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Summary 

Assessing impacts of offshore renewable developments (ORDs) on marine birds is 
challenging, as it involves a number of key interlinked elements, from observations of birds’ 
behaviour in response to ORDs to predicted population trajectories. The synthesis of 
multiple sources of data and a range of modelling approaches must be used to understand a 
set of complex behavioural, energetic and demographic processes, operating in a marine 
environment that is both spatially and temporally highly dynamic and logistically challenging 
to work in. Consequently, there is considerable uncertainty associated with such 
assessments.  

Currently, the assessment process does not quantify the overall uncertainty associated with 
the impacts of ORDs in a scientifically robust, evidence-based manner. The degree and 
defensibility of uncertainty quantification varies between different stages of the assessment 
process, and there is a lack of consensus on how the uncertainties associated with different 
stages of the process should be combined together in order to provide an “end-to-end” 
quantification of scientific uncertainty. 

A key requirement for quantification of uncertainty within the assessment process is that 
uncertainty and environmental or natural variation (hereafter ‘environmental variation’ or 
‘variation’) must both be accounted for, and that the assessment process must correctly 
distinguish between variation and uncertainty. The key general distinction between 
environmental variation and uncertainty is that environmental variation is an inherent feature 
of the system (e.g. arising from seabird biology), and so cannot be reduced through 
additional data collection, whereas uncertainty is a feature of the state of knowledge, and so 
can, at least in principle, be reduced through additional data collection and improved 
understanding, thereby enhancing validity of models. 

It is important to stress that full quantification of uncertainty is as important as the reduction 
of uncertainty in supporting the decision-making process. This is because apparent 
reductions in uncertainty that arise in the context of an inadequate quantification of 
uncertainty are liable to create a false sense of certainty, and so increase the risk of 
unanticipated outcomes. The reduction of uncertainty can only meaningfully be prioritised 
and evaluated within the context of a comprehensive quantification of uncertainty, hence 
why much of the focus of the recommendations developed in this project is on the 
quantification of uncertainty, as well as the reduction of this uncertainty (Table 4). 

In this project we have, through a workshop-based process of consultation with relevant 
experts and stakeholders produced a framework for how scientific uncertainty can be 
quantified and reduced throughout the assessment process, to facilitate the development of 
more precise ORD impact estimates. The project focuses upon offshore wind farm 
developments, rather than on other ORD technologies such as tidal or wave developments. 
We highlight key areas in which new empirical data and research are required in order to 
reduce uncertainties, and outline, in broad terms, the resources and activities required for 
their delivery. This work has involved bringing together a wide range of relevant experts and 
stakeholders to: 

1. review the methods that are currently used to quantify uncertainty within the
assessment process, and evaluate the ways in which these uncertainty estimates are
currently used within the assessment process

2. highlight key areas in which the quantification and interpretation of uncertainty could
be improved, either through statistical modelling, additional data collection or
adaptation of the assessment process
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3. provide a framework for the end-to-end quantification of uncertainty, which brings 
together estimates of uncertainty associated with individual stages of the assessment 
process 

4. develop recommendations for the research required to both better quantify 
uncertainty, and to reduce it, to better underpin and inform potential reductions in 
consenting risk for future offshore wind development through more certainty about 
likely impacts of planned developments 
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Glossary 
 
Apportioning: The process, for seabird species, of estimating the percentage of individuals 
within a specified area of sea (e.g. footprint) over a particular period of time (e.g. season or 
month) that can be attributed to each breeding colony. 
 
Calibration: the process of comparing the outputs of a model against observed data and 
revising the values of input parameters in order to reduce the discrepancy between 
observations and model outputs. 
 
Covariate: a measured quantity that can be used to describe variation, through a statistical 
model, in the quantity of interest. 
 
Estimation: the process of inferring the values of the parameters of a model using observed 
data on the model outputs. Similar in many ways to "calibration", but the term "estimation" is 
typically used in the context of statistical models and the term "calibration" in the context of 
mechanistic models. 
 
Parameter: a quantity within a model whose value is unknown, but for which the value may 
be informed by data or expert judgement. 
 
Parameter uncertainty: the uncertainty in model outputs that arises from lack of knowledge 
regarding the values of parameters within the model (the term "estimation uncertainty" is 
also often used to capture this, and in Masden et al. (2015) the term "sampling uncertainty" 
is used). 
 
Population Viability Analysis (PVA): A framework for translating effects on annual 
demography into impacts on longer-term abundance. 
 
Sensitivity Analysis: a process for evaluating the extent to which the outputs of a model 
are sensitive to uncertainty/variation in each of the input parameters. 
 
Stochastic model: a model that allows for variation in one or more of the inputs. 
 
Uncertainty: limitations to our knowledge and understanding that arise from a lack of data, 
or limitations to the interpretation of the available data. Uncertainty is a feature of human 
knowledge, and so can, in principle, be reduced through data collection and/or further 
analyses and interpretation of existing data. 
 
Structural uncertainty: uncertainty that arises from fundamental differences between the 
assumptions of the model and reality. 
 
Variation: natural differences that occur - e.g. over time or space, or between individuals. 
Variation, unlike uncertainty, cannot be reduced through data collection or analysis, as it is 
an inherent feature of the system being studied. 
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1 Background 
 
UK Government has set targets to generate 50% of overall energy consumption from 
renewable sources by 2030 and to have decarbonised the energy system almost completely 
by 2050. However, the Government has a duty to ensure that Offshore Renewable 
Developments (ORDs) are delivered in a sustainable manner, in accordance with the 
requirements for Habitats Regulation Assessment and Environmental Impact Assessment. 
Offshore renewable developments have the potential to affect seabirds that are protected 
under the Habitats Regulations, notably from collisions with turbine blades and through 
displacement from important habitat (Drewitt & Langston 2006; Busch et al. 2013; Thaxter et 
al. 2015; Dierschke et al. 2016; Welcker & Nehls 2016). 
 
Assessing impacts of ORDs on marine birds is challenging, as it involves a number of key 
interlinked elements, from observations of birds’ behaviour in response to ORDs to predicted 
population trajectories. The process of assessing the potential impact of a planned 
development on a protected marine bird population involves predicting the potential 
demographic consequences of any mortality caused by the development. These predicted 
demographic consequences are then used to evaluate whether there will be an Adverse 
Effect on the Integrity of SPA interest features and the SPA network, which is an 
assessment of whether mortality will be sufficient to cause a decline in the ecological 
coherence of an SPA interest feature, such that the feature no longer meets the 
Conservation Objectives for that feature at that site. These predictions are underpinned by a 
series of interconnected processes, designed to estimate the behavioural and subsequent 
demographic consequences and population level response to the ORD. This can be 
depicted using the following schematic: 
 

 
Figure 1: A schematic diagram illustrating the models and steps involved with the ornithology and 
offshore wind impact assessment process. 
 

The synthesis of multiple sources of data and a range of modelling approaches must be 
used to understand a set of complex behavioural, energetic and demographic processes, 
operating in a marine environment that is both spatially and temporally highly dynamic and 
logistically challenging to work in. Consequently, there is considerable uncertainty 
associated with such assessments.  

https://www.legislation.gov.uk/uksi/2017/1012/contents/made
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Currently, the assessment process does not quantify the overall uncertainty associated with 
the impacts of ORDs in a scientifically robust, evidence-based manner. The degree and 
defensibility of uncertainty quantification varies between different stages of the assessment 
process, and there is a lack of consensus on how the uncertainties associated with different 
stages of the process should be combined together in order to provide an “end-to-end” 
quantification of scientific uncertainty. 
 
The consequence of this is that uncertainty around the magnitude of impacts of OW 
development on marine bird populations is not reliably known. Furthermore, this uncertainty 
is generally viewed as a feature of the process that can only be managed through additional 
empirical data collection. However, better statistical treatment of uncertainty and a holistic 
approach to managing uncertainty from beginning to end of the assessment process are 
likely to yield greater confidence in predicted impacts and quantitative estimates of 
uncertainty associated with them, reducing the need for precautionary approaches. 
 
The precautionary principle exists for situations where scientific data does not exist or is 
incomplete and therefore it is not possible to complete a full evaluation of the possible risks a 
plan, project or activity may cause to the environment, including possible danger to humans, 
animal or plant health, or to the environment in general (RSPB 2019). The European 
Commission’s Precautionary Principle guidance1 states that it should apply when a 
phenomenon, product or process may have a dangerous effect, identified by a scientific and 
objective evaluation, if this evaluation does not allow the risk to be determined with sufficient 
certainty. As such the degree of precaution applied to an evaluation, or assessment, can be 
seen to be directly proportional to the extent of scientific uncertainty inherent in that 
assessment. As the guidance goes on to recommend, “The implementation of an approach 
based on the precautionary principle should start with a scientific evaluation, as complete as 
possible, and where possible, identifying at each stage the degree of scientific uncertainty.” 
(RSPB 2019).  
 
In this project we have, through a workshop-based process of consultation with relevant 
experts and stakeholders produced a clear framework for how scientific uncertainty can be 
quantified and reduced throughout the assessment process, to facilitate the development of 
more precise ORD impact estimates. The project focuses upon offshore wind farm 
developments, rather than on other ORD technologies such as tidal or wave developments. 
We highlight key areas in which new empirical data and research are required in order to 
reduce uncertainties, and outline, in broad terms, the resources and activities required for 
their delivery. This work has involved bringing together a wide range of relevant experts and 
stakeholders to: 
 

1. review the methods that are currently used to quantify uncertainty within the 
assessment process, and evaluate the ways in which these uncertainty estimates are 
currently used within the assessment process 

2. highlight key areas in which the quantification and interpretation of uncertainty could 
be improved, either through statistical modelling, additional data collection or 
adaptation of the assessment process 

3. provide a framework for the end-to-end quantification of uncertainty, which brings 
together estimates of uncertainty associated with individual stages of the assessment 
process 

 

1 
https://ec.europa.eu/environment/integration/research/newsalert/pdf/precautionary_principle_decision_making_u
nder_uncertainty_FB18_en.pdf; 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/714379/18051
1_EUWB_Environmental_Protections_factsheet_10_May_18.pdf 

https://ec.europa.eu/environment/integration/research/newsalert/pdf/precautionary_principle_decision_making_under_uncertainty_FB18_en.pdf
https://ec.europa.eu/environment/integration/research/newsalert/pdf/precautionary_principle_decision_making_under_uncertainty_FB18_en.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/714379/180511_EUWB_Environmental_Protections_factsheet_10_May_18.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/714379/180511_EUWB_Environmental_Protections_factsheet_10_May_18.pdf
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4. develop recommendations for the research required to both better quantify 
uncertainty, and to reduce it, to better underpin and inform potential reductions in 
consenting risk for future offshore wind development through more certainty about 
likely impacts of planned developments 

 

2 Review of sources of uncertainty in ornithological 
offshore wind assessments 

 

2.1 Overview 
 
A first step in understanding uncertainty in any process is to identify the various types and 
sources of uncertainty and variability that are involved. In the assessment of environmental 
impacts, the level and form of uncertainty not only depends upon the availability of relevant 
empirical data, but also upon data collection and sampling methodologies, analysis and 
modelling methods, linguistics used by different stakeholders, and policy frameworks.  
 
When understanding and quantifying ecological processes, it is particularly important to 
recognise the different contributions and impacts of uncertainty versus natural variability 
(Figure 2). Natural variability is a property of natural systems, which may have many causes 
such as variation between individuals within a colony related to physiology, age or sex (often 
termed ‘individual variation’); or variation between colonies due to differing habitat 
characteristics, and variation across years due to variation in weather or other aspects of the 
ecosystem (often termed ‘environmental variation’; Figure 2). Importantly, because natural 
variability is a property of the ecological system, it cannot be reduced. It can, however, be 
characterised and quantified through measurement. This quantification of natural variability 
may then be used within models or analyses of ecological processes. If we could perfectly 
measure the natural variability in all the processes affecting ornithological interactions with 
offshore windfarms, we could include this variability within assessments, clearly separating 
its impacts from those arising from uncertainty. 
 
Uncertainty itself is a function of how well we understand, measure and represent an 
ecological process. It is introduced due to the limitation of our knowledge and understanding 
of a system, whereby we often only have an imperfect ability to describe the ecological 
process of interest. This has been termed ‘knowledge uncertainty’ (Masden et al. 2015; 
Figure 2). Within ornithological offshore wind assessments, this knowledge uncertainty 
captures uncertainty that arises from our ability to understand and represent all of the 
ecological processes through which seabirds interact with offshore wind developments 
(hereafter referred to as ‘ORDs’). For instance, the assessment process typically considers 
three main types of seabird interactions: displacement from habitat, barrier effects, and 
collision impacts. However, these broad categories capture a myriad of underlying 
behavioural mechanisms, some of which may be explicitly represented within the 
assessment process, but many of which are currently not included, such as habituation, 
impacts on other trophic levels affecting predator-prey interactions, and foraging site fidelity. 
For almost all of these interactions between seabirds and ORDs, we are only able to partially 
describe and measure the underlying behavioural mechanisms, resulting in knowledge 
uncertainty that affects ornithological assessment outcomes. Further, all behaviours have 
energetic and fitness consequences for individuals. As with behavioural interactions, we are 
only able to partially describe and measure the energetic consequences of ORD impacts on 
the behaviour of seabirds, or the translation of these energetic consequences into fitness 
consequences on demographic rates of individuals and populations.  
 
Our ability to understand, quantify and reduce this knowledge uncertainty is linked to how we 
describe these interactions between seabirds and ORDs. Knowledge uncertainty is driven by 
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two key elements: 1) our descriptions or models of the relevant ecological processes, termed 
‘structural uncertainty’ or sometimes ‘process uncertainty’, and 2) our ability to obtain data 
that adequately captures the states and processes underpinning interactions, termed 
‘sampling uncertainty’, ‘estimation uncertainty’ or (in the context of specific models for 
interactions) ‘parameter uncertainty’ (Figure 2). Therefore, increasing or improving data 
collection, and using these data to improve understanding and analytical or model 
descriptions of behaviour and processes will all lead to reduced uncertainty. It is this 
uncertainty, ‘structural’ and ‘sampling’ on which we focus in this report. Our particular focus 
is on assessing how environmental variation and structural and sampling uncertainty are 
recognised, quantified, and used, and on how they are propagated through the assessment 
process. We also focus on how we can reduce knowledge uncertainty by increasing our 
knowledge of key ecological processes through data collection and modelling or statistical 
analysis, with the ultimate goal being to better quantify and reduce uncertainty to facilitate 
more robust decision making. However, we note that the complexities of natural systems, 
coupled with their inherent natural variability, mean that it will likely never be possible to 
perfectly quantify uncertainty, or minimise it to such an extent as to entirely remove risk in 
consenting decisions. 
 
Finally, within ornithological impact assessments, uncertainty also arises through linguistic 
and decision-making processes. Linguistic uncertainty arises because language is vague 
and/or the precise meaning of words changes over time or between disciplines (Masden et 
al. 2015). For instance, the use of the word ‘precautionary’ within assessments is designed 
to have a precise meaning and interpretation, and yet it means many different things to 
different stakeholders. Decision-making uncertainty relates to how knowledge and 
predictions are interpreted, communicated and used in the management and policy arena 
(Masden et al. 2015). Whilst important, these two additional sources of uncertainty fall 
outside the direct scope of this project, and hence we do not propose recommendations for 
solutions to reducing uncertainty arising from these sources. However, decision-making 
uncertainty is discussed in brief below, because this provides important context to guide the 
prioritisation of work to quantify and reduce knowledge uncertainty. 
 

 
Figure 2: Summary of the sources of uncertainty affecting ornithological offshore windfarm 
assessments. Adapted from Masden et al. 2015. 
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2.2 Uncertainty and natural variability 
 
A key requirement for quantification of uncertainty within the assessment process is that 
uncertainty and environmental or natural variation (hereafter ‘environmental variation’ or 
‘variation’) must both be accounted for, and that the assessment process must correctly 
distinguish between variation and uncertainty. The key general distinction between 
environmental variation and uncertainty is that environmental variation is an inherent feature 
of the system (e.g. arising from seabird biology), and so cannot be reduced through 
additional data collection, whereas uncertainty is a feature of the state of knowledge, and so 
can, at least in principle, be reduced through additional data collection and improved 
understanding, thereby enhancing validity of models (Figure 2). 
 
In practice, however, the typical mathematical and statistical ways of representing 
environmental variability and uncertainty are essentially the same (via probability 
distributions), and in complex systems, such as interactions between seabirds and ORDs, 
the two processes are often difficult to disentangle. 
 
