et al. 2024).  The expert panel process supported 
its inclusion, but support was weaker than for the other management related 
variables (e.g. cover crops, crop rotation).  However, no data were found that would 
enable its inclusion in the model. 

• Micro- and macro-nutrients: The literature review suggested that there may be 
some effect, but that this varies depending on the nutrients in question (Crowther et 
al. 2019).  Not enough evidence was found to be able to confidently identify which 
combinations of nutrients would have which effects.  This was considered a low 
priority to include in the expert panel process. 

• N (total): The literature review did not find conclusive evidence that N affects 
carbon storage ((Hyvönen et al. 2007; Janssens et al. 2010; Luo et al. 2022).  The 
expert panel suggested that N is often correlated with carbon content, but that this 
is a correlation rather than a driver. 

• P (available and total): The literature review identified some laboratory studies and 
studies outside the UK with a very small effect on carbon storage, but nothing 
conclusive ((Bradford et al. 2008; Cui et al. 2022).  The expert panel were divided 
on whether this should be included or not, with many unsure.  It was therefore 
concluded that there is not enough evidence to be confident in its inclusion. 

• pH and electric conductivity: One expert suggested that pH could affect carbon 
through affecting primary productivity.  However, the panel overall considered it a 
low priority to include.  The literature review found it to have variable and 
inconclusive effects on soil carbon storage (Holland et al. 2018; Hunde 2015; 
Kemmitt et al. 2006; Seaton et al. 2021). 

• Rainfall: The literature review found rainfall to have a complex and non-linear 
relationship with soil carbon storage, with conflicting evidence sources (Bellamy et 
al. 2005; Eglin et al. 2011; Poll et al. 2013; Sowerby et al. 2008; Verheijen et al. 
2005).  This variable also caused much debate within the expert panel process and 
subsequent email exchanges.  The panel agreed that the direct effect on carbon 
was via soil moisture, rather than based on rainfall levels directly.  The node was 
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therefore replaced with a soil moisture node instead, in order to measure the factor 
of most relevance directly, rather than attempting to model it based on climatic data. 

• Slope: It was concluded that this affects soil carbon storage through erosion 
(Boardman et al. 2009; Guerra et al. 2017).  Erosion is already included within the 
model. 

• Soil profile: This represents the soils’ physical properties overall.  Given that each 
of the relevant individual properties (e.g. texture) have been considered separately, 
this was not included. 

• Soil water content: Concerns were raised over the use of the NCEA soil water 
content data, as these will be captured at one point in time and so will not be 
representative of the site over the year.  The Copernicus soil moisture dataset is 
therefore being used instead (see soil moisture, above). 

• Temperature: The literature review found temperature to have a complex and 
context dependent relationship with soil carbon storage, with a lack of consensus in 
the literature about the nature of the relationship (Davidson & Janssens 2006).  
Some evidence was found that suggests an increase due to increased plant 
productivity and increased C mineralisation through microbial activity (Dalias et al. 
2001), whilst other evidence was found that suggests increased temperature tends 
to result in carbon losses (Hartley et al. 2021; Qi et al. 2016).  This variable also 
caused much debate within the expert panel process and subsequent email 
exchanges.  Whilst in the discussion itself, the consensus was to remove the node 
form the model, subsequent email exchanges highlighted the influence of 
temperature on soil moisture, which does have a significant impact on soil carbon 
storage.  The node was therefore replaced with a soil moisture node instead, in 
order to measure the factor of most relevance directly, rather than attempting to 
model it based on climatic data. 

• Threats to biodiversity: The literature review found that there is evidence about 
the role of soil biodiversity in carbon cycling (e.g. higher diversity tends to be 
associated with higher soil respiration rates) but little evidence demonstrating 
impacts on SOC stocks (de Graaff et al. 2015; Filser et al. 2016).  It also found that 
different species and functional groups can affect soil carbon via different 
mechanisms, for instance impacts on soil erosion, so identifying a generalised 
effect would be very difficult and likely associated with a high degree of error 
(Orgiazzi & Panagos 2018).  There was high uncertainty and conflicting comments 
in the expert panel process about whether this node should be included or not.  It 
seems likely that biodiversity does have an impact on soil carbon, but not one that 
we are currently able to simplify to the extent that it could be confidently included 
within the model. 