To illustrate the similarities and differences between uncertainty and environmental 
variability, and the challenges in disentangling them, we consider a simple hypothetical 
example, in which interest lies in estimating the adult mass at the end of the chick-rearing 
period (a key proxy for over-winter adult survival), for one particular colony of interest. Such 
an example could be of high relevance to assessing impacts of OWFs, because one of key 
ways in which displacement and barrier effects are suspected to reduce over-winter adult 
survival is through a reduction in adult mass at the end of the chick-rearing period: this is the 
mechanism by which barrier and displacement effects alter over-winter adult survival within 
the individual based model, SeabORD (Searle et al. 2014). This loss of mass may result 
from displacement forcing individuals to forage in less suitable areas of habitat, or from 
barrier effects forcing individuals to expend more energy by flying further to reach their 
foraging areas. We assume for this hypothetical example that data on mass can be collected 
for a random sample of n birds, in each of m years, and further assume that mass follows, at 
least approximately, a normal distribution. We also assume that no other data (e.g. on 
relevant covariates are available). In this situation, the obvious way to model these data 
would be through a linear mixed model (LMM) of mass, which contains a random effect for 
“year”. The LMM would contain three parameters, each of which would be estimated from 
the data: 
 

a) the overall mean mass (across all years and all individuals); 
b) the inter-annual variance, derived from the estimated random effect; and 
c) the residual variance, which corresponds to variability between individual birds within 

a particular year. 
 
The statistical model (the LMM) contains parameters that explicitly represent and quantify 
variability (the inter-annual variance, the residual variance), but no parameters that explicitly 
represent uncertainty. In this example, the magnitudes of the two forms of variability (inter-
annual variability and inter-individual variability within each year) can be explicitly estimated 
from the available data through the model. 
 
So, where is the uncertainty within this model? Software for fitting LMMs will always report 
the uncertainty (standard error) associated with the overall mean mass. Some mixed model 
software will also report the uncertainties associated with the inter-annual and residual 
variances; other software (e.g. the widely used lme4 package in R) does not. How the 
uncertainty is quantified will depend, however, upon the focus of the analysis. If interest in 
the model ultimately lies in estimating the overall mean mass (across all years and all 
individuals) then the model provides a direct estimate of this – the standard error for the 
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associated parameter within the LMM. Alternatively, if interest is focused on predicting the 
mean mass (across individuals) for a randomly selected future year, then the calculation of 
uncertainty in this would involve both the standard error for the overall mean mass and the 
estimate of inter-year variability. Finally, if interest lay in predicting the mass of a particular 
individual in a particular future year, then the calculation of uncertainty would involve the 
standard error for the overall mean mass, the estimate of inter-year variability, and the 
estimate of residual variability (variability between individuals in a particular year). This leads 
us to a second key point: uncertainties in model outputs may or may not need to account for 
variability, and may depend on some, or all, sources of variability – this depends on which 
output(s) are of interest.  
 
What happens if m=1, so that data are only available for a single year? In this case, the 
inter-annual variance cannot be estimated from the data, and the overall mean mass cannot 
be distinguished from the year-specific mean mass. In this situation, only some sources of 
variability can be quantified, and uncertainty can only be partially quantified. This leads us to 
a third important point: the available data do not always allow uncertainty and variability to 
be neatly separated, nor completely quantified.  
 
The separation of uncertainty and variability is, consequently, challenging. But is it 
necessary? In general terms, we firmly believe that it is – because incorrectly treating 
uncertainty as variability, or vice versa, can lead to substantial under-estimation or over-
estimation of uncertainty. In this simple example, if we are interested in predicting the mass 
for a particular future year, but we base the uncertainty in this solely upon the standard error 
for the overall mean mass (across all years and individuals), then we are liable to strongly 
under-estimate uncertainty, by ignoring the effect of inter-annual variability in generating 
uncertainty in predictions of mass for any particular year. 
 
In the actual ORD assessment process, the separation of uncertainty and variability is far 
more complex than in this simple example. We return to the question of how this separation 
is currently achieved, and how this could be improved, within the PVA section (Section 3). 
 

2.3 End-to-end propagation throughout ORD assessment process 
 
The standard assessment process for estimating ORD impacts upon seabirds essentially 
involves running a linked set of tools, and then using the outputs of these tools to inform the 
decision-making process. In most cases (i.e. for species where either collision or 
displacement are relevant, but not both) the assessment process essentially involves 
running a series of tools, such as a collision risk model, then an apportioning tool, and then a 
population viability analysis (PVA). For some species (e.g. black-legged kittiwake) both 
collision and displacement can be relevant, and in this case the outputs of collision risk and 
displacement risk tools need to be combined (usually added) together before being inputted 
into a PVA. In either case, it is crucial to ensure that uncertainty is propagated through the 
series of tools. 
 
The process of linking the tools used within assessments involves subjective judgement (e.g. 
regarding which sources of input data to use), and there is also uncertainty associated with 
the consenting decision-making process itself. In addition, the framework that is used to link 
the different tools (e.g. CRM models, displacement tools, apportioning tools, PVA) is likely to 
contain structural uncertainties. Such structural uncertainty might arise if there are impacts of 
offshore renewables upon seabirds other than those currently considered within the 
assessment process, but they could also arise if components of the process that are 
currently encapsulated by distinct tools interact. For example, for species that are potentially 
impacted by both collision and displacement assessments typically assume that these 
processes are independent, and that their effects can simply be added together, thereby 
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ignoring the potential for biological interactions between the movement and behavioural 
processes that underpin displacement and collision effects. Some of these structural 
uncertainties are potentially resolvable through improved modelling. For example, recent 
extensions of individual-based models (SeabORD; Searle et al. 2020) allow interactions 
between collision risk and displacement risk to be accounted for within assessments, albeit 
in a relatively simplistic way – whilst others are much harder to resolve.  
 
Aside from these broader uncertainties (structural uncertainty, decision-making uncertainty, 
uncertainty arising from subjective judgements in the selection of input data), there are also 
uncertainties that arise from the process of linking the different tools used within the 
assessment process, each of which itself contains uncertainty. This “end-to-end” 
quantification of uncertainty is important, because it allows the uncertainties associated with 
the final, decision-relevant, outputs (e.g. PVA metrics) to reflect all of the quantifiable 
uncertainties that arise from the linked tools that have been used to derive these outputs. 
Each tool within the assessment process is a model of one element of interactions between 
seabirds and ORDs, and the entire assessment process can also be regarded as a larger 
model, or meta-model, that is formed by linking the individual tools together. End-to-end 
quantification of uncertainty therefore involves quantifying the uncertainty associated with 
this larger, “meta-model”. The simplest approach for linking uncertainties between tools, both 
conceptually and practically, is via simulation. The Marine Scotland ‘SEANSE’ project 
(Searle et al. 2020) provided an initial attempt to do this within the context of a case study on 
the impacts of offshore renewables on seabirds, and the Marine Scotland CEF project  is 
currently systematising and automating this approach. 
 
The simulation-based approach essentially involves running multiple simulations, each of 
which involves running all of the linked tools. Each simulation randomly generates the values 
of any inputs that contain uncertainty, and/or any internal tool components that involve 
stochasticity. This simulation-based approach is therefore able to account for both 
uncertainty and variability within a common framework. The distribution of the assessment 
process outputs (e.g. PVA metrics) across simulations then quantifies the “end-to-end” 
uncertainty associated with the assessment process. 
 
A simple hypothetical example, to illustrate how this approach works in practice is given in 
Appendix B. The tools involved in the assessment process are much more complicated than 
in this simple example, and the number of tools being linked is larger, but the principle for 
linking together uncertainties through a simulation approach remains the same. 
 
There are, however, three main limitations of the simulation-based approach: 
 

a) the resulting estimates of “end-to-end” uncertainty will only be meaningful if the 
uncertainty quantification within each of the individual tools, and inputs, is 
comprehensive and statistically defensible; 

b) the process only yields defensible/stable estimates of uncertainty if the number of 
simulations is large; 

c) the simulation-based approach, at least in its simplest form, assumes that the various 
tools operate independently of each other. 

 
All of these represent potentially substantive issues in the context of ORD assessments, but 
the most natural solution to all three issues arises through improved quantification of 
uncertainty within the individual tools, or within the input data to the tools. In particular, the 
uncertainty quantification within individual tools and inputs is currently inconsistent, and in 
some cases very limited (see next section). Within this report we provide a series of 
suggestions/recommendations for how these issues can be addressed. 
 

https://www.ceh.ac.uk/our-science/projects/cumulative-effects-framework
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The issue that a large of number of simulations is required to give a defensible 
representation of uncertainty is a substantive issue for those tools that are computationally 
intensive to run. Current collision risk models (sCRM) and PVA models (NE/JNCC PVA tool; 
Butler et al. 2020a; Searle et al. 2019) require some degree of computational effort, and so 
impose some constraints on the number of simulations that can realistically be run. 
However, the use of individual-based models (IBMs) such as SeabORD are by far the most 
computationally intensive methods, and hence, in contexts where IBMs is used, it is this that 
imposes the main practical limits upon the number of simulations that are possible. This 
issue is currently being addressed within the MSS CEF project – where the IBM SeabORD is 
being redesigned to be less computationally intensive, which will make the running of larger 
numbers of simulations feasible in future. 
 
Finally, relaxing the assumption that the individual component tools of the assessment 
process operate independently depends upon the availability of data and biological 
knowledge to enable such relaxation. The Marine Scotland Collision and Displacement 
Integration project (Searle et al., in press) has made a first attempt at relaxing the 
assumption that collision and displacement processes operate independently, and 
highlighted ways that this assumption could be further relaxed through greater integration of 
IBMs like SeabORD with sCRM models. 
 

2.4 Current estimation and use of uncertainty in assessments 
 
The current tools used in assessments vary in the extent to which uncertainty is considered. 
The more complex tools such as the sCRM, SeabORD and NE/JNCC PVA tool, all consider 
variability, and some elements of uncertainty. All three tools use a probabilistic, simulation-
based, approach to quantify and represent variability and uncertainty. The similar 
approaches to representation of uncertainty have allowed the sCRM and SeabORD to be 
linked together, and to be linked to the NE/JNCC PVA tool. There remain, however, key 
elements of uncertainty that are not currently considered within these tools, which we 
discuss in later sections. 
 
Of the more simple tools used within assessments, the Displacement Matrix provides a 
visual representation of the uncertainty associated with displacement risk, but does not 
attempt to quantify this in a probabilistic way, and so cannot readily be incorporated into an 
end-to-end assessment of uncertainty. Similarly, the SNH and MSS apportioning tools do not 
currently represent uncertainty or variability at all, although some progress has been made 
to include variability in foraging ranges between breeding colonies within the context of the 
SNH apportioning tool (Searle et al. 2020).  
 

2.5 Summarising the need for improved uncertainty quantification 
 
Delivering the underpinning science to enable accurate, robust and defensible ornithological 
ORD impact assessments requires developing and advancing a credible line of inference 
from our conceptual understanding of the ecological and behavioural processes involved 
through to quantitative estimates with uncertainty (Hobbs & Hooten 2015). This involves 
representing our knowledge and understanding of the interactions between seabirds and 
ORDs with models and observations of the key processes shaping these responses, such as 
seabird spatial habitat use, displacement and barrier effects, and collision impacts. All 
models, whether conceptual, theoretical or statistical, are simplified abstractions of reality, 
and we rely on the proper quantification of uncertainty to bridge the gap between reality and 
our representations of it to help us draw inference from our models and to understand their 
validity and usefulness for shaping decision-making and policy. Similarly, the data that we 
collect to inform a model will often only partially capture the true, underlying state of the 
process we are trying to observe. A failure to recognise or quantify these uncertainties in 
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models and data necessarily pushes the application of understanding towards subjective 
decision-making where the rationale is unclear, rather than towards transparent, objective 
evidence-based decision-making. It is therefore imperative that we underpin sound decision-
making with a full attempt at quantifying uncertainty within ornithological ORD impact 
assessments. It is only through identifying and quantifying all sources of uncertainty, that we 
may then see clearly how to develop our science to reduce this uncertainty, thereby 
obtaining a better understanding of the potential impacts of offshore wind development on 
the environment (European Union Law2). 
 

3 Population Viability Analysis 
 

3.1 Context 
 
Within the assessment process, offshore wind farms are assumed to alter annual 
demographic rates (primarily survival and productivity) via collision, displacement and barrier 
effects. These effects on annual rates translate into longer-term impacts on abundance. 
Population Viability Analysis (PVA) provides an established statistical framework for 
translating effects on annual demography into impacts on longer-term abundance (Soulé 
1986; Beissinger & McCullough 2002). Not all impact assessments require PVA (e.g. some 
assessments use percent habitat lost or percent of SPA area lost), however the vast majority 
of offshore wind assessments utilise PVA, which plays an important role in the assessment 
process for most wildlife species.  
 
Currently, the NE/JNCC PVA tool (Butler et al. 2020a; Searle et al. 2019) provides the 
primary tool for implementing PVA methods for ornithological ORD assessments. The 
NE/JNCC PVA tool is based upon Leslie matrix models (Leslie 1945), which provide a 
flexible, unifying statistical framework for linking demography and abundance. In practice, 
PVA involves running the Leslie matrix models forward in time for both impacted and 
unimpacted populations, and comparing these against each other, using a range of different 
metrics (Jitlal et al. 2017). Whilst it is possible to calculate metrics that relate to the absolute 
state of the impacted population (e.g. quasi-extinction probability), the metrics that are 
advised for use in assessments provide relative comparisons of impacted and baseline 
simulations. A widely used example of the latter is the impact on annual growth rate (AGR), 
which is calculated to be: 
 

AGR = (Final population size in impacted population / 
Final population size in unimpacted population)1/n 

 
where n is the number of years of impact. 
 
The key rationale, that relative rather than absolute metrics are used, has been suggested 
because ratio metrics have been found to be less sensitive to misspecification of baseline 
demographic rates (Cook & Robinson 2016). Key inputs to PVAs are the initial population 
size, the estimated combined annual impacts of the ORDs on demographic rates, and the 
baseline demographic rates (age-specific survival, productivity, and age at first breeding). 
PVAs used for impact assessments assume closed populations, i.e. no immigration or 
emigration. Some models incorporate forms of density dependence whilst others are density 
independent. In general, relative metrics of impact are likely to be less sensitive to the values 
of the baseline demographic rates and initial population size than absolute metrics of impact 
(Cook & Robinson 2016). 

 

2 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al32042 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al32042
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3.2 Current quantification of uncertainty and variability 
 
Uncertainty in PVA metrics will arise from both uncertainty and variability in the inputs to the 
PVA, from structural uncertainty within models (i.e., a failure of the population model to 
capture all of the biological processes that operate), and from stochasticity within the PVA 
model itself. The NE/JNCC PVA tool uses a “stochastic” Leslie matrix model that includes 
both demographic stochasticity and environmental stochasticity. Annual demographic rates 
tell us the expected number of births and deaths, but there is still variability in the actual 
number of births and deaths that occur in each year – this is demographic stochasticity. 
Even if demographic rates were fixed across time, demographic stochasticity still leads to 
variability in the growth rate of abundance, particularly when population sizes are small. 
Environmental stochasticity accounts for natural temporal variation in annual demographic 
rates, for instance as a result of variability in weather conditions. 
 
The NE/JNCC PVA tool allows uncertainty in annual ORD impacts on demographic rates to 
be incorporated into the PVA, but does not explicitly allow for uncertainty in any of the other 
PVA inputs, such as the mean baseline demographic rates, level of environmental 
stochasticity, age at first breeding, maximum brood size, initial population size, and (where 
considered) level of density dependence. It also does not account for uncertainties 
associated with the underlying model assumptions – i.e. the assumption that the population 
is closed. 
 
The PVA approach is simulation-based, and the key distinction between variability and 
uncertainty within this context is whether the values of inputs are simulated once for each 
simulation run (and the same value applied to all years), or simulated for each year within 
that simulation run. The NE/JNCC PVA tool accounts for variability, but not uncertainty, in 
productivity and survival because it simulates productivity and survival rates to use for each 
year within each simulation run but generates these in the same way within all runs. In 
contrast, it accounts for uncertainty, but not variability, within ORD effects because it 
simulates a single annual ORD effect for each simulation run, which is applied to all years 
within that run.  
 

3.3 Potential for improvements to uncertainty and variability 
 
We have identified, via the workshop, four broad areas in which improvements can be made 
to the current representation of uncertainty and variability in the application of PVA in 
ornithological ORD assessments. 
 

3.3.1 Sensitivity analysis 
 
The first of these is the use of sensitivity analysis, to investigate the extent to which the PVA 
outputs of interest are sensitive to uncertainty in each of the input parameters. This is 
important in helping to prioritise areas for further work. A key point here is that any such 
sensitivity analysis needs to focus on the outputs that are used in assessments, most often 
ratio-based metrics. It may be expected, and previous work suggests (Jitlal et al. 2017), that 
these relative metrics are primarily sensitive to inputs that relate to annual ORD impacts on 
demographic rates, and comparatively insensitive to the values of inputs relating to baseline 
conditions such as baseline demographic rates and initial population size. Sensitivity 
analysis can also be valuable in determining whether potential extensions to the current PVA 
model (see below) are likely to lead to substantive changes in key PVA outputs, and 
therefore can be useful in prioritising which of these extensions will lead to substantial 
improvements in the application of PVA within ornithological assessments. 
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3.3.2 Improved representation of uncertainty and variability within PVA 
models 

 
A key component of uncertainty that is not currently accounted for within PVA models is 
uncertainty in initial population size. It would, in principle, be straightforward to incorporate 
uncertainty in this quantity into the NE/JNCC PVA tool. The key challenge lies in quantifying 
the form and magnitude of this uncertainty, which depends, in turn, upon constructing a 
plausible statistical model of observation error for seabird count data (e.g. from Seabird 
Monitoring Programme [SMP] count data, or other empirical observations of population 
abundance). A model of SMP count data would need, for example, to account for the 
differences in sampling methodology used at different colonies (such as the use of plot 
counts for some colonies and species, and whole colony counts for others), and for the 
different units used for counting (such as breeding individuals, breeding pairs, occupied 
burrows, etc.) and the uncertainties that arise from translating these into a common currency 
for use within PVA models.  
 
Environmental stochasticity is accounted for within the NE/JNCC PVA tool, but currently 
under the assumption that stochastic variations in demographic rates are independent from 
year to year, and that variations in different demographic rates (productivity and survival) are 
not correlated with one another. These assumptions are unlikely to be biologically realistic. 
Inter-annual variation in demographic rates is unlikely to be independent because the 
underlying drivers, such as climate, exhibit patterns of temporal dependence. Moreover, 
correlations between demographic rates such as productivity and survival are likely to arise 
because (a) stochastic environmental effects act simultaneously on multiple demographic 
processes (e.g. poor weather conditions can impact on both productivity and survival), and 
(b) individuals may compensate from impacts upon one demographic process via other 
processes (e.g. adult birds may choose to prioritise their own survival over productivity). In 
practice, the inclusion of correlations (between demographic rates and over time) in PVAs is 
fairly straightforward – the R package associated with the NE/JNCC PVA tool already 
includes an option to specify correlation between rates, and it would be a relatively 
straightforward extension to also include correlations between years. The key challenge lies 
in empirically estimating these levels of correlation. The most promising avenue for doing so 
would be to focus on populations for which sufficient long-term data are available to be able 
to produce defensible annual estimates of both survival and productivity. In practice, the key 
challenge here is the lack of data that can be used to estimate survival in different 
populations, however new work is underway to assess ways of resolving this in the context 
of one species, black-legged kittiwakes (JNCC project: ‘Feasibility Study of Large-Scale 
Deployment of Colour-Ringing on Black-Legged Kittiwake Populations’), which will provide 
insight into addressing this issue more widely. 
 

3.3.3 Validation and calibration of PVA models 
 
The “baseline” PVA model essentially provides predictions for trends in population 
abundance. By running PVA models retrospectively (using the initial population size from a 
past year) the resulting predicted trends can be compared against the observed trends seen 
in the population abundance data. Discrepancies between predicted and observed trends 
indicate either errors in the values of PVA inputs, and/or structural errors in the model 
underpinning the PVA. Statistical models have been developed that use this discrepancy to 
estimate poorly known demographic rates, which may be only poorly constrained by 
inference from expert judgement or due to a lack of direct empirical data, as is common for 
juvenile survival in most seabird species. Although these models have been used in some 
contexts such as for seabird populations in the Forth-Tay (Freeman et al. 2014), they have 
not been used elsewhere. These models, which are effectively a form of data integration, 
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merit further development, and have broader applicability than has currently been utilised 
within ornithological assessments.  
 

3.3.4 Reduction of structural uncertainty in PVA models 
 
The most substantive and wide-ranging area of improvement for PVA models relates to 
resolving structural errors in the current models by making their underlying assumptions 
more biologically realistic. There are a range of different ways in which the models could be 
refined to be more biologically plausible, and within this project we have identified the 
following as those with the most relevance to improving the use of PVAs within ornithological 
assessments by improving quantification and reduction of uncertainty: 
 

• linking environmental stochasticity within PVA models to prey availability; 

• linking environmental stochasticity within PVA models to climate change; 

• Including and empirically parameterising density dependent processes; 

• consideration of inter-specific interactions; 

• inclusion of interactions between different ORD impacts (e.g. determining whether 
such impacts are synergistic or antagonistic); 

• consideration of carry-over effects; 

• Consideration of dispersal, immigration and emigration, potentially within the context of 
metapopulations 

 
Of these extensions, only one (the inclusion of density dependence) is possible with the 
current NE/JNCC PVA tool. For all these extensions, however, the key challenge lies not in 
the relatively straightforward extension of the PVA models themselves, but rather in 
parameterising the additional processes in a defensible way. This depends, in turn, upon 
relevant analyses of empirical data – the outputs of these analyses can then be used to 
structurally improve current PVA models. In deciding which of these extensions to prioritise, 
it is important to consider the trade-off between model complexity, and the ability to 
defensibly parameterise this additional complexity, and the likely impact of the extension 
upon the PVA model outputs. The highest priority extensions are those where the additional 
processes can be prioritised using data (either existing or future), and for which the inclusion 
of additional processes is likely to have a substantive impact upon the key PVA outputs. 
 

4 Displacement 
 

4.1 Context 
 
Two methods have been used to estimate the demographic impacts arising from 
displacement effects: the ‘Displacement Matrix’ approach (hereafter the ‘matrix approach’), 
and the use of individual-based models, or IBMs. These two methods differ greatly in terms 
of the simplicity of the approach, the data used to underpin the approach, the structural 
complexity of the ecological processes and the biological realism involved, and in the 
treatment of uncertainty quantification. 
 

4.2 Current quantification of uncertainty and variability 
 

4.2.1 Matrix Approach 
 
The matrix method is based on a simple calculation in which the density of birds within the 
wind farm footprint (plus a buffer) is estimated from local, at-sea survey data, and is 
subsequently multiplied by a user-specified displacement rate (% of birds within the footprint 
that are assumed to be displaced) and user-specified displacement mortality rate (% of 
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displaced birds that are assumed to suffer mortality as a consequence of displacement). 
This results in an estimate of the number of birds killed by displacement impacts, which must 
then be apportioned back to relevant source populations (in the case of HRA) and converted 
to a change in survival rate for use in subsequent PVA. The Joint SNCB Interim 
Displacement Advice Note provides advice on how to present assessment information on 
the extent and potential consequences of seabird displacement from Offshore Wind Farm 
(OWF) developments (Joint-SNBC 2017). This advice requires assessments to use 
published indices of disturbance (e.g. Furness et al. 2013; Wade et al. 2016) to assign a 
range of displacement levels for each species individually, with consideration of 
modifications arising from emerging new evidence and discussions with SNCBs to agree 
appropriate levels of likely adult mortality associated with particular displacement levels, for 
each species individually. Assessments are then advised to use these two metrics 
(displacement rate and displacement mortality rate) to compile a ‘Matrix Approach’ table (i.e. 
representing proportions of birds potentially displaced/dying as a result of OWF 
development). The advice specifies that this table should be presented from 0-100%, in 10% 
increments for displacement levels. Percentage increments for mortality should also be 
presented between 0-100% but including smaller increments at lower values (e.g. 0%, 1%, 
2%, 5%, 10%, 20%, etc). 
 
There is no explicit consideration of uncertainty in the matrix approach. Instead, uncertainty 
in the two rates – displacement rate and displacement mortality rate – is visualised by use of 
the table, spanning a range of potential values for these two parameters. Uncertainty in the 
estimate of bird density, is also not considered. SNCBs recommend assessing impacts of 
displacement based on the overall mean seasonal peak numbers of birds (averaged over 
the years of survey) in the development footprint and appropriate buffer. SNCBs advise that 
at least two full years of monthly survey data should be collected pre-construction, which 
should be considered the bare minimum for assessment purposes. This provides a 
combined estimate of the number of birds on the water (corrected for survey coverage and 
distance analysis/diving species availability bias, if appropriate) and of the number of birds in 
flight (corrected for survey coverage). The methodology does, through use of multiple 
surveys per month over several years, attempt some consideration of environmental 
variation when performed at the scale of ‘breeding’ and ‘non-breeding’ seasons. However, a 
single mean seasonal peak value is used within the table calculations, so there is no 
formalised incorporation of environmental variation within the method. 
 
In summary, the matrix approach provides a visual, qualitative consideration of uncertainty in 
displacement impacts. It depends upon three quantities; the input density data: the mean 
seasonal peak in the number of birds observed in the footprint and appropriate buffer area; 
and two parameters: the proportion of these birds that are displaced, and the proportion of 
these displaced birds that suffer mortality. The input density data includes a minimal 
consideration of environment variation, but no quantification of uncertainty. The two 
parameters include no formal quantification of environmental variation or uncertainty and 
instead use a qualitative, visualisation approach to presenting uncertainty in the output 
metric for the number of birds predicted to suffer mortality as a result of displacement 
impacts. 
 

4.2.2 Individual-based Models 
 
SeabORD is a stochastic, dynamic, individual-based model of seabird behaviour, energetics 
and demography during the chick-rearing period (Searle et al. 2014, 2018). The stochastic 
nature of SeabORD means that it is able to incorporate a range of different sources of 
variability. It allows for inter-individual variability in body mass, chick body mass and daily 
energy requirements at the start of the chick breeding season, and in displacement 
susceptibility (some individuals are simulated to be susceptible to displacement and/or 
barrier effects, whilst others are not, but this susceptibility is assumed to be constant within 

https://data.jncc.gov.uk/data/9aecb87c-80c5-4cfb-9102-%2039f0228dcc9a/
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an individual over time). Temporal and inter-individual variability in the choice of foraging 
location chosen is also accounted for, as is variability in the choice of alternative foraging 
location if an individual is displaced by the ORD. Temporal and inter-individual variability in 
time budgets is incorporated indirectly, because time budgets are assumed, within 
SeabORD, to be linked to the choice of foraging location. These sources of variability all 
mean that there is variability in the final mass of individual birds at the end of the chick 
rearing period, and variation in whether or not their chicks survive to fledging. There is also 
assumed to be stochastic variation in the actual outcomes for each adult bird -- final mass is 
assumed to be related (via a logit-linear model) to the probability of over-winter survival, but 
there is still stochastic variation in whether any individual bird actually survives or not. If 
SeabORD is coupled with the sCRM to incorporate both collision and displacement and 
barrier effects, there is also variability in whether each individual dies from collision at each 
model time step, with the sCRM and simulated daily time budget determining the probability 
of collision for each bird at each time step. 
 
Quantification of uncertainty within SeabORD is currently, in contrast, very limited. The 
values of most of the twenty or so input parameters, and, where relevant, the levels of 
variability in these parameters, are currently assigned based on published literature or expert 
judgement, and no uncertainty in these parameters is currently considered. Two parameters 
controlling intake rate are estimated, at a species level, by calibration against the mean 
number of foraging trips made per day, and the mean/range of time spent foraging per day, 
but the uncertainty associated with this calibration is also not currently quantified. A final, 
key, parameter, the total amount of prey, is calibrated for each new population and location, 
against empirical data on adult mass change and chick survival, and SeabORD does 
account for uncertainty in this parameter. The current advice to users is to run SeabORD 
multiple times (a relatively small number of runs, ten, being the standard choice, due to the 
model being computationally intensive to run), with a different level of total prey being used 
for each run. Current work within the Marine Scotland Cumulative Effects Framework project 
involves increasing the computational speed of SeabORD, which should ultimately enable 
larger numbers of simulations to be used in capturing uncertainty (a critical step if 
uncertainty in additional inputs is to accounted for), and the automation of the calibration 
process for the total prey parameter.   
 

4.2.3 Estimating displacement and displacement mortality rates 
 
To quantify the consequences of displacement by an offshore wind farm on a seabird 
population, we need an estimate of the proportion of birds displaced and, an estimate of the 
impact of that displacement on the population demographic rates. Rates of displacement are 
typically assessed used a comparison of pre- and post-construction monitoring data (e.g. 
Dierschke et al. 2016; Vanermen et al. 2015). Such studies highlight clear inter-specific 
differences in displacement rates. Some species, such as divers, gannets and auks, show a 
consistent negative response to wind farms. Others, such as cormorants show evidence for 
attraction, and several show no clear response (Dierschke et al. 2016). However, until very 
recently accurately quantifying the proportion of birds displaced has proven challenging (but 
see Heinänen et al. 2020; Peschko et al. 2020a, 2020b; Peschko et al. 2021).  
 
Survey data are often over-dispersed and zero-inflated. Analysis of data collected from 
Thorntonbank Offshore Wind Farm in Belgium gives an indication of the scale of the problem 
(Vanermen et al. 2015). These data suggest that after 10 years, of 12 species present, it 
would only be possible to detect a decline of 50% for gannet and common guillemot. Whilst 
these analyses were based on data collected using boat surveys, similar results have been 
demonstrated for standard aerial surveys (Maclean et al. 2013). More recently, similar work 
has been undertaken in relation to digital aerial surveys (Donovan & Caneco 2020). In these 
studies, the inherent variability of the marine environment has contributed to the difficulty in 
quantifying displacement rates. However, in the past, these problems have been 

https://www.ceh.ac.uk/our-science/projects/cumulative-effects-framework
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exacerbated by inconsistent approaches to, and, poor design of, post-construction 
monitoring studies (Marine Management Organisation 2014), and in the UK it only since the 
development of the MRSea model (Mackenzie et al. 2013) that more consistent 
methodologies have been applied to address these issues. 
 
The expansion of GPS tracking studies in relation to offshore wind farms offers the potential 
to explore displacement in more detail. Consistent with the survey data, initial studies 
suggest that there may be little response by gulls to the presence of an offshore wind farm 
(Thaxter et al. 2018), both gannet and common guillemot may show a stronger response 
(Garthe et al. 2017; Peschko et al. 2020, 2021). Such data enable us to explore individual 
differences in response to offshore wind farms in more detail. For example, whilst the 
majority (89%) of gannets avoided the wind farm completely, a proportion (11%) made 
repeated trips through the wind farm when commuting between foraging areas and their 
breeding colony (Peschko et al. 2021). This indicates that the impact of displacement is 
unlikely to be distributed evenly across the population, with some individuals more likely to 
be affected than others.  
 
After accounting for individual differences, analyses of GPS data suggest that observed 
displacement rates may be lower than those recorded using survey data (Peschko et al. 
2021). A key explanation for this may be that GPS data are collected during the breeding 
season whilst data from surveys are collected year-round. During the breeding season, birds 
are constrained as central place foragers and may be willing to accept greater risks when 
foraging than in the winter when they are not constrained by the need to provision chicks. 
Such data would imply that the consideration of season-specific displacement rates may be 
appropriate.  
 
Having quantified the proportion of birds displaced from a wind farm, it is necessary to 
consider what the impact of that displacement is likely to be. At a population level, 
displacement is likely to affect birds indirectly, through a reduction in survival as a 
consequence of the energetic costs for losing an area used for commuting or foraging and/or 
a reduction in productivity due to the increased energetic costs of provisioning young. At 
present, there is very little evidence with which to quantify the impacts of displacement on 
demographic rates. However, during the breeding season, evidence suggests that birds will 
attempt to buffer the impacts of increased energetic cost through reduced parental 
investment in chicks (Regular et al. 2014; Suryan et al. 2006) and that this may result in 
reduced productivity. Further analysis with an individual based model suggests that this may 
also have a more significant effect on adult survival during the breeding season than has 
been assumed in previous assessments (Searle et al. 2014, 2018, 2020). The increased use 
of GPS tracking technology offers the potential to investigate links between displacement 
from Offshore Wind Farms during the breeding season and demographic rates through the 
comparison of productivity and survival of birds that do, and do not, use offshore wind farms. 
Outside the breeding season, it is clear that there can be significant displacement of birds 
from offshore wind farms (Mendel et al. 2019). However, the demographic consequences of 
this displacement when birds are not constrained by the need to provision chicks and may 
therefore be more able to make use of alternative areas, is unclear. 
 