• Vegetation: The literature review process found that higher plant biodiversity has 
sometimes been linked to higher SOC, but this may only be the case when higher 
diversity results in increased root and aboveground biomass, and therefore greater 
litter inputs to soil (Augusto & Boča 2022; Lange et al. 2015; Yang et al. 2019).  The 
expert panel process concluded that vegetation in the sense of plant biodiversity is 
unlikely to affect soil carbon storage, but that vegetation in the sense of percentage 
cover would be important to include.  Whilst it may be possible to include this 
variable ultimately based on a vegetation survey taking place in parallel to the soil 
survey as part of the EES, the authors have not yet seen those data and so could 
not take a decision on whether or not it could be included.  Additionally, the 
inclusion of land cover is already considering vegetation to a certain extent. 

• VESS: This was suggested by the expert panel as a variable that may be useful to 
add to the model.  However, this is likely to correlate with texture, tillage, land use 
and many of the other variables also included within the model, so has been 
excluded. 
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Appendix 3: Supplementary detail on the food/fibre model 
This appendix provides information about the variables that were included in, and 
considered but excluded from, the food/fibre model illustrated in the main report (Figure 7), 
including justification and references for doing so.  It also provides additional information 
about data sources planned to be used, how variables will be categorised, and how they will 
be weighted. 

Variables included in the model 

ALC class for agricultural land, or ESC combined with biomass tables from the 
Woodland Carbon Code for forested areas 

• Justification for inclusion: ALC class was suggested during the expert panel 
process to be used instead of a wide range of the other variables that were being 
considered, as it is an established, accepted and clearly documented method for 
achieving largely what we were proposing.  Whilst it was not assessed in the initial 
literature review, many of the factors considered within ALC methods were 
assessed (see ‘Variables that were considered, but excluded from the model’ 
section, below).  Follow up discussions also supported this new approach, although 
highlighted that it would only be appropriate for the agricultural and not the forestry 
aspects of food and fibre provision.  Additional follow-up discussions with Forest 
Research and subsequent reading landed on use of ALC class for agricultural land, 
and Ecological Site Classification combined with biomass tables from the Woodland 
Carbon Code as an equivalent approach that could be used in forested areas. 

• Data source: The initial interim statistic will make use of existing ALC maps.  
Future work will explore whether it would be possible to use the NCEA data to 
perform an ALC style assessment (or an assessment of specific ALC modules) at 
each monad in subsequent iterations.  Data will be grouped into 'high' (a score of 1 
or 2), 'medium' (a score of 3) and 'low' (a score of 4 or 5). 

• Relationship, interactions and weightings: Higher quality (lower ALC score) will 
be considered to increase soils’ contribution to food and fibre provision.  Given that 
this node is incorporating many other factors that were initially of interest, it will be 
given a quadruple weighting compared to the other nodes within this network. 

Bulk density to represent compaction 

• Justification for inclusion: The literature review found evidence of compaction 
as a key factor affecting nutrient uptake (Arvidsson 1999; Batey 2009; Botta et al. 
2006; da Silva & Kay 1996; Hargreaves et al. 2019; Koch et al. 2008; Nevens & 
Reheul 2003; Radford et al. 2001; Tracy et al. 2011).  Evidence was also found of 
compaction as a key factor affecting risk of soil borne pathogens and disease 
(Abawi & Widmer 2000; Ishak 2017; Rothrock 1992). 

• Data source: NCEA data (EES and NFI+ data).  The data will be divided evenly 
into categories of ‘high’, ‘medium’ and ‘low’, based on the top, middle and bottom 
thirds of the values within the dataset overall. 

• Relationship, interactions and weightings: Lower compaction will be 
considered to increase nutrient uptake and decrease risk of soil borne pathogens 
and disease (both thereby soils’ contribution to sustainable food/fibre provision).  
A standard weighting will be applied in both cases. 
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Crop rotation 

• Justification for inclusion: Targeted reading following expert panel discussions 
identified this as an additional key variable of relevance to risk of soil borne 
pathogens and disease ((Abawi & Widmer 2000; Jalli et al. 2021; Samaddar et al. 
2021; Zhou et al. 2023).  We note that whilst there is plenty of evidence supporting 
its inclusion, it does vary per pathogen/disease and per plant, so highlight that the 
risk of soil borne pathogens and disease node is aiming to act as a generic risk 
factor, rather than say anything specific about any individual case. 