4.3 Potential for improvements to uncertainty and variability 
 
We first outline three broad ways in which the representation of uncertainty and variability in 
the individual based model, SeabORD, could be improved. The first of these is through 
inclusion of additional, direct, information of the levels of uncertainty/variability in some or all 
of the input parameters, and other inputs (e.g. prey maps, bird distribution maps). The 
second is through use of statistical methods to capture uncertainties associated with the 
process of calibrating SeabORD against empirical data. The third is through the improved 
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representation of biological mechanisms, and the variability associated with these 
mechanisms, within the model. We discuss these further below. 
 

4.3.1 Direct information on uncertainty and variability in inputs 
 
SeabORD currently fixes the values of many of the behavioural and energetic parameters 
within the model. These include those relating to chick growth, chick daily energy 
requirements, intake rate parameters, energetic costs of different activities, the body mass 
below which adults and chicks are assumed to suffer mortality, the condition of the adult that 
stimulates abandonment of the breeding attempt, the probability of chick death due to adult 
unattendance at the nest, and the slope parameter determining the relationship between 
adult mass at the end of chick-rearing and subsequent survival. Most of these are based 
upon published studies, empirical data from the long-term study on the Isle of May, or in the 
case of intake rate parameters, calibration against time-activity budgets and foraging trip 
data from the Isle of May. However, in all cases, available information on both natural 
variability and uncertainty in these parameters is very limited or non-existent. Moreover, 
some parameters were derived from a study of a single species or distant location, which 
were taken to indicate a species-level value for all populations or applied to other species 
where data were lacking. This situation could be improved by undertaking a new, thorough 
literature review to identify further sources of information with which to add natural variability 
and uncertainty into model parameters. However, for many parameters, improvements will 
likely only be achieved by new empirical studies, dedicated to capturing natural variability 
(both environmental and between individual) and uncertainty in the processes of interest. 
Our assessment is that the most important parameters to prioritise for this effort are those 
relating to the mass-survival relationship (because this converts time-energy budgets into 
the currency of survival), and those relating to intake rate of foraging birds (which, when 
coupled with accurate prey availability data, will determine the day to day success of 
foraging adults, and hence their subsequent condition and provisioning rates to offspring). A 
recent Marine Scotland project estimated the form and strength of this relationship for four 
seabird species breeding on the Isle of May, including the estimation of uncertainty (Daunt et 
al. 2020), and outcomes from this work should now be incorporated into assessment tools 
relating end of breeding season mass to subsequent survival, such as SeabORD. 
There can be situations in which it is difficult to derive knowledge of the values of input 
parameters from the literature or available data, but where experts nonetheless have useful 
knowledge regarding both the value of the parameter, and the level of uncertainty associated 
with this. Expert elicitation provides a mechanism for encapsulating this knowledge in a 
quantitative way, and typically involves assessing judgements on the level and form of 
uncertainty alongside judgement on the true value of the input parameters. Elicitation 
exercises typically involve multiple experts, in order that the judgements they incorporate 
relate to a community of experts, rather than to a single individual. Guidance on best 
practice have been developed that attempt to overcome known pitfalls   and to minimise bias 
when eliciting information on uncertainty (EFSA 2014; Peel et al. 2018). 
 
Accurate input data is key to driving accurate model outputs; for SeabORD this relates to 
seabird utilisation distributions around breeding colonies, and spatial prey availability across 
the foraging range of all colonies included within the simulations. We discuss seabird 
density/utilisation distributions in a later section. However, the development of spatially 
explicit, high quality, robust prey availability maps for breeding seabirds would greatly 
enhance the validity of SeabORD model outputs and allow for model structural 
enhancements to be made to develop more realistic foraging behaviours and patterns within 
the model. 
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4.3.2 Accounting for uncertainty when calibrating 
 
The values of those input parameters that cannot be directly estimated from empirical data 
can instead be estimated by calibrating/estimating the model against observed data on 
model outputs, and the uncertainties associated with this process of calibration can be 
quantified. Standard calibration processes involve using numerical optimisation methods to 
identify the sets of input parameters that provide the best match, according to some metric 
(e.g. sum of squared differences, deviance), to observed data on one or more of the model 
outputs. However, many commonly used calibration methods do not account for the 
uncertainty associated with calibration. Likelihood-based methods do allow for quantification 
of uncertainty (Azzalini 1996) but rely on the likelihood of the model being calculable, and 
this is not feasible for complex simulation-based stochastic models such as SeabORD. 
 
A range of modern statistical approaches to calibration do allow uncertainty to be quantified, 
even in contexts where the likelihood cannot be evaluated. Methods of likelihood-free 
inference, such as Approximation Bayesian Computation (ABC; Beaumont et al. 2002; 
Marjoram et al. 2003; Sisson et al. 2007), could in principle be used for this purpose, but are 
unlikely to be feasible in practice because they rely upon the ability to generate a large 
number of simulations from the model, and this is not currently feasible for SeabORD given 
the computational effort required to run the model. Emulation provides an alternative branch 
of statistical methodology, which also allows calibration to be performed in a way that 
accounts for uncertainty, and which is explicitly designed for models that are computationally 
intensive to run. Emulation involves approximating the process-based model (e.g. 
SeabORD) using a statistical model (Kennedy & O’Hagan 2001): the central idea of 
emulation is to (a) run the mechanistic model (e.g. SeabORD) for a relatively small number 
of sets of input parameters, and (b) construct a statistical model that describes how the key 
outputs of the mechanistic model vary in relation to the values of the input parameters. This 
statistical model can then be used to quantify the uncertainty associated with calibration, 
whilst accounting for the uncertainty that arises from the relatively small number of runs of 
the process-based model. Emulation methods can also be used to quantify, and account for, 
the presence of structural error in the model – structural uncertainties arise if the model 
systematically deviates from reality even with an optimal choice of input parameters. 
Emulation methods were originally designed for use with complex deterministic models, but 
more recent variants of the methodology also allow it to be applied to stochastic models, 
such as SeabORD (e.g. in the context of individual-based models, Oyebamijia et al. 2017). 
 

4.3.3 Improving realism of model assumptions and resolving structural errors 
 
In order to fully quantify, and ultimately reduce, structural uncertainties, it is necessary to 
identify areas of SeabORD in which the biological assumptions are unrealistic, and to 
replace these with more biologically plausible alternatives. In practice, seabird behaviour is 
extremely complicated, and consequently it is likely that none of the biological assumptions 
that underpin a model like SeabORD are likely to be entirely true. This does not always 
matter - some model assumptions may be incorrect, but nonetheless lead to models that 
provide a very good approximation to reality. However, other assumptions may be 
sufficiently incorrect that they lead to substantial levels of structural uncertainty. It remains 
the case that the current version of SeabORD has had to make a series of simplistic 
assumptions about some of the key behavioural processes driving model outcomes, 
primarily due to a lack of data on which to build more realistic approximations.  
 
There are many ways in which the structure of SeabORD could be refined to improve 
biological plausibility, but our judgement is that the key priorities for further development are 
those that have already been identified as priorities elsewhere (Nature Scot Marine Bird 
Impact Assessment Guidance Workshop Report, February 2020): 

https://www.nature.scot/bird-impact-assessment-guidance-workshop-offshore-wind-report-and-presentations
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• improved representation of overall prey levels and availability, and of spatial 
heterogeneity in prey; 

• improved representation of flight paths, of the estimated bird density maps that 
underpin these, and of the joint distribution between seabird and prey spatio-temporal 
dynamics; 

• improved representation of displacement, barrier and collision effects; 

• improved representation of behaviour, energetics and ORD interactions outside the 
chick-rearing period; 

• improved representation of the relationship between adult mass at the end of the chick 
rearing period and subsequent over-winter survival. 

 
We regard these as high priorities for improving the structure of SeabORD in part because 
they all represent key components of the model, but also because, in each case, we can 
propose specific actions that can be pursued in order to make the biological assumptions of 
the model more realistic, by refining the way that data are used to inform the model structure 
and parameters. There are other components of the model that are potentially influential, 
and currently contain biological assumptions that are likely to be over-simplistic, but where it 
is difficult to see how the model could usefully be improved, given current data or additional 
data that could currently be collected. 
 

4.3.4 Displacement impacts 
 
For displacement impacts, there is a clear need for the development of data and analytical 
methods to provide better estimates and uncertainty quantification for the displacement rate 
and the displacement mortality rate, particularly in relation to variation in the environment, 
seasonal differences, and the characteristics of ORDs. Although individual-based models 
like SeabORD are designed to estimate the displacement mortality rate as a model output, 
there is still a clear need for empirical data on this rate to both validate IBM outputs and 
improve model structure, thereby reducing structural uncertainty.  
 
There is emerging evidence that displacement rates may vary spatially, such that the 
application of a single displacement rate to both the ORD footprint and buffer area may be 
unrealistic, and that different colonies may have different displacement rates when 
interacting with the same ORD site. There is a strong need for empirical data and analytical 
methods for developing understanding of how and why displacement rates and displacement 
mortality rates vary both spatially and temporally, such that better predictive models can be 
developed and validated to both improve the precision of displacement rates and 
displacement mortality rates within assessments, and to better quantify the uncertainty 
associated with these estimates so it may be propagated and properly reflected in 
assessment outputs. This will undoubtedly need to be underpinned by the use of individual-
level tracking data that can be linked to condition and fitness (productivity and survival) 
measurements over multiple seasons and years. This is because of the inherent difficulty in 
trying to measure and reliably quantify these processes at the population level, where any 
displacement-driven changes in seabird distribution or population demography will be 
masked by the co-occurrence of many other pressures, such as changing environmental 
conditions and other anthropogenic activities such as fishing and climate change. 
 
There is also a need for empirical data and analytical methods for quantifying barrier effects 
in seabirds, and the consequences of these effects on condition and fitness. Barrier effects 
are modelled and estimated within IBMs like SeabORD, but are currently represented very 
simplistically, and are reliant upon a number of untested assumptions about the nature of an 
individual’s behavioural response to a perceived barrier. SeabORD does allow users to vary 
the barrier rate and displacement rate separately (both are user-specified inputs to the 
model), such that birds may be classified into different susceptibility categories – birds that 
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are unaffected by wind farms, birds that are displaced but not barriered by wind farms, and 
birds that are barriered and displaced by wind farms. The model assesses these processes 
simultaneously during simulations, and model output can be used to compare resulting 
demographic changes for birds in each category. However, barrier effects are represented 
very simplistically within SeabORD, assuming no change in barrier rates over time or in 
relation to bird state or environmental conditions and using simplified assumptions about the 
flight paths of barriered birds that encounter ORDs. The collection of individual level tracking 
data would allow for better measurement of the occurrence and form of barrier effects, how 
they vary between individuals, in relation to environmental and ORD characteristics, and 
over time. The matrix approach is designed to primarily consider the impacts of 
displacement on individuals and does not explicitly consider barrier effects. However, the 
inclusion of birds in flight in the input data to the matrix approach means that the method 
assumes that the resultant mortality is a combination of displacement (foraging birds) and 
barrier effects (birds in flight). This method therefore has the underpinning assumption that 
the proportion of birds affected by displacement and barrier effects are the same (i.e., there 
is one ‘displacement rate’ that is applied to both birds in flight and birds assumed to be 
foraging/resting at sea), and that the resultant mortality is the same between the two 
processes. A better understanding and quantification of barrier effects, alongside that of 
displacement effects, would therefore greatly enhance the quantification and potential 
reduction of uncertainty within assessments. Importantly, the matrix approach also does not 
take account of turnover in individual birds observed within the footprint surveys, thereby 
contributing additional, unquantified uncertainty in outputs.  
 
Finally, the two methods currently considered for use in estimating displacement impacts in 
ornithological ORD assessments vary considerably from a simpler, generalizable approach 
(the matrix method) to a more biologically realistic, but data-hungry and location specific 
approach (SeabORD). Both approaches have their advantages and disadvantages, however 
it may be useful to invest resources in developing more of a ‘middle-ground’ approach to 
estimating displacement effects and their impact on demography. For instance, using more 
of a habitat-based approach to estimate how ORDs alter or remove habitat from seabird 
colonies, and the impact of this upon productivity and survival. 
 

5 Collision 
 

5.1 Context 
 
Collision risk estimates for UK wind farms are calculated using the deterministic methods 
developed by Band et al. (2007) and Band (2012), and subsequently built into a simulation 
tool (sCRM) to allow stochastic variations in parameters (Masden 2015; McGregor et al. 
2018). Three sets of parameters are used in the model (McGregor et al. 2018); site specific 
seabird data (monthly densities of birds in flight, site-specific flight height distributions), 
generic seabird data (biometrics and flight characteristics) and turbine data (rotor size, hub 
height, RPM, etc.).  
 

5.2 Current quantification of uncertainty and variability 
 
Prior to the development of the sCRM the alternative means to represent uncertainty in 
collision estimates was to use upper and lower confidence estimates for key input 
parameters (e.g. seabird density, flight height, avoidance rate, etc.) to give an indication of 
the likely bounds of the collision predictions. However, this is undertaken for single 
parameters at a time and omits the context present in the underlying probability distributions, 
which in the case of density estimates can often be heavily skewed. This also results in 
impact assessments presenting several alternative versions of the collision predictions, 
introducing additional complexity to the process.  
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The sCRM, by simulating across multiple parameter distributions, is therefore a significant 
step forward for presenting uncertainty. Indeed, the assessment process is developing to 
reflect the changes introduced by the sCRM. The key challenge that remains is how to 
integrate the outputs from the survey data analysis into the sCRM in a robust and repeatable 
manner, and how to take the outputs from the sCRM and combine them in a consistent 
manner with those from other aspects of the assessment (e.g. displacement), and finally 
how to use these as inputs to PVA (these are tasks being tackled currently by the CEF 
project). 
 

5.3 Potential for improvements to uncertainty and variability 
 

5.3.1 Areas for development 
 
Whilst the sCRM has addressed the need to properly consider parameter variability, the 
underlying model remains unchanged and lacks what are likely to be important features of 
seabird behaviour, how these are related to weather conditions and how seabirds will 
interact with the turbines themselves.  
 
Weather conditions, and most pertinently wind speed, are likely to influence flight 
characteristics (height and speed) and obviously also influence rotor operation (blade angle 
and RPM). Collision risk predictions are positively related to RPM, and both positively and 
negatively related to flight speed (less risk of collision on rotor transit, but increased number 
of transits). If higher wind speeds also affect flight heights, this could also be an important 
consideration. Disentangling these will require a combination of observations at wind farms, 
and tag-based studies incorporating collection of local weather conditions. There are also 
likely to be seasonal considerations to these relationships, for example reflecting daily 
foraging requirements in the breeding season versus long distance seasonal migration and 
over-wintering distributions. However, it is also worth remembering that the temporal unit for 
collision estimation is month, reflecting the frequency of survey data collection. 
Consequently, unless a smaller temporal unit is adopted, the requirement for the collision 
estimates is that they are representative of conditions throughout the month in question. 
Thus, improving understanding of these relationships needs to keep this requirement in 
mind.  
 
Collision predictions are most sensitive to the avoidance rate value, and this is a critical 
focus for impact assessment purposes. Current estimates are based on an amalgamation of 
data sources very little of which has been collected at operational offshore wind farms, due 
to the difficulty of undertaking long-term studies at these locations. As with other aspects of 
behaviour, there are also likely to be relationships with weather conditions. Currently 
avoidance is applied as a single (albeit stochastic in the case of sCRM) figure across all 
estimates (i.e. this lacks any seasonal variation). While improving confidence in avoidance 
rates should remain a priority for monitoring studies it must be acknowledged that 
considerable effort (both time and expense) is likely to be required to achieve improvements 
in our understanding. 
 
An example of the kind of detailed study that may be required is tracking of flight paths in 
three dimensions through wind farms. These will likely require high resolution GPS tags, 
high resolution stereo cameras and tracking algorithms or combinations of both. While such 
technology is either available or in development, it will need to be deployed on a large scale 
to obtain sample sizes sufficient to begin addressing the behavioural and interaction 
questions of interest. Thus, it will be the move from current proof of concept stage to 
commercial deployment as a standard monitoring option for new wind farms that will be 
necessary for the results to feed back into impact assessments.  
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It is clear from the brief summary above that it would be helpful to determine a priority list of 
monitoring that balances gains (in reduced uncertainty) against time, expense and 
potentially likelihood of success. One option for this would be to conduct a fairly high-level 
sensitivity analysis that could be used as a guide for decision making.  
 