• Data source: We plan to estimate crop rotation based on the UKCEH Land Cover 
plus Crops dataset, using the concept described in Upcott (2019).  For the initial 
interim release, crop rotation will be assessed categorically as either present or 
absent for samples from cropland.  Ongoing work will continue to search for 
improved datasets. 

• Relationship, interactions and weightings: Presence of crop rotation will be 
considered to reduce risk of soil borne pathogens and disease.  As spatial data are 
not available, this will need to be treated in the model separately (e.g. a model run 
out spatially for each plot, and then aggregated, then a separate model run out 
adding non-spatial data).  This node is only relevant to arable land use types, not 
plots with other land use types, so it will only be applied to a subset of the overall 
dataset.  A standard weighting will be applied.  Whilst some literature review 
evidence flagged that the optimum crop-rotation system will vary between contexts, 
we will be unable to include this level of nuance in the initial indicator due to data 
constraints. 

Earthworm counts 

• Justification for inclusion: The expert panel suggested the addition of this 
variable as one with an established relationship to crop yields.  Evidence to support 
this was found as part of the literature review process (Brown et al. 1999; Derouard 
et al. 1997; Scheu 2003; van Groenigen et al. 2014; Whitmore et al. 2017). 

• Data source: NCEA data (EES and NFI+ data).  The data will be divided evenly 
into categories of ‘high’, ‘medium’ and ‘low’, based on the top, middle and bottom 
thirds of the values within the dataset overall. 

• Relationship, interactions and weightings: Higher presence of earthworms will 
be considered to increase soils’ contribution to food and fibre provision.  Based on 
evidence that this is a factor of relevance to agricultural crops but not forest 
production, the conditional probabilities tables will be constructed in a way that 
interacts with the landcover variable, giving it a standard weighting when landcover 
is cropland or grassland, and a zero weighting for forest. 

Erosion 

• Justification for inclusion: The literature review found evidence that erosion 
reduces yield, via nutrient availability, water availability, etc. (Bakker et al. 2007; Biot 
& Lu 1995; Boardman & Favis-Mortlock 1993; Lal & Moldenhauer 1987; Langdale & 
Shrader 1982; Zhang et al. 2021).  Erosion of less than (<) 5 cm, or leaving more 
than (>) 25 cm of topsoil does not significantly impact yield. Erosion of 5–30 cm 
proportionally decreases yield.  Erosion of more than (>) 30 cm does not cause a 
significant decrease in yield beyond that which has already occurred up to that 
point.  The expert panel agreed that large amounts of erosion will have a huge 
impact on yield, whereas small amounts of erosion will have minimal impact. 
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• Data source: Pan European Soil Erosion Risk Assessment – PESERA (described 
in Kirkby et al. 2004; 2008).  Rather than using a high, medium, low breakdown that 
is evenly split based on the range of the data, we will calculate a rough estimate of 
the weight of 5 cm soil per hectare (ha) and 20 cm soil per ha to translate the 
literature review findings into threshold units that will allow the data to be grouped 
into three more meaningful categories of high, medium and low. 

• Relationship, interactions and weightings: Erosion risk will be considered to 
decrease nutrient uptake (thereby decreasing soils’ contribution to food and fibre 
provision).  As the dataset used is a modelled dataset itself, taking into account a 
variety of factors to estimate erosion risk, all factors raised as potential interactions 
by the expert panel (e.g. texture, land use) are already accounted for within the 
dataset being used.  As such, the conditional probability tables (which define 
interacting relationships between the model variables) will give even weightings 
compared to other factors in the model, rather than changing its weight based on 
the state of other variables within the model.  However, weighting within this 
category will be such that sites with less than 5 cm erosion are weighted as having 
no effect in the CPTs, those with 5–20 cm will lead to a small reduction in nutrient 
uptake, and those above 20 cm will lead to a medium reduction in yield. 

Land cover 

• Justification for inclusion: Other factors in the model (e.g. earthworms, ALC 
versus ESC) are dependent on / interact with land cover, and so this must be 
included in order to be able to have varying effects for these nodes. 