As previously indicated with regards PVA, sensitivity analysis is a valuable tool for practically 
examining components of a mathematical/statistical abstraction of a system. This is 
particularly true in the case of simulations with Monte Carlo treatment of uncertainties, such 
as found within the sCRM, IBMs and PVAs. 
 
Models can be complex, with a number of linked elements providing their outputs – such that 
the contribution of individual inputs to the outputs cannot be determined by simple 
inspection. This becomes more pronounced when several modelling tools themselves are 
linked, with their own concomitant uncertainties, e.g. an IBM feeding into a CRM then to a 
PVA. A sensitivity analysis evaluates the practical importance of the various inputs to a 
model, by perturbing these with resulting changes in outputs examined practically (e.g. 
Donovan et al. 2017). In the case of a CRM, the output is primarily animal mortalities – so 
inputs with greatest effect on these numbers require the greatest understanding, accuracy 
and precision. In practice this may be as simple as fixing all inputs but one, which is subject 
to carefully considered simulation of uncertainty, leading to a distribution of mortalities. This 
is iterated over all inputs to provide a ranking by sensitivity. 
 
A sensitivity analysis is very informative about where research effort ought to be focussed. If 
the analysis suggests the model is sensitive to particular assumptions or parameters, then 
research to confirm the assumptions or increase the precision of the parameter estimates, is 
high priority. Conversely, non-influential assumptions or parameters warrant lesser 
consideration – the model is robust to these inputs. The analysis may also extend to 
alternative or additional modelling components. Balanced against budgetary constraints, the 
sensitivity analysis informs a return-on-investment for research priorities. In the context of 
uncertainty here, the sensitivity analysis would indicate which inputs contribute most to the 
precision of outputs, and thereby a priority list for reducing these uncertainties. This is not 
limited to collision, but all modelling components of impact assessment whose contribution to 
uncertainty can’t be easily evaluated by inspection. 
 

6 Density estimation and apportioning 
 

6.1 Context 
 

6.1.1 Apportioning 
 
Apportioning is currently used within the assessment process to partition seabirds in the 
breeding and non-breeding seasons by colony. Apportioning during the breeding season can 
be defined as the expected number of birds 𝑁𝐴𝐶 from colony 𝑖 of size 𝐶𝑖 within an area 𝐴𝑖, 
which is 𝑁𝐴𝐶 = 𝐶𝑖 ∑ 𝐴𝑖 . The total number of colonies is 𝑀. Therefore, the proportion of birds 

(defined as the apportioning proportion) within 𝐴𝑖 that originate from 𝑖 is: 
 

 
 
Therefore, apportioning requires an estimate of the utilisation distribution associated with 
each colony and of the colony size. Producing utilisation distributions is reliant on spatial 
data, the nature of which is dependent on how and why it is collected. For example, aerial or 
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boat-based surveys are used to produce mean or median bird densities within ORD 
footprints. GPS tracking data are used to estimate utilisation distributions as an input to 
SeabORD (Searle et al. 2014, 2018). Apportioning tools currently used within the 
assessment process are the SNH Apportioning Tool (SNH 2018), MS Apportioning Tool 
(Butler et al. 2020b), and the Biologically Defined Minimum Population Scales (BDMPS; 
Furness et al. 2015).  
 

6.1.2 Spatial data & modelling approaches for density estimation 
 
Spatial data are utilised in relation to the assessment process at differing spatial scales: 
broad-scale, project-level, and colony-level.  
 
Broad-scale data encompass the UK and the European continental shelf and are based on 
off-shore aerial and boat-based surveys that capture year-round spatial distributions of birds 
(and marine mammals). Generalised estimating equations – generalised linear models 
(GEE-GLMs) were used to synthesise different data sets and produce predicted distributions 
over time. They were presented at 10km resolution and provide insight into seasonal 
offshore space use (Waggitt et al. 2019).  
 
Project-level data are collected through aerial surveys that collect strip transect (or grid) 
based data over the proposed development site plus a buffer (usually 4km). Data are 
collected along transects in each calendar month for a minimum period of two years (i.e. 24 
surveys) thereby providing two estimates in each month. Survey data are generally analysed 
using either design-based methods (i.e. extrapolation of observed data to the unobserved 
areas) or model-based methods (e.g. spatial model such as MRSea) which incorporate 
spatial smoothers and covariates to permit estimation of abundance in unobserved areas 
within the survey area. The R package MRSea (Scott-Hayward et al. 2013, 2014) uses a 
Spatially Adaptive Smoothing Algorithm (SALSA; Walker et al. 2010) to account for missing 
data by making the assumption that the density of animals varies smoothly over space. The 
approach allows adjustment for the presence of missing data by exploiting empirical 
relationships between abundance and other variables. MRSea allows the quantification of 
uncertainty through bootstrapping the mean estimates. Whilst mean estimates from spatial 
models are robust, the models perform poorly for species present in low numbers and for 
these it is necessary to use design-based estimates. Bootstrapping of images along 
transects can be used to obtain confidence intervals for such estimates. 
 
Colony-level utilisation distributions in the breeding season are derived using the 
distance decay relationship described above combined with colony-specific GPS tracking 
data. Wakefield et al. (2017) used multi-colony GPS tracking data for four seabird species 
(guillemot, razorbill, kittiwake and shag) to build statistical models that empirically describe 
the colony-specific spatial distributions of birds from these species in relation to both 
accessibility and environmental heterogeneity. The models are based on generalised linear 
mixed models (GLMMs). The full likelihood is unknown, and the residuals are relative rather 
than absolute and so uncertainty cannot be fully quantified. 
 

6.2 Current quantification of uncertainty and variability 
 

6.2.1 Apportioning 
 
The SNH Apportioning Tool makes strong and biologically unrealistic assumptions and fails 
to quantify uncertainty. It assumes that the abundance of birds at a location of distance d 
from the colony is proportional to d^(-2), and the number of locations at this distance is 
proportional to 2πd. The total number of birds at distance d is therefore proportional to d^(-2) 
2πd, and proportional to d^(-1), representing a strong central-place foraging effect (Butler et 

https://www.nature.scot/sites/default/files/2018-11/Guidance%20-%20Apportioning%20impacts%20from%20marine%20renewable%20developments%20to%20breeding%20seabird%20populations%20in%20SPAs_0.pdf
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al. 2020b). As the utilisation distribution is proportional to d^(-2) until the foraging range, and 
zero beyond, this means that the foraging range is effectively the only unknown parameter. 
The underpinning assumptions that distance by sea to colony is the only important 
explanatory covariate, density decays in proportion to the inverse distance squared, and the 
foraging range is static for each species, are biologically unrealistic. These assumptions can 
introduce structural uncertainty into calculations as they fail to account for the heterogeneity 
in environmental (and geographical) space (Wakefield et al. 2017) and for competition 
effects (Bodey et al. 2013), and so errors can arise in the calculation of apportioning 
percentages.  
 
The MSS Apportioning Tool is based on habitat use models derived from tracking data 
(Wakefield et al. 2017) for four species of seabird (European shag, black-legged kittiwake, 
common guillemot, razorbill). An advantage of this approach is that habitat use is species 
and colony specific, informed by the environmental availability of each colony. A 
disadvantage is that only partial estimates of uncertainty are available as the full residuals 
are not available. However, for species where tracking data are available, the MSS 
Apportioning Tool is a more defensible approach (than the SNH Apportioning Tool), and as 
more species are tracked, this approach can be used for estimating the foraging ranges for 
these species. 
 

6.3 Potential for improvements to uncertainty and variability 
 

6.3.1 SNH apportioning tool 
 
Rather than assuming the foraging range is static over all colonies for a species, potential 
improvements to this tool could produce more viable foraging ranges disaggregated by 
colony and quantify uncertainty. For species where tracking data are not yet available, 
foraging ranges can be derived from published distributions (e.g. Woodward et al. 2019) by 
estimating the rate of decay of utilisation with distance. The inter-colony variation can be 
defined so that foraging ranges can be disaggregated by colony, region, or meta-population 
as appropriate. Using the inter-colony variability in foraging range, uncertainty in 
apportioning percentage can then be estimated using a simulation-based approach (MS 
SEANSE; Searle et al. 2020). 
 

6.3.2 MSS apportioning tool 
 
To quantify uncertainty within this tool requires more thorough statistical approaches to 
properly address the intrinsic complexities within tracking data such as spatial and temporal 
autocorrelation, such that appropriate uncertainties around estimated habitat utilisation 
distributions can be incorporated within the tool.   
 

6.3.3 BDMPS approach 
 
The BDMPS approach is currently used to define the reference populations for all seabird 
species in the non-breeding season. However, while BDMPS was developed from a 
comprehensive review of migration and movement literature (Furness et al. 2015), there 
remains scope for refinement through expansion of the type of large scale tagging studies 
conducted for kittiwakes (Frederiksen et al. 2012) and more recently auks (Buckingham et 
al., in prep). Further improvements to apportioning in the non-breeding season could be 
made through updating population sizes and demographic rates (survival rates, age of first 
breeding, productivity) to more accurately assess the numbers of immature birds present in 
different regions. Including available data from the timing of breeding and migration from 
populations breeding inside and outside of the UK could address some of the issues within 
the BDMPS that arise from paucity of information. 
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6.3.4 Density Estimation 
 
Producing distributions using habitat association models for more species (e.g. lesser black-
backed gull, fulmar and Northern gannet) is plausible as more tracking data becomes 
available. Outputs from approaches such as Wakefield et al. (2017) are currently used in 
seabird tools such as SeabORD and are being implemented into the MS Cumulative Effects 
Framework (CEF). Therefore, additional species distributions would be straightforward to 
implement into the existing framework, providing more defensibility than the current 
approach of using foraging ranges, and would in turn reduce structural uncertainty. However, 
there are two issues to producing plausible uncertainty estimates: one is the limitation of the 
GLMM approach and the other is how much uncertainty can be quantified and incorporated 
into a modelling framework. It should be recognised that some types of uncertainty cannot 
be included and/or propagated through every modelling or statistical approach. An example 
for the GLMM approach may be to account for within-individual variation but not propagate 
this uncertainty through to the final estimate (Patrick et al. 2014).  
 
One potential solution is to use a spatially explicit analytical framework so that estimates of 
uncertainty can be produced. Integrated Nested Laplace Approximations (INLA; Rue et al. 
2009) is a fast-fitting hierarchal Bayesian framework that can be used to model tracking data 
as a spatial point-process with a specified two-dimensional random field. This modelling 
framework is particularly useful for dealing with autocorrelation, which is prevalent in tracking 
data as locations are related in both time and space. If underlying autocorrelation in tracking 
data is not dealt with properly, covariates can be falsely identified as being important to a 
species’ habitat selection because uncertainty in the parameter estimates can be 
underestimated.   
 
Non-breeding season utilisation distributions can be derived using the BDMPS model 
combined with geolocator data (GLS) from tracked individuals. Geolocator data are light-
level data loggers, which are lightweight and long-lasting. Because position is estimated 
using ambient light intensities and elapsed time, GLS locations have relatively large 
uncertainties up to hundreds of kilometres (Merkel et al. 2016). However, these data can 
offer insight into the movement and distribution of seabirds during the non-breeding season, 
and uncertainty can be somewhat reduced using various methodologies (Merkel et al. 2016). 
If colony-specific distributions can be estimated from GLS data then, as with GPS data in the 
breeding season, these distributions can be combined with counts of colony size and be 
used to apportion birds to colonies within the non-breeding season. Producing spatial 
distributions from GLS data has similarities with the modelling of GPS data, but there are 
some important differences: 
 

a) GLS data are much lower frequency than GPS data – typically 1-2 records per day, 
which means detailed modelling of behaviour and local spatial movement are not 
possible. 

b) Levels of observation error in GLS data are much higher than for GPS data, and are 
sufficiently large that models ignoring observation error are unlikely to be defensible. 

c) The level of observation error in GLS data are likely to be heterogeneous, and 
because it is likely that they will vary according to known factors (e.g. time of year) 
this variability can be modelled. 

 
These differences mean that the methods used to build models that can be used to 
apportion in the non-breeding season will necessarily differ from those used in the breeding 
season. Utilising available geolocator data (on guillemots and razorbills) on birds tagged in 
the non-breeding season could provide insight into broad-scale distributions of multiple 
tracked birds which could be scaled to population level with uncertainty quantified. The INLA 
approach can be combined with Stochastic Partial Differential Equations (SPDE; Lindgren et 
al. 2011) which allows modelling over non-regular grid cells of varying scales. A mesh can 

https://www.ceh.ac.uk/our-science/projects/cumulative-effects-framework
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be used to cover the areas of interest using different spatial scales. As seabirds can be 
wide-ranging in the non-breeding season when the central-place foraging constraint is 
relaxed (Furness et al. 2015), spatial analysis needs to be able to deal with a broad spatial 
extent over varying spatial scales. INLA-SPDE models are fast-fitting and all colonies with 
data can be fitted as separate components of the same model. However, GLS data have 
large location errors and attempting to use environmental variables as explanatory 
covariates may not be feasible. Therefore, to predict distributions for colonies where count 
data are available, but no birds were tagged with geolocators, the spatial random field 
generated by the fitted model could be used as a prediction surface for these colonies. 
 

6.3.5 Data integration 
 
More data are now being collected in relation to ORD developments and spatial planning, 
with technological advances allowing more varied surveys to be undertaken and data types 
to become available: drones (Rush et al. 2018), aerial and boat-based surveys (Hammond et 
al. 2002, 2013, 2018), camera imaging on wind farms to assess collisions (Skov et al. 2018), 
and biologging devices that track location and collect in-situ environmental information 
(Cleasby et al. 2015; Isaksson et al. 2021), movement through accelerometers (tri-axial 
movement) (Warwick-Evans et al. 2017), and behaviour through time-depth records 
(Peschko et al. 2020). 
 
The question arises of how can we best use these data? Varied data may require specific 
statistical analysis techniques to address intrinsic issues such as autocorrelation, but more 
knowledge will be gained, and hence uncertainty reduced, if at least some of these data can 
be integrated (Matthiopoulos et al. 2020). Obvious advantages are broad-scale coverage of 
spatial distributions of species when combining surveys that are collected using different 
survey techniques. An example is the SCANS surveys which are approximately decadal 
census of cetaceans around the UK and European continental shelf through combining 
design-based boat and aerial surveys of cetaceans (Hammond et al. 2002, 2013, 2018). 
Extended temporal coverage can be achieved when combining surveys from different years 
or season. This could be particularly useful for extracting additional value from appropriate 
assessments, which in isolation represent two years of project-level surveys but when 
combined could provide information on inter-annual variability. If multiple at-sea footprint 
surveys across time and space could be compiled, then an estimation of baseline inter-
annual variability could be obtained. 
 
For effective integration, two criteria need to be met: data need to overlap or align either 
spatially or temporally, and state-of-the-art statistical methods must be developed to deal 
with intrinsic data issues and propagate uncertainty through the model. It is obvious that not 
all data can be integrated, but here we give an example of where data integration could 
advance seabird assessments. The distribution of non-breeding birds during the breeding 
season is not normally considered and leads to differences between assessments based on 
GPS data and those based on at-sea surveys (Sansom et al. 2018; Searle et al. 2020). 
Integrated modelling of these two data sources would allow the distribution of non-breeding 
birds to be estimated, and the uncertainty associated with this component of the population 
to be quantified. When considering integration, differences in the nature of the data should 
be considered. In this example, GPS and at-sea data could represent differing spatial extent 
(coastal vs. more pelagic), spatial scale (fine-scale vs. broader-scale), and temporal 
(discrete time-steps vs. snapshots), and any statistical assumptions made within the models 
used for integration would need to account for these differences. We set out two modelling 
approaches that could be used to integrate these data. 
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6.3.6 Spatial point process approach  
 
A potential approach for integrating these data uses INLA-SPDE to model the data as a 
spatial point process using joint response modelling (with separate random fields) to 
accommodate the different data types. There are several advantages to this approach. 
Varying scales of data can be handled using Stochastic Partial Differential Equations 
(SPDE), using a non-regular mesh. This allows areas of interest where there are fine-scale 
observations to be mapped at a high resolution, and remaining areas to be mapped at lower 
resolutions. Explanatory covariates used in the model can be shared between the joint 
responses, potentially conserving processing time. Uncertainty can be propagated through 
so a single estimate of uncertainty can be extracted from the model. One disadvantage of 
this approach is the difficulty in producing model diagnostics and validation (Yuan et al. 
2017) as metrics such as the Bayesian Information Criterion (BIC) cannot be calculated 
(Schwarz 1978) and so comparative visualisation is typically used. 
 
Caution should be taken when integrating data. Integrating partial datasets, where much of 
the data are missing, is likely to lead to a misspecification of the model, biased estimates, 
and incorrect uncertainty estimates. The same (if not higher) data integrity and quality 
thresholds should be used when integrating data as when data are used in isolation, as data 
integration cannot fix issues, only account for intrinsic properties of the data. 
 

6.3.7 Movement modelling approach & model validation  
 
Movement models are used to predict behaviours (e.g. foraging, resting at sea, diving) and 
estimate activity budgets of seabirds fitted with biologgers to investigate flight paths with 
respect to collision risk and displacement (Cleasby et al. 2015; Warwick-Evans et al. 2017; 
Peschko et al. 2020). A class of movement models that has become popular in ecology for 
analysing tracking data are Hidden Markov Models (HMMs), which are state-space time 
series models that assume the observed (state-dependent) time series is driven by an 
unobservable (‘hidden’) state process. They are used to sequence behaviours (states) and 
can account for serial dependence between observations (Patterson et al. 2008; Langrock et 
al. 2012). HMMs are straightforward to implement, aided by R packages such as moveHMM 
(Michelot et al. 2016) and momentuHMM (McClintock & Michelot 2018). HMMs are 
implemented by assuming equally spaced locations form a bivariate time series with step-
length (lt, distance between two locations) and turning angle (φt, angle between two 
locations) defining the changes between consecutive locations. Depending on the 
complexity of the behavioural states required, combining locational data with ancillary 
information such as accelerometer, time-depth recorders (TDRs), or environmental 
covariates can produce more plausible models. For example, where at-sea behaviour is 
required to be disaggregated into behaviour states beyond foraging and flying (e.g. resting 
on water, flapping flight, gliding flight, foraging, and taking off), accelerometer data can 
provide additional information to delineate between these behaviours (Berlincourt et al. 
2015). Within the context of quantifying and/or reducing uncertainty, there are two limitations 
to this movement modelling approach: model validation and propagating uncertainty. 
 
Typically, model validation is difficult to achieve because ground-truth data are generally 
unavailable. However, where animals have been fitted with a device which records GPS and 
time-depth records, there is an opportunity to fit a movement model using only location data 
and use the depth information to validate model accuracy in determining diving and non-
diving behavioural states (Browning et al. 2017). Validating a location-only movement model 
could be useful in circumstances where only some individuals had TDRs but all had GPS 
functionality in the tag and a general movement model was required, where further telemetry 
deployments could only use GPS tags (for example, due to prohibitive cost of TDRs), or 
where research had found that the weight of TDRs caused adverse effects to individuals.  
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Typically, HMMs do not consider observation error on location but treat the state as part of a 
stochastic process (Patterson et al. 2008). Continuous-time Markov chain Monte Carlo 
models use velocity and momentum (rather than step-length and turning angle) and allow for 
behavioural switching to occur continuously in time rather than at (discrete) observational 
times (Parton & Blackwell 2017). They can account for observation error and for irregular 
observations. Using continuous-time models can allow for uncertainty to be quantified and 
for more ‘realistic’ (foraging) trips to be simulated (Blackwell 2019). In this way, GPS and at-
sea survey data could be integrated through sampling from a utilisation distribution 
generated by the movement model. 
 

6.3.8 Environmental covariates – prey distribution and availability 
 
Species distribution or habitat preference maps that form the inputs to displacement and 
collision risk models are produced using spatial data from seabirds such as GPS tracks or 
at-sea surveys (Wakefield et al. 2017; Waggitt et al. 2019). Habitat preference models 
associate animal space use with characteristics of their environment (Aarts et al. 2008). 
When these models are used to predict space use, choosing appropriate explanatory 
covariates is important. The marine environment is dynamic and mostly inaccessible so 
collecting and defining appropriate covariates can be challenging. Currently, covariates that 
represent proxies of prey fields are used due to paucity of information. Additionally, the 
marine ecosystem is complex, seasonal, and dynamic. Associating top predators with 
oceanographic covariates such as sea surface temperature when there are many complex 
biological and physical processes between them can make habitat association modelling 
difficult due to weak explanatory power in a model where covariates do not adequately 
capture heterogeneity in environmental space. However, assessments of the impacts of 
ORDs on seabird populations need to account for pre, during, and post development 
activities along with seasonal variation in seabird habitat use due to life history (pre-
breeding, breeding, chick incubation, non-breeding, and migratory), as well as population 
response to environmental variability. Understanding the complexity of the impacts as well 
as proper quantification of uncertainty can only be achieved through the collection of good 
quality covariates of direct prey of seabirds that are required to produce habitat association 
models or individual-based models to explain seabird behaviour and activity budgets. Using 
prey data (instead of proxies) allows us to account not only for environmental variability but 
provides a direct link to causal mechanisms of key drivers in seabird behaviour. 
Understanding these drivers and producing accurate spatio-temporal species distribution 
maps for seabird species is essential for assessing how anthropogenic activities such as 
ORDs will impact seabird populations. Information on prey fields can then be combined with 
oceanographic covariates to identify and characterise different scales of seabird distribution 
and the underlying mechanisms that drive change over space and time. 
 

7 Post-consent monitoring 
 
The tools within the assessment process are essentially “predicting” the likely impacts of 
future ORDs. A key potential mechanism for reducing uncertainty, therefore, is through the 
incorporation of data that quantify the impacts of existing ORDs. These data include both 
post-consent monitoring data that developers are required to, or elect to, collect (e.g. at sea 
survey data, radar data to detect collisions and micro-avoidance), but may also include other 
monitoring data (e.g. foraging, provisioning and nest attendance behaviour, demographic 
rates, colony counts) that can be used to retrospectively assess the impacts of ORDs upon 
seabird populations. 
 
The most obvious use of such post-consent monitoring data is to refine the estimates of key 
input parameters, such as displacement and avoidance rates. As the amounts of available 
data increase, the levels of uncertainty associated with these inputs to the assessment 
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process should decrease, with the result that the incorporation of post-consent monitoring 
data has the potential to reduce uncertainty. 
 
The other key role of post-consent monitoring data is in validation -- attempting to detect 
structural errors within the tools used for assessment. SeabORD, for example, makes 
specific assumptions about the paths that birds will take to avoid wind farms (barrier effects), 
and post-consent GPS monitoring data should allow us to evaluate whether these 
assumptions are plausible. By identifying structural errors, and providing the empirical basis 
to resolve these by making existing tools more realistic, the incorporation of post-consent 
monitoring data may therefore appear to increase uncertainty – in reality, however, the 
presence of unidentified structural errors in tools would mean that uncertainty is currently 
being underestimated, so that their resolution leads to a more accurate, and defensible, 
quantification of uncertainty. 
 
Post-consent monitoring data can be used to inform specific components of the assessment 
process (Table 1). Broader-scale data (e.g. on population size and abundance) can also be 
used to detect whether the overall ORD impacts produced by assessments are consistent 
with the levels of change in demography and abundance that are seen after construction. 
However, these broader-scale data are not able to distinguish the cause of any 
discrepancies – which components of the assessment process are introducing error and are 
also likely to have low statistical power to detect differences (Cook et al. 2019). The key 
focus of post-consent monitoring data, therefore, should be on informing and validating 
specific inputs and component tools used within the assessment process. 
 
Many of the more substantial knowledge gaps, or topics for which uncertainty could be 
reduced are ones that operate across large spatial and/or temporal scales and therefore 
need to be addressed through strategic studies, rather than as individual offshore wind 
project level post-construction monitoring studies. Administered by an advisory group with a 
core scientific remit with funding provided by the relevant stakeholders (wind farm 
developers/operators, regulators and statutory agencies), a strategic approach to monitoring 
would be able to undertake the large-scale studies needed. 
 

8 Communication of uncertainty to decision makers   
 
A key risk in the consenting of Round 3 and Scottish Territorial Waters (STW) offshore wind 
farms has been uncertainty in environmental data and the consequential conservative 
assumptions made within the modelling of potential impacts on environmental receptors. 
This has resulted in projects being refused consent (e.g. Docking Shoal), reduced in size 
from licence applications (e.g. Race Bank, Beatrice and Moray Firth Offshore Wind Farms), 
or being challenged in court (i.e. the Forth and Tay offshore wind farms). An existing 
framework on the consistent treatment of uncertainty using calibrated language was 
published by the Intergovernmental Panel on Climate Change (IPCC) (Mastrandrea et al. 
2010). This has been used in the past as part of environmental impact assessments, e.g. the 
seal assessment framework (Thompson et al. 2013), the Greater Wash determination in 
2012 and, Marine Scotland’s Acceptable Biological Change framework. The seal 
assessment framework (Thompson et al. 2013) made use of the guidance on the interaction 
of evidence and agreement on that evidence (Table 2), to determine confidence. The 
framework then applied precaution until expert and stakeholder confidence was sufficiently 
high that the assessment of impact from construction noise on seals addressed the 
uncertainty in the environmental data appropriately. 
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Table 1: The interaction of evidence and agreement statements, and their relationship to confidence. 
Confidence increases to the top right corner as suggested by the increase strength of shading. From 
Mastrandrea et al. (2010). 
 

 
 
The IPCC guidance on calibrated language for describing quantified uncertainty was used in 
the North Norfolk SPA Sandwich tern HRA assessment by DECC, and was applied in the 
Marine Scotland appropriate assessments for the Forth and Tay wind farms using their 
Acceptable Biological Change (“ABC”) approach to interpreting PVA outputs (Table 3). 
 
Table 2: Likelihood scale providing calibrated language for describing quantified uncertainty. From 
Mastrandrea et al. (2010). 
  

Term  Likelihood of the outcome 

Virtually certain 99-100% probability 

Very likely 90-100% probability 

Likely 66-100% probability 

About as likely as not 33-66% probability 

Unlikely 0-33% probability 

Very unlikely 0-10% probability 

Exceptionally unlikely 0-1% probability 

 
These approaches have applied specific parts of the IPCC guidance to parts of impact 
assessment. However, no attempt has been published which describes a structured 
approach to communicating data and model confidence, and uncertainty and precaution, 
using the integrated approach of the IPCC across all aspects of environmental impact 
assessments.  
 
The IPCC guidance was reviewed to determine how the treatment of uncertainty and 
confidence could be used in the environmental impact assessment of offshore wind farms. 
The advice was assessed in relation to existing guidance from the European Commission on 
the use of precautionary principal (European Union 2000), in particular the “structured 
approach to the analysis of risk”. By considering the IPCC guidance as a useful means to 
provide a “common approach and calibrated language”, a framework for the communication 
of uncertainty and confidence in impact assessment results was produced to aid the 
“analysis of risk” using a “structured approach” by decision makers. 
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Here an integrated approach to transparently identify, record and communicate confidence 
and uncertainty in environmental impact assessments is described. By identifying and 
communicating where key uncertainties lie, where confidence is low and agreement between 
stakeholders is poor, a risk-based approach to decision making can be taken. Once applied, 
this framework can also be used to determine cost-effective application of post-construction 
monitoring resources and to aspects of risk assessment for due diligence studies. 

Using the advice from the IPCC, we created a structured approach to the qualitative 
assessment and recording of data and model confidence across a range of important data 
criteria: type, amount, quality, consistency and agreement (Table 3). Criteria for each data 
value within each data dimension that the IPCC recommends are provided, though these 
could be adapted to differing circumstances. 

Table 3: Criteria for assessing the value of different data dimensions (adapted from Mastrandrea et 
al. 2010). 

Dimensions Criteria Value 

Type of evidence Qualitative data Limited 

Semi-quantitative data Medium 

Quantitative data Robust 

Amount of evidence Small sample size Limited 

Medium sample size Medium 

Large sample size Robust 

Quality of evidence Apply expert opinion and record reasoning Limited 

Medium 

Robust 

Consistency of 
evidence 

Few studies agree Limited 

Most studies agree Medium 

All studies agree Robust 

Agreement Few parties agree Low 

Majority of parties agree Medium 

Most, but not all, parties agree High 

Input data are assessed for their quality, consistency, amount and type using the criteria 
described in Table 3. The results of the values assigned to each data dimension is then used 
to determine an overall evidence summary term (limited, medium, or robust). It is important 
that authors provide a traceable account of this evaluation of summary evidence. Where this 
overall evidence value is determined to be “limited” we recommend that precaution is 
applied, until the agreement term is valued as “medium” or “high”. 
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While this assessment is underway, the relevant stakeholders are consulted on the data 
values and data sources. Agreement is sought on data use, and the agreement is recorded. 
Where overall agreement is “low”, precaution is added to the datum value in order to create 
an agreement level of “medium” or “high”. A worked example of this process is provided in 
Appendix C. 
 
Where probabilities require communication, we recommend the calibrated language 
approach of the IPCC in assessing risks to the environment (Table 3). Thus, a probability 
datum would be described as having a defined likelihood and overall confidence in it. 
 

8.1.1 Conclusions 
 
Better recording and assessment of data representativeness, model confidence, uncertainty 
and stakeholder agreement applied throughout the impact assessment phase has benefits 
for decision making. Doing so provides a clear outline of where and why precaution was 
added to assessments. By combining consideration of confidence and uncertainty, a risk-
based approach to decision making can be undertaken. In addition, the transparency of this 
approach can be used to target limited resources to post-construction monitoring identified 
as having low confidence or low stakeholder agreement. The approach here can be applied 
both during the assessment process itself, but also to cumulative and in-combination 
assessments. 
 

9 Recommendations  
 
Recommendations for proposed methodologies for better quantification and reduction of 
uncertainty in ornithological offshore wind farm assessments.  
 
Here, we lay out a set of recommendations for the additional work required (both empirical 
data collection and the use of modern analytical methods to exploit information in existing 
data) required for achieving a full quantification of uncertainty in the ecological processes 
and behaviours determining outcomes of interactions between seabirds and ORDs, and in 
reducing this uncertainty (Table 4). We focus on a full assessment of uncertainty in all 
mechanisms underpinning these interactions, moving beyond the methods and tools that are 
in current use. For each proposed recommendation, we provide a qualitative assessment of 
its contribution to the full quantification of uncertainty, and to reducing uncertainty (high, 
medium or low), and an initial estimate of the resourcing (time and funding) required for 
delivery (Table 4). It is important to stress that full quantification of uncertainty is as 
important as the reduction of uncertainty in supporting the decision-making process. This is 
because apparent reductions in uncertainty that arise in the context of an inadequate 
quantification of uncertainty are liable to create a false sense of certainty, and so increase 
the risk of unanticipated outcomes. The reduction of uncertainty can only meaningfully be 
prioritised and evaluated within the context of a comprehensive quantification of uncertainty, 
hence why much of the focus of the recommendations is on the quantification of uncertainty 
as well as the reduction of this uncertainty. 
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Table 4: Summary of research priorities for better estimating and reducing uncertainty in ornithological offshore wind farm assessments, moving beyond 
current tools and methodologies. Priorities are ranked into low, medium and high contributions to a) full quantification of uncertainty, and b) reduction in 
uncertainty. Potential broad methodologies are proposed for addressing research priorities, with a specification of the form (desk-based and/or field study – 
field implies both field and analytical components are required) and likely size of resourcing required for delivery (‘small’: <£30k and <6 months (i.e. "quick 
wins"); ‘medium’: £30-100k, and 6-18 months; ‘large’: £100-250k, and 12 months plus; ‘very large’: over £250k and over multiple years). 
 