• Data source: NCEA data (EES and NFI+ data), with land cover categories 
aggregated into ‘tree cover’, ‘shrub/grassland’ and ‘cropland’.  We note the 
limitation that EES data do not cover urban areas. 

• Relationship, interactions and weightings: This node is included to allow for 
differentiated responses in forest versus cropland.  See earthworm section for 
description of interaction between this node and earthworms.  Further discussions 
with Forest Research are planned which will allow us to design the conditional 
probability tables in a way that will similarly differentiate for other variables. 

N% 

• Justification for inclusion: The literature review provided clear evidence that soil 
nutrients, including N, had a significant effect on crop yield, although this interacts 
with availability of other nutrients (Ågren et al. 2012; Rubio et al. 2003; Zhang et al. 
2021).  The expert panel agreed unanimously, although noting that it could be 
controlled by management and fertiliser application.  

• Data source: NCEA data (EES and NFI+ data).  The data will be divided evenly 
into categories of ‘high’, ‘medium’ and ‘low’, based on the top, middle and bottom 
thirds of the values within the dataset overall. 

• Relationship, interactions and weightings: Higher N% will be considered to 
increase nitrogen uptake (thereby increasing soils’ contribution to food and fibre 
provision); unless P is low, in which case P will be considered as the limiting factor 
and increasing N will not have an effect.  A standard weighting will be applied. 

Olsen P 

• Justification for inclusion: The literature review provided clear evidence that soil 
nutrients, including P, had a significant effect on crop yield, although this interacts 
with availability of other nutrients (Ågren et al. 2012; Rubio et al. 2003; Zhang et al. 



JNCC Report 793 

51 

2021).  The expert panel agreed unanimously, although noting that it could be 
controlled by management and fertiliser application.  Use of Olsen P as more 
representative of P that is available to plants for uptake was suggested as more 
appropriate to use than simply P%.  It is noted that Olsen P results cannot be 
compared against other methods for quantifying P in a soil sample.  However, as 
Olsen P is the only method for which data are available, this should not be an issue. 

• Data source: NCEA data (EES and NFI+ data).  The data will be divided into 
categories of ‘high’, ‘medium’ and ‘low’, based on the AHDB soil health score card 
values, with below 9 mg/l or above 71 mg/l considered to be low, 10–15 mg/l and 
46–70 mg/l as considered as medium, and 16–45 mg/l as high.  The high category 
will lead to highest nutrient uptake, whilst the low category will lead to lowest 
uptake.  Any increases above the threshold of 45 mg/l will not increase uptake 
further, but will have unsustainable effects on the system; hence the decreasing 
categories as P values reach levels above this point, rather than only increasing up 
to that point. 

• Relationship, interactions and weightings: Higher Olsen P will be considered to 
increase nutrient uptake (thereby increasing soils’ contribution to food and fibre 
provision); unless N is low, in which case N will be considered as the limiting factor 
and increasing P will not have an effect.  A standard weighting will be applied. 

pH 

• Justification for inclusion: The literature review concluded that whilst context 
dependent to some degree, the optimum pH for micro-and macro-nutrient 
availability is slightly acidic, and that this is likely to hold true for most plant species 
(Clark 1983; Curtin et al. 1998; Harper & Balke 1981; Hartemink & Barrow 2023; 
Maas & Ogata 1971; Neina 2019).  The expert panel were in agreement that pH 
6.5–7.5 results in higher production potential (for arable land). This matches the 
AHDB soil health scorecard and RB209 Nutrient Manual.  The mechanism by which 
this affects yield / food and fibre provision is through nutrient availability. 

• Data source: NCEA data (EES and NFI+ data).  Data will be grouped into sites with 
a pH of 6.5–7.5 (optimum), and a pH above or below this (sub-optimum). 

• Relationship, interactions and weightings: pH 6.5–7.5 has a positive effect on 
nutrient availability, above or below this has a negative effect.  A standard weighting 
will be applied. 

Soil organic matter 

• Justification for inclusion: The literature review found a clear correlation between 
SOM and crop yield, but the mechanism behind this was unclear (Loveland & Webb 
2003; Wilson 1991; Zhang et al. 2021).  The expert panel agreed that yield 
increases with SOM, but only up to a point (approximately 4%).  The expert panel 
suggested that SOM should also feed into the soil-borne pests and disease node.  
However, targeted literature review reading did not find enough evidence to support 
its inclusion (Bonanomi et al. 2010). 