Ecological Process & relevant 
stage of assessment 

Contribution 
to a full 
quantification 
of uncertainty 

Contribution 
to reducing 
uncertainty 

Methods  

Predator-prey interactions, 
relationship between prey density 
and prey availability, impacts of 
ORDs on prey distributions and 
availability 

 

Displacement & Collision, Density 
& Apportioning 

 

High High 

Collate existing data on distribution of key prey (sandeels, sprats) from MSS 
and other surveys, and conduct a spatio-temporal analysis to predict prey 
distribution in space and time in relation to environmental characteristics (Desk-
based, medium) 

Collect new empirical data on the joint distribution of both prey and seabirds to 
develop spatio-temporal models for prey availability in relation to environmental 
characteristics (Field & desk-based, large) 

Collect new empirical data on prey distributions before, during and after ORD 
construction to estimate changes in prey distribution as a result of ORD (Field, 
very large) 

Collect GPS tracking data over multiple years during and post construction to 
assess permeability of barrier effects/avoidance and habituation over time 
(Field, very large) 

Estimate link between displacement 
effects and changes in demographic 
rates (productivity and survival) 

 

High High 

Design and conduct GPS tracking of individuals from different breeding  
colonies before, during and after ORD construction, and link to changes in 
body condition, breeding success and survival to estimate displacement rates 
and impacts of displacement effects upon productivity and survival, ideally in 
relation to environmental variation and ORD characteristics (needs a strategic 
approach) (Field & desk-based, very large) 
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Ecological Process & relevant 
stage of assessment 

Contribution 
to a full 
quantification 
of uncertainty 

Contribution 
to reducing 
uncertainty 

Methods  

Displacement, Density & 
Apportioning 

Collect empirical data and apply statistical models to estimate and quantify 
uncertainty in the relationship between end of season condition and 
subsequent overwinter survival (Field & desk-based, very large) 

Conduct power analyses to estimate sample sizes needed to detect 
displacement effects through the use of at-sea distribution data and GPS 
tracking data of individuals (desk-based, small) 

Apply habitat and resource modelling methods to estimate loss/change in 
habitat during/after construction and its impact on demographic rates (desk-
based, large) 

Better understanding and 
quantification of the year-round 
impacts of displacement 

 

Displacement, Density & 
Apportioning 

Medium High 

Collect GPS tracking data for large gulls with year-round coverage, and a fine 
spatial and temporal resolution; analyse to estimate seasonal variation in 
behaviour and distribution to allow for assessment of year-round interactions 
with ORDs (field & desk-based, very large) 

Collect geolocator data for species across multiple breeding colonies to assess 
non-breeding season habitat use, behaviour and time-activity patterns (field & 
desk-based, large) 

Develop IBMs for periods outside of the chick-rearing period, including prey-
laying, incubation, post-fledging and the non-breeding season (desk-based, 
medium) 

Effects of displacement on different 
age classes, e.g. immatures and 
non-breeders 

 

Displacement 

Medium Medium 
Collect empirical data to estimate differential effects/sensitivity of different age 
classes and states (e.g. breeding/sabbatical/failed breeder) to displacement 
(field, very large) 
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Ecological Process & relevant 
stage of assessment 

Contribution 
to a full 
quantification 
of uncertainty 

Contribution 
to reducing 
uncertainty 

Methods  

Improve uncertainty quantification 
within IBMs 

 

Displacement & collision 

Medium Medium 

Use emulation methods to fully quantify the uncertainty involved in estimating 
key parameters by matching key outputs to empirical data on demographic 
rates, time-activity budgets, and mass change (desk-based, medium) 

Reduce model structural uncertainty by collecting empirical data to understand 
behavioural processes, energetics and consequences for fitness (field, very 
large) 

Assess sensitivity of collision risk 
model outputs to variation in input 
and structural parameters; 
understand and quantify covariance 
between parameters used in collision 
risk models 

 

Collision 

Medium Medium Perform sensitivity analysis on collision risk models (desk-based, small) 

Improve quantification of flight speed 
and flight height for species, quantify 
influence of environmental 
conditions, and quantify how 
variation in these parameters is 
related to behaviour (commuting 
versus foraging) 

 

Collision 

Medium Medium 

Collect GPS tracking data from multiple colonies, utilise behavioural 
classification models for GPS tracking data and link to environmental 
covariates (field, large) 

Develop and fit 3D models for GPS tracking data around individual turbines 
(field, large) 

Improve quantification of avoidance 
rates, split into micro-, meso- and 
macro-avoidance, and quantify 

High High 
GPS tracking of individuals from multiple colonies combined with turbine-
mounted monitoring of meso and micro-avoidance (field, very large) 
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Ecological Process & relevant 
stage of assessment 

Contribution 
to a full 
quantification 
of uncertainty 

Contribution 
to reducing 
uncertainty 

Methods  

influence of environmental conditions 
upon avoidance rates 

 

Collision 

Improve estimates for productivity, 
adult and immature survival, and 
inter-colony movements (including 
uncertainty in rates) 

 

PVA 

High High 

Empirical collection of survival data (adult and juvenile) from multiple colonies 
and years (field, large) 

 

 

Empirical collection of dispersal/immigration/emigration data across colony 
networks (field, large) 

New methods for statistical modelling to estimate survival rates using historical 
population abundance and productivity data (desk-based, medium) 

Application of statistical metapopulation models to colony networks (desk-
based, large) 

Empirical data on permanently marked individuals to estimate net movements 
among sub-populations (field, very large) 

Empirical estimation of correlation 
between environmental stochasticity 
in demographic rates & Improved 
models of observation error for 
abundance 

Medium High 

Analyse historical time series of population or individual level survival and 
productivity data (desk-based, medium) 

Empirical data on repeated counts to quantify uncertainty in population size, 
and analysis of plot vs whole colony counts to estimate relationships and adjust 
monitoring if plots not representative (desk-based and field, medium) 
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Ecological Process & relevant 
stage of assessment 

Contribution 
to a full 
quantification 
of uncertainty 

Contribution 
to reducing 
uncertainty 

Methods  

 

PVA 
Quantify observation error in historical survey methods with new methods 
(desk-based, medium) 

Quantify relationship between 
demographic rates and prey 
availability, climate and other 
environmental variables to include in 
population forecasts 

 

PVA 

High High 

Improve measurement and use of covariates in models - critical for capturing 
and understanding variability leading to better predictive power and reduced 
uncertainty (desk-based, medium) 

Statistical analyses of historical data to estimate linkages between 
environmental variables and demographic rates (desk-based, medium) 

Data integration and model fitting 
methods 

 

Sensitivity analyses for PVAs 

 

PVA 

Medium Medium 

Rationalising disagreement between "known" trajectory for a population and 
parameters borrowed from other populations – apply statistical methods to 
integrate understanding of population trajectory prior to impact within models 
(desk-based, medium) 

Sensitivity analysis to identify which parameters and inputs need to be known 
with the most precision in relation to output metrics used in ORD assessments 
to guide future research (desk-based, small) 

Better understanding and 
quantification of density dependent 
processes in populations 

 

PVA 

Medium Medium 
Application of statistical models to estimate density dependence in 
demographic rates to historical data (desk-based, medium) 
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Appendix A: Workshop summary 
 
December 16th 2020 – online workshop 
 
This project is aimed at producing a set of clear recommendations for how scientific 
uncertainty can be quantified and reduced throughout the ornithological offshore wind 
assessment process, leading to more precise ORD impact estimates. It will highlight where 
new empirical data and research are required in order to reduce uncertainties. The specific 
aims of the workshop were to: 
 

1. review the methods that are currently used to quantify uncertainty within the 
assessment process, and evaluate the ways in which these uncertainty estimates are 
currently used within the assessment process 

2. highlight key areas in which the quantification and interpretation of uncertainty could 
be improved, either through statistical modelling, additional data collection or 
adaptation of the assessment process 

3. provide a framework for the end-to-end quantification of uncertainty, which brings 
together estimates of uncertainty associated with individual stages of the assessment 
process 

4. develop recommendations for the research required to both better quantify 
uncertainty, and to reduce it, in order to reduce consenting risk and increase 
headroom for future offshore wind development through more certainty about likely 
impacts of planned developments. 

 
Therefore, each of the workshop discussion sessions selected a stage of the assessment 
process (see agenda below), and was structured as follows (Table 5): 
 

i. Delivery of a brief presentation by a member of the project team on how uncertainty 
is currently incorporated into assessments – this was comprised of identifying which 
sources of uncertainty are currently quantified, and how they are currently used 
within the assessment process 

ii. Presentation of all relevant sources of uncertainty (being addressed in the project) 
that should be included in the assessment stage, including those that are currently 
excluded 

iii. Open discussions (using Jamboard) to identify where we can quantify uncertainty 
better, the priorities for quantifying uncertainty better, methods for reducing 
uncertainty, and prioritisation of methods for reducing uncertainty 

 
Table 5: Summary of presentations and discussion for each of the workshop discussion sessions, 
centred on a single stage of the assessment process. 
 

How is uncertainty currently quantified? 
Which sources of uncertainty are quantified? 
How are these sources of uncertainty currently used 
within assessments? 

Short presentation (couple of slides) by project 
team, followed by short open session on any 
comments/queries 

Can we quantify uncertainty better? Jamboard – project team will propose methods, 
followed by open discussion 

Priorities for quantifying uncertainty Jamboard – project team will propose priorities, 
followed by open discussion 

What can we do to reduce uncertainty? Jamboard – project team will propose methods, 
followed by open discussion 

Priorities for how to reduce uncertainty Jamboard – project team will propose priorities, 
Jamboard by open discussion 
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There were four main discussion sessions around the main stages of assessment: 
 

1. PVA, Cumulative impacts and uncertainty propagation, end to end quantification of 
uncertainty 

2. Displacement modelling 
3. Collision modelling 
4. Density data and apportioning methods 

 
Finally, there was one further discussion session on the more general topic of: 
 

5. Integration of post-consent monitoring data (specifically, how post-consent monitoring 
data may be used to quantify and reduce uncertainty in the assessment process) 

 
The final discussion session of the day proposed and refined a high-level set of 
recommendations for research to better quantify and reduce uncertainty throughout the 
assessment process. 
 

Workshop attendees 
 
Kate Searle, Francis Daunt (UKCEH) 
Adam Butler, Esther Jones (BioSS) 
Mark Trinder, Ross McGregor (MacArthur Green) 
Aonghais Cook, Liz Humphries (BTO) 
Aly McCluskie (RSPB) 
Carl Donovan (DMP Statistics) 
Elizabeth Masden (UHI) 
Sue O’Brien, Julie Black (JNCC)  
Janelle Braithwaite, Tom Evans, Julie Miller (Marine Scotland) 
Matty Murphy, Alex Scorey, Mike Bailey (NRW) 
Glen Tyler (NatureScot) 
Clare McNamara (Daera) 
 

General recommendations 
 

• Properly communicating assumptions of models to decision makers 

 
Population Viability Analysis recommendations 
 
Key focus for quantifying and reducing uncertainty: 
 

• Better understanding and quantification of density dependence in population 
processes 

• Better understanding and quantification of correlation between demographic rates 

• Better understanding and quantification of metapopulation dynamics and assessment 
of populations at ecologically relevant scales 

• Application of methods that incorporate all available data, including population trend 
prior to impact, solid quantification of baseline population 

• Inclusion of climate change impacts within population models 

• Better quantification and understanding of demographic rates for immatures, and the 
processes affecting recruitment and age structure in populations 

• Importance of data collection at appropriate scales - both spatially (e.g. distributions of 
birds at sea) and temporally (e.g. across years and across the annual cycle) 
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Table 6: Summary of main processes, data collection and analytical methods for quantifying and 
reducing uncertainty in Population Viability Analysis (PVA). 
 

Process Empirical Data Analyses/tools/models 

Improve estimates for productivity, 
adult and immature survival 

 Address lack of survival 
/dispersal data compared to 
other demographic parameters 

time series of population or 
individual level survival and 
productivity data 

Potential for different 
effects/sensitivity of different 
age classes and states (e.g. 
breeding/sabbatical/failed 
breeder) - methods to quantify 
and consider this 

Understand and estimate carry-over 
effects on productivity and survival 

 time series of population or 
individual level survival and 
productivity data 

Empirical estimation of correlation 
between environmental 
stochasticity in demographic rates 

 Including rate 
correlation/covariance could 
have large effect in reducing 
uncertainty and data available? 

time series of population or 
individual level survival and 
productivity data 

Improved models of observation 
error for abundance 

Repeat counts to 
quantify uncertainty in 
population size 

Plot vs whole colony 
counts; adjust 
monitoring if plots not 
representative 

Quantify error in historical 
survey methods with new 
methods 

Quantify and include uncertainty in 
model parameters 

 time series of population or 
individual level survival and 
productivity data 

Quantify and include uncertainty in 
population sizes used in models 

  

Quantify relationship between prey 
availability and demographic rates 
so changes to prey can be included 
in population forecasts 

 Improve measurement and use 
of covariates in models - 
critical for capturing and 
understanding variability 
leading to better predictive 
power and reduced uncertainty 

Proper accounting of uncertainty in 
future population projections 

  

Data integration and model fitting 
methods 

 Rationalising disagreement 
between "known" trajectory for 
a population and parameters 
borrowed from other 
populations 
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Process Empirical Data Analyses/tools/models 

Integrate understanding of 
population trajectory prior to 
impact within models 

Sensitivity analyses for PVA – 
which parameters/inputs need to be 
known with most precision? 

 should be conducted at scale 
of impact assessment: where 
should effort be focussed? On 
PVA, impact estimation 
methods, or source seabird 
data? 

Quantify and include inter-annual 
variability in ORD effects; quantify 
and model habituation over time 

 Incorporation of seasonal 
information into estimates of 
annual OR effects 

Studies or models looking at 
magnitude and direction of 
environmental impacts on age 
and stages of seabirds 

Understand interactions of ORD 
impacts – are different 
impacts/processes synergistic or 
antagonistic? 

  

Include climate change effects 
within PVA models 

Diet data and changes 
in prey availability 

time series of population or 
individual level survival and 
productivity data able to be 
linked with appropriate scaled 
climate data 

Better understanding and 
quantification of variability in 
population dynamics around the UK 

  

Are interspecific interactions 
important in determining 
demographic rates for some 
species, and impacts of ORDs? 

  

Better understanding and 
quantification of density dependent 
processes in populations 

 Quantification of scales (spatial 
and temporal) at which density 
dependence works 

Consider trade-off in model 
complexity versus underpinning 
data for parameters 

  

Metapopulations and 
dispersal/immigration/emigration 

permanently marked 
individuals 

Net movements among 
sub-pops 

Julie Miller’s analysis (black-
legged kittiwakes) 
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Displacement recommendations 
 
Key focus for quantifying and reducing uncertainty: 
 

• Better quantification of displacement rate 

• Better quantification of displacement mortality rate 

• Development of ‘middle-ground’ methods that are more biologically realistic than the 
Displacement Matrix but not as data hungry as individual based models (IBMs) 

• Improved use of individual-level data (tracking, condition and fitness) for estimating 
displacement rates and displacement mortality rates 

• Better understanding and quantification of barrier effects 
 
Table 7: Summary of main processes, data collection and analytical methods for quantifying and 
reducing uncertainty in displacement impact modelling. 
 

Process Empirical Data Analyses/tools/models 

Predator-prey interactions, 
relationship between prey 
density and prey availability 

Fish stocks – availability to 
seabirds and impact of ORDs 
on key fish species 

Collate all existing data on 
distribution of key prey 
(sandeels, sprats) from MSS 
and other surveys, and 
conduct an analysis to predict 
distribution in space and time 

Importance of working with 
fisheries biologists and making 
use of their models 

Ecosystems models 

Predator-prey models 

Link between displacement 
effects and changes in 
demographic rates 

GPS tracking of individuals 

Relationship between end of 
season condition and 
subsequent overwinter survival 

Post-consent data: empirical 
estimation of displacement 
rates (GPS tracking and at-sea 
surveys) 

Post-consent data: empirical 
estimation of displacement 
mortality rates (GPS tracking 
linked to mass and survival of 
individuals) 

Power analyses 

Effect of environmental 
variation on displacement 
rate 

Post-consent data 

Climate change 

Habitat use models in relation to 
environmental variables 

Power analyses to examine 
statistical power of existing 
monitoring methods 

Year-round impacts of 
displacement 

GPS tracking for large gulls 
(year-round data with fine 
spatial and temporal 
resolution) 

Geolocator data for birds from 
multiple breeding colonies to 

Develop IBM for non-breeding 
season (especially RTDs) 

Consider Dutch developed IBM 
model for non-breeding season 
displacement 
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Process Empirical Data Analyses/tools/models 

assess non-breeding season 
habitat use 

Habituation over time Longer-term GPS tracking data 
of individuals 

 

Density-dependent effects of 
conspecifics on 
displacement mortality 
(competition and 
environmental quality) 

  

Better understanding of 
habitat loss and habitat 
quality, and how to 
represent this in models 

 Habitat and resource modelling 
methods 

Sundberg et al: "A mechanistic 
framework to inform the spatial 
management of conflicting 
fisheries and top predators." 
Journal of Applied Ecology (2020) 

Interspecific resource 
competition and relationship 
with displacement effects 

  

Extent of site fidelity in 
foraging locations and its 
effect on displacement rates 
and mortality 

  

Condition/state dependence 
(e.g. breeding stage) in 
displacement rates/influence 
of personality or behavioural 
syndromes on displacement 
rates to understand 
individual variation 

  

Effects of displacement on 
different age classes, e.g. 
immatures and non-
breeders 

  

Effects of displacement on 
different behaviours 
(commuting vs foraging) 

  

IBMs  emulation methods to fully 
quantify the uncertainty involved 
in estimating key parameters by 
matching key outputs to empirical 
data on demographic rates 

Reduce model structural 
uncertainty by collecting empirical 
data to understand behavioural 
processes, energetics and 
consequences for fitness 
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Collision recommendations 
 
Key focus for quantifying and reducing uncertainty: 
 

• Better quantification of correlation in parameters within the model (e.g. flight height and 
flight speed, wind speed and rotor speed) 

• Better quantification of behaviour of birds in relation to weather conditions and state 

• Better quantification of behaviours and variability in flight height/speed (e.g. commuting 
versus foraging flight) 

• Better quantification of avoidance rate – better understanding and quantification of the 
processes and mechanisms that underpin avoidance rates 

• Move towards models of individual flights of birds and interactions with individual 
turbines, and use of 3D models for flight paths 

• Sensitivity analysis - what's most influential. Some obvious ones (avoidance, density, 
FHD) - beyond this? 

o And does this vary by species? 
 