• Data source: NCEA data (EES and NFI+ data).  Data above 4% will be considered 
‘high’.  Data below 4% will be split into two equal ‘medium’ and ‘low’ categories 
based on the dataset overall. 

• Relationship, interactions and weightings: Increasing SOM will directly lead to 
increasing ES delivery.  A standard weighting compared to other nodes within the 
model will be applied.  

https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/AHDB/2022/AHDB%20Soil%20health%20scorecard%20protocol%20and%20benchmarking%20-%20England%20and%20Wales%20(v1.0).pdf
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Soil moisture 

• Justification for inclusion: The expert panel considered waterlogged soils to be a 
key risk factor for soil borne pests and diseases.  Subsequent targeted reading 
supported its inclusion (Samaddar et al. 2021; Singh et al. 2023; Yang et al. 2023).  
Other effects of moisture are captured through the ALC node.  

• Data source: Copernicus soil water index (Copernicus 2024).  We also considered 
the COSMOS dataset, but found the Copernicus data to have greater spatial 
resolution and to provide deeper data. 

• Relationship, interactions and weightings: High soil moisture will be considered 
to increase risk of soil borne pests and disease.  A standard weighting will be 
applied going into the modelling of the soil borne pests and disease node.  
However, the soil borne pests and disease node will be weighted half that of the 
other intermediate nodes when bringing the intermediate modelling together, as it 
was considered possible to control for the most part with management. 

Variables that were considered, but excluded from the model 

• Aggregate stability: This variable was considered to be closely related to 
compaction, which is already included in the model, represented by bulk density. 

• Compaction: Bulk density is being used as a proxy for compaction, in the absence 
of data measuring compaction directly. 

• Contamination (heavy metals): This variable was considered important (Athar & 
Ahmad 2002; Audet & Charest 2007; Dudka et al. 1994), but is now covered by 
inclusion of the ALC node. 

• Growth: Growth and yield were removed for simplicity, with all factors feeding into 
the overall ES instead of trying to break out which factors would affect growth 
versus yield. 

• Hot water extractable carbon: No clear link with yield was established through the 
panel process or the literature review. 

• Radiation use efficiency: The expert panel did not consider this to be a variable 
related to the soil system. 

• Slope: This variable was considered important by the expert panel, but is now 
covered by inclusion of the ALC node. 

• Soil depth: This variable was considered important by both the expert panel and 
the literature review (Kirkegaard et al. 2007; Thorup-Kristensen et al. 2020), but is 
now covered by inclusion of the ALC node. 

• Soil microbial activity: This was considered important by both the expert panel 
and the literature review, but linked to the specific functional traits of particular 
microbes, and so a greater understanding of these would be needed before being 
able to include it within the model (Alam et al. 2014; Insam et al. 1991; Liu et al. 
2009; Nassal et al. 2018; T. Qu et al. 2021). 

• Soil strength: This variable was removed due to confusion within the expert panel 
about definitions, and a lack of data on how this would be measured. 

• Stone content: This variable was considered important by both the expert panel 
and the literature review (Abu-Zreig et al. 2011; Epstein et al. 1966), but is now 
covered by inclusion of the ALC node. 

• Temperature: This variable was considered important by both the expert panel and 
the literature review (Gales 1983; Gallagher 1979; Keatinge et al. 1979; Nielsen et 
al. 1961), but is now covered by inclusion of the ALC node. 
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• Texture: This variable was considered important by the expert panel, but is now 
covered by inclusion of the ALC node. 

• Tillage: Whilst some studies suggested that tillage may be a factor influencing risk 
of soil borne pathogens and disease, the evidence was found to conflict and be 
inconclusive (Samaddar et al. 2021). 

• Topography: This variable was considered important by the expert panel, but is 
now covered by inclusion of the ALC node. 

• VESS: This variable was considered to be closely related to compaction, which is 
already included in the model, represented by bulk density. 

• Yield: Growth and yield were removed for simplicity, with all factors feeding into the 
overall ES instead of trying to break out which factors would affect growth versus 
yield. 
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