Table 8: Summary of main processes, data collection and analytical methods for quantifying and 
reducing uncertainty in collision risk models (CRM). 
 

Process Empirical Data Analyses/tools/models 

Flight speed/flight height – 
better measurement; 
variation in relation to 
environmental conditions; 
variation in relation to 
behaviour (commuting 
versus foraging) 

GPS tracking data 

GPS tracking coupled with 
measurement of wind speed etc 

Behavioural classification models 
for GPS tracking data 

Behavioural classification models 
linked to environmental 
covariates 

3D models around individual 
turbines 

Avoidance behaviour – does 
this change over time with 
experience 

GPS tracking data of individuals 
for macro-avoidance 

Turbine-mounted monitoring of 
meso and micro-avoidance 

 

3D flight paths from tracking data 

Factors driving fine-scale 
variation in risk/avoidance 
rates 

GPS tracking data of individuals 
for macro-avoidance 

Turbine-mounted monitoring of 
meso and micro-avoidance 

Finer resolution measurement 
of environmental variables (e.g.  
habitat quality and weather) 

Colony-specific variation – GPS 
tracking and comparison of 
birds from known 
provenance/breeding status 

Models linking avoidance 
behaviour with environmental 
characteristics (e.g. wind 
speed/wind direction) or bird 
characteristics (e.g. age, 
breeding state, etc); placement of 
turbines 

Approach angle, should this be 
considered more? See 
Holmstrom et al. (2011) 

3D flight paths from tracking data 

Separation of micro-, meso- 
and macro-avoidance 

GPS tracking data of individuals 
for macro-avoidance 

Turbine-mounted monitoring of 
meso and micro-avoidance 

3D flight paths from tracking data 
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Process Empirical Data Analyses/tools/models 

Understand and quantify 
covariance between 
parameters used in collision 
risk models 

  

better parameterisation of 
turbine rotation speed 

  

separation of environmental 
variation versus uncertainty 
within collision risk models 

  

Consider error of Band 
versus other models, e.g. 
Kleyheeg-Hartman and 
refine 

  

Use of post consent 
monitoring data: How to use 
to inform on CRM 
parameters, e.g. changes in 
flight height distribution 
post-construction not 
independent of avoidance 
rate 

 3D flight paths from tracking data 

Understanding of collision 
during migration 

  

Converting densities into 
flux – better methods for 
this; relationship between 
flux rate and flight 
behaviour; Separate out 
how flight speed is used for 
pCol and flux calculations 

  

Validation of pColl against 
empirical data 

  

flapping rates and gliding 
proportion 
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Density and apportioning recommendations 
 
Key focus for quantifying and reducing uncertainty: 
 

• Data integration methods for estimating spatial habitat use and at-sea densities 

• Need for a strategic approach to data collection 

• Better quantification of inter-annual variability and understanding of representativeness 
of survey data 

• development of methods to leverage existing data to address this 

• Need for more model validation, ground-truthing of model predictions 

• Improved measurement and use of environmental covariates in models 

• Improved measurements and use of prey data within model 
 
Table 9: Summary of main processes, data collection and analytical methods for quantifying and 
reducing uncertainty in density data and apportioning methods. 
 

Process Empirical Data Analyses/tools/models 

Quantifying uncertainty in 
tracking models 

GPS tracking, many 
individuals, many colonies 

HMMs, continuous time models 

Focus on appropriate spatial 
scale for data collection 

Measure environmental 
variables at finer resolution to 
link better with GPS tracking or 
at-sea survey data 

Need to collect concurrent 
covariate data at the right 
scale for count and tracking 
data 

Collect covariates at spatial 
and temporal scales that 
match the bird data, e.g. (such 
as hydrographic features) 

Strategic collection of at-sea 
survey data (e.g. government-led) 

Variable scales for data collection 
(‘fences’) and analysis (INLA 
SPDE, continuous time models) 

Better estimation of baseline 
inter-annual variability 

Compile multiple at-sea 
footprint surveys across time 
and space and investigate 
inter-annual variability in 
comparison to ‘snapshot’ 
surveys on, e.g. 1 day/month 

Consider alternative survey 
designs to address temporal 
variation 

Reducing structural 
uncertainty in tracking 
models 

  

Identifying behavioural 
states from tracking data 

 Ground truth HMMs using 
accelerometer/TDR data?? 
(anonymous animal X: are all 
states reliably identifiable from 
this? e.g. resting vs feeding) 

HMMs, continuous time models 

Site turnover Long-term tracking of 
individuals 
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Process Empirical Data Analyses/tools/models 

Direct measurements of 
prey, not use of proxies in 
models for density; consider 
prey availability not just 
abundance 

  

Understanding of habitat use 
outside of chick-rearing; 
habitat use by non-breeders 

Need for tracking data from 
whole/more of breeding 
season, most tracking data 
being early chick-rearing 
currently 

Data integration, e.g. GPS and at-
sea 

Improve upon use of 
distance-decay in 
apportioning methods 

Detailed colony-level 
modelling with more covariates 

For gannets use Wakefield et al 
2013 to develop MS apportioning 
method for this species? 

Better definition of biological 
seasons - dealing with 
overlapping months when 
migrants, breeders and non-
breeders may be present 

  

Quantify statistical power of 
survey data to quantify 
abundance/density and 
changes 

 Need defined acceptable/ 
recommended alpha, beta and 
effect size levels 

Any power analysis needs to be 
tailored to the statistical test to be 
used, and considering the 
normality assumption, 
independence, etc. 

How to defensibly quantify 
exposure (density 
essentially) for less common 
species, e.g. great black-
backed gull 

  

Influence of climate change 
and potentially shifting 
distributions of prey and 
seabirds 
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Post construction monitoring recommendations 
 
Key focus for quantifying and reducing uncertainty: 
 

• need for a strategic approach with targeted data collection: 
o post construction monitoring needs to be more than what the industry has to do 

due to their requirements 
o Need for strategic (non-project specific) licence conditions (Scotland already 

doing some of this) - would allow collection of more useful data for future 
assessments 

o Consider compatibility of data collected pre and post consent – methods for data 
collection for the site characterization versus post consent monitoring has meant 
it hasn't always been possible detect change 

o Reduce disconnect between planning condition requirements and useful 
monitoring 

o better alignment of data collection methods across sites, to facilitate analysing 
data in a combined way 

o Collaboration in post consent monitoring between developers; avoid duplication, 
bolster financial scope, bolster sample sizes, share data 

o Agreed guidelines on the format and storage of data in central accessible (open-) 
source 

• test mitigation measures such as colouring turbine blades 

• make data available for research both pre and post construction 
o reduce lag in time taken for data/reports coming out of post-consent monitoring 

to inform future ORD assessments 
o Need to make sure all PCM and other data becomes available in a repository - 

stipulation of consent process 

• consider and measure 'source' population changes not related to construction 

• need to convert understanding of where uncertainty lies in modelling/assessment and 
how this can be translated into monitoring requirements and how outcomes will reduce 
uncertainty 

• Improved understanding and estimation of barrier effects 

• Improved links between post-consent monitoring data and its use in validating models 
used in pre-consenting 

 
Table 10: Summary of main processes, data collection and analytical methods for improving the 
collection and application of post-consent monitoring data. 
 

Process Empirical Data Analyses/tools/models 

Variation in displacement 
rates due to turbine density 
or wind farm layout 

  

Quantification of avoidance 
behaviours 

 a big sensitivity in CRM, so need 
to improve precision/accuracy 

Understand and quantify 
below surface habitat 
changes post construction 

  

Quantify changes to prey 
post construction 
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Process Empirical Data Analyses/tools/models 

Habituation of seabirds to 
ORDs 

  

Validate collision risk 
models, at least individual 
components (e.g. pcoll & 
flux) 

 Use existing and emerging turbine 
monitoring to compare accuracy 
of pre-construction CRM 
predictions, e.g. different versions 
of Band, Kleyeeg Hartman etc. 
Identify improvements to model 
structure – behaviour/better 
characterising flux/etc 

Consider longer-term shifts 
due to climate change 

Demographic monitoring 
across multiple colonies 

 

Barrier effects GPS tracking of individuals, 
longer term tracking to 
estimate habituation and links 
to environmental variation 

 



JNCC Report on the Correct treatment of uncertainty in ornithological assessments 

56 

Appendix B: Simple hypothetical example of simulation-
based approach  
 
Consider the following hypothetical situation: 
 

a) there are two “tools”, each of which depends on a single input, 𝑥;  
b) the assessment process involves summing the outputs of the two tools together; 
c) the value of the input 𝑥 is uncertain; it can be assumed to have a normal distribution 

with mean 3 and standard error 0.2; 
d) the first tool is stochastic, and involves simulating from a normal distribution with 

mean 7 ∗ 𝑥 and standard deviation 0.6; 
e) the second tool is stochastic and involves simulating from a normal distribution with 

mean 𝑥2/20 and standard deviation 0.2. 
 
In this case, the following simple, block of R code allows the “tools” to be linked, and 
uncertainty in the resulting output to be quantified: 
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Appendix C: Hypothetical worked example for the 
communication of uncertainty in assessments 
 
A worked example is provided here based on some of the key data used in collision risk 
modelling; here black-legged kittiwake (Rissa tridactyla) is used as an example. While many 
of the data values and sources are accurate, we have also included hypothetical data (e.g. 
bird aerial densities), which do not relate to an actual development (though these values do 
approximate those from some development sites). 
 
The first step collates the bird data values and describes the source of these data (Table 
11). There is then a simultaneous process of determining evidence quality and stakeholder 
agreement. The quality, consistency, amount, and type of evidence was assessed for each 
kittiwake datum.   
 
Taking “nocturnal activity” as an example, the value proposed for use in the CRM is 0%. This 
is based on a single reference showing that both adult breeding birds of a pair return to their 
nest site at night (Coulson 2011). The quality of evidence was assessed as being of high 
quality, as it is based on a long-term study from a trusted source. Consistency of evidence 
was assessed as medium as, while there was only one data source, there was no 
contradictory data source found. 
 
With respect to both the amount of evidence and the type of evidence, these evidences were 
assessed as “limited” as: 
 

• This was only a report of a single study, from a single colony, thus the amount of 
evidence was limited; and  

• The type of evidence was only from actively breeding birds at the colony, rather than 
from birds at sea, this was also “limited” to the situation being assessed.  

 
The overall evidence value was rated as medium, due to a high-quality data source and 
medium consistency of evidence. It was thought that although assigned a ‘limited’ value, the 
amount and type of evidence was not sufficiently lacking to reduce the overall evidence 
value to limited. 
 
Table 11: List of metric values and data sources, with assessment of the quality, consistency amount 
and type of evidence. 

Metric Value Source Quality 
of 
evidence 

Consistency 
of evidence 

Amount 
of 
evidence 

Type of 
evidence 

Overall 
evidence 

Bird 
length 

0.38 – 
0.40 m  
(midpoint 
= 0.39 m) 

Snow & 
Perrins 
(1998) 

Medium Robust Robust Robust ROBUST 

Bird 
wingspan 

0.95 – 
1.20 m 
(mid-
point = 
1.075 m) 

Snow & 
Perrins 
(1998) 

Medium Robust Robust Robust ROBUST 

Flight 
speed 

13.1 ± 
0.4 ms-1 

Alerstam 
et al. 
(2007) 

Medium Robust Robust Robust ROBUST 
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(Mean ± 
S.D.) 

Nocturnal 
activity 

0% Coulson 
(2011) 

High Medium Limited Limited MEDIUM 

Flight 
type 

Flapping Snow & 
Perrins 
(1998) 

Robust Robust Robust Robust ROBUST 

Day time 
bird flight 
density 

0.25 – 
2.5 birds 
km-2 

Surveys 
of 
proposed 
wind 
farm 

Robust Limited Medium Robust MEDIUM 

 
The example of stakeholder agreement shown in Table 12 is entirely hypothetical. It was 
assumed that agreement would be sought from the regulator and their statutory advisor(s) 
for the use of the proposed values for the metrics presented in Table 11. In addition, 
independent experts could be consulted (e.g. academic scientists). Finally, key stakeholders 
would also be consulted (e.g. RSPB for birds). In this hypothetical example, the suggested 
nocturnal activity value of 0% was rejected by all of the consultees. In reality, we would hope 
that reasons would be given, and recommendations of alternative data values and source 
would be provided. In addition, if an alternative value was based wholly on precaution, this 
should also be recorded. Since all consultees disagreed with the value suggested for 
nocturnal activity, the agreement value was “low”.  
 
The input from different stakeholder responses could either be given equal or unequal 
weighting. For instance, it may be that independent expert advice is given the highest 
weighting, or it may be that statutory advisors are given the highest weighting as their 
opinion carries some legal value. If weightings were applied to stakeholder responses, we 
recommend that these are transparent and recorded. Stakeholders should be made aware 
of any weightings before being asked for the consultation response. 
 
Table 12: Record of stakeholder agreement on each datum and its source (hypothetical example). 

Metric Developer 
Licensing 
authority 

Independent 
expert 

SNCB 
1 

SNCB 
2 

Key 
stakeholder(s) 

Agreement 

Bird length Y Y Y Y N N MEDIUM 

Bird 
wingspan 

Y Y Y Y N N MEDIUM 

Flight 
speed 

Y Y Y N Y N MEDIUM 

Nocturnal 
activity 

Y N N N N N LOW 

Flight type Y Y Y Y Y Y HIGH 

Day time 
bird 
density 

Y Y Y Y N N MEDIUM 

 
In this hypothetical example, we have assumed that the stakeholders all agreed that, after 
the introduction of a degree of precaution, a modified nocturnal activity value of 25% was 
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acceptable (Table 13). We recommend that the value is modified until the stakeholder 
agreement value is high (most, but not all, stakeholders agree). In order to prevent 
inappropriate precaution being introduced, the nocturnal activity value in this example should 
not be modified until 100% agreement is reached. These values were then applied to the 
IPCC confidence matrix (Table 1). 

Table 13: Modification of datum with low agreement and precaution value. 

Metric Value Agreement New value Precaution 

Nocturnal 
activity 

0% LOW 25% High 

The overall confidence value derived from the IPCC confidence matrix (Table 11) was 
recorded in Table 14.  In the example here, the modified nocturnal activity value is 
highlighted in red, and shows a medium confidence value due to limited evidence but high 
agreement. 

Table 14: Summary of overall evidence, added precaution and agreement values, and the final 
overall confidence value of each data. 

Metric Overall evidence Precaution Agreement Confidence 

Bird length Robust None Medium HIGH 

Bird wingspan Robust None Medium HIGH 

Flight speed Robust None Medium HIGH 

Nocturnal 
activity 

Limited High High MEDIUM 

Flight type Robust None High VERY HIGH 

Day time bird 
density 

Medium None Medium MEDIUM 

This example illustrates that only one value of our set of hypothetical data needed any 
modification. While some stakeholders disagreed with some values, their concerns were 
recorded and compared with other stakeholders. No modification of values, other than 
nocturnal activity, took place as agreement remained sufficiently high for the assessment to 
use the suggested value. In addition, the one value with low agreement was only modified 
sufficiently to reach high agreement, which we recommend is not 100% agreement, but a 
majority agreement. In order to achieve consistency with the planning process and legal 
authority of the Determining Authority and their statutory advisers, this majority agreement 
could be through a weighted agreement approach 
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