

# **Electronic Appendices for JNCC Report 447**

Stevens, C.J.<sup>a</sup>, Smart, S.M.<sup>b</sup>, Henrys, P.<sup>b</sup>, Maskell, L.C.<sup>b</sup>, Walker, K.J.<sup>c</sup>, Preston, C.D.<sup>d</sup>, Crowe, A.<sup>b</sup>, Rowe, E.<sup>e</sup>, Gowing, D.J.<sup>a</sup> & Emmett, B.A.<sup>e</sup>

 <sup>a</sup> Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA
<sup>b</sup> Centre for Ecology and Hydrology, Bailrigg, Lancaster LA1 4YQ
<sup>c</sup> Botanical Society of the British Isles (BSBI), c/o 97 Dragon Parade, Harrogate, North Yorkshire, HG1 5DG
<sup>d</sup> Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB
<sup>e</sup> Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW

Download JNCC Report 447: <u>http://jncc.defra.gov.uk/page-5894</u>

October 2011

© JNCC, Peterborough, 2011

ISSN 0963-8091

#### For further information please contact:

Joint Nature Conservation Committee Monkstone House City Road Peterborough Cambridgeshire PE1 1JY

Tel: +44 (0)1733 562626 Fax: +44 (0)1733 555948 Website: <u>www.jncc.defra.gov.uk</u>

#### This report should be cited as:

Stevens, C.J., Smart, S.M., Henrys, P., Maskell, L.C., Walker, K.J., Preston, C.D., Crowe, A., Rowe, E., Gowing, D.J. & Emmett, B.A. 2011. Collation of evidence of nitrogen impacts on vegetation in relation to UK biodiversity objectives. *JNCC Report*, No. 447

This project was jointly funded by Defra, the Joint Nature Conservation Committee, Natural England, the Countryside Council for Wales and Scottish Natural Heritage.

# **Electronic Appendix 1 for JNCC Report 447**

## **Vascular Plant Database**

Spatial analysis

Acid grassland – lowland



**Figure A1.1.** Spatial change in the probability of presence of *Cerastium arvense* in lowland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.2.** Spatial change in the probability of presence of *Cerastium semidecandrum* in lowland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.3.** Spatial change in the probability of presence of *Trifolium arvense* in lowland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.4.** Spatial change in the probability of presence of *Vicia lathyroides* in lowland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.5.** Spatial change in the probability of presence of *Viola canina* in lowland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.

Calcareous grassland – lowland



**Figure A1.6.** Spatial change in the probability of presence of *Allium vineale* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.7.** Spatial change in the probability of presence of *Anacamptis pyramidalis* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.8.** Spatial change in the probability of presence of *Carex spicata* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.9.** Spatial change in the probability of presence of *Carlina vulgaris* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.10.** Spatial change in the probability of presence of *Centaurium erythraea* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.11.** Spatial change in the probability of presence of *Cynoglossum officinale* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.12.** Spatial change in the probability of presence of *Echium vulgare* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.13.** Spatial change in the probability of presence of *Epipactis helleborine* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.14.** Spatial change in the probability of presence of *Geranium columbinum* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.15.** Spatial change in the probability of presence of *Knautia arvensis* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.16.** Spatial change in the probability of presence of *Lathyrus nissolia* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.17.** Spatial change in the probability of presence of *Linum bienne* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.18.** Spatial change in the probability of presence of *Ononis repens* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.19.** Spatial change in the probability of presence of *Pastinaca sativa* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.20.** Spatial change in the probability of presence of *Rosa micrantha* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.21.** Spatial change in the probability of presence of *Spiranthes spiralis* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.22.** Spatial change in the probability of presence of *Stachys officinalis* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.

### Calcareous grassland – upland



**Figure A1.23.** Spatial change in the probability of presence of *Alchemilla xanthochlora* in upland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.24.** Spatial change in the probability of presence of *Melica nutans* in upland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.

Heathland – lowland



**Figure A1.25.** Spatial change in the probability of presence of *Platanthera bifolia* in lowland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.26.** Spatial change in the probability of *Viola canina* presence of in lowland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.

### Heathland – upland



**Figure A1.27.** Spatial change in the probability of presence of *Arctostaphylos uva-ursi* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from Vascular Plant Database.



**Figure A1.28.** Spatial change in the probability of presence of *Trientalis europaea* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from vascular plant.

Temporal analysis

Acid grassland – lowland



**Figure A1.29.** Temporal change in the probability of presence of *Cerastium semidecandrum* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland acid grassland. Data from Vascular Plant Database.



**Figure A1.30.** Temporal change in the probability of presence of *Myosotis ramosissima* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland acid grassland. Data from Vascular Plant Database.



**Figure A1.31.** Temporal change in the probability of presence of *Ornithopus perpusillus* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland acid grassland. Data from Vascular Plant Database.



**Figure A1.32.** Temporal change in the probability of presence of *Senecio sylvaticus* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland acid grassland. Data from Vascular Plant Database.



**Figure A1.33.** Temporal change in the probability of presence of *Trifolium arvense* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland acid grassland. Data from Vascular Plant Database.



**Figure A1.34.** Temporal change in the probability of presence of *Trifolium micranthum* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland acid grassland. Data from Vascular Plant Database.


**Figure A1.35.** Temporal change in the probability of presence of *Trifolium ornithopodioides* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland acid grassland. Data from Vascular Plant Database.



**Figure A1.36.** Temporal change in the probability of presence of *Trifolium subterraneum* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland acid grassland. Data from Vascular Plant Database.

### Calcareous grassland – lowland



**Figure A1.37.** Temporal change in the probability of presence of *Anacamptis pyramidalis* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland calcareous grassland. Data from Vascular Plant Database.



**Figure A1.38.** Temporal change in the probability of presence of *Carex spicata* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland calcareous grassland. Data from Vascular Plant Database.



**Figure A1.39.** Temporal change in the probability of presence of *Centaurea scabiosa* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland calcareous grassland. Data from Vascular Plant Database.



**Figure A1.40.** Temporal change in the probability of presence of *Convallaria majalis* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland calcareous grassland. Data from Vascular Plant Database.



**Figure A1.41.** Temporal change in the probability of presence of *Orchis morio* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland calcareous grassland. Data from Vascular Plant Database.



**Figure A1.42.** Temporal change in the probability of presence of *Rosa rubiginosa* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland calcareous grassland. Data from Vascular Plant Database.

## Calcareous grassland – upland



**Figure A1.43.** Temporal change in the probability of presence of *Alchemilla alpina* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland calcareous grassland. Data from Vascular Plant Database.



**Figure A1.44.** Temporal change in the probability of presence of *Melica nutans* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland calcareous grassland. Data from Vascular Plant Database.



**Figure A1.45.** Temporal change in the probability of presence of *Persicaria vivipara* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland calcareous grassland. Data from Vascular Plant Database.



**Figure A1.46.** Temporal change in the probability of presence of *Saussurea alpina* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland calcareous grassland. Data from Vascular Plant Database.

### Bogs – upland



**Figure A1.47.** Temporal change in the probability of presence of *Carex limosa* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland bog. Data from Vascular Plant Database.

### Heathland - upland



**Figure A1.48.** Temporal change in the probability of presence of *Cryptogramma crispa* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland heathland. Data from Vascular Plant Database.



**Figure A1.49.** Temporal change in the probability of presence of *Lycopodium clavatum* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland heathland. Data from Vascular Plant Database.



**Figure A1.50.** Temporal change in the probability of presence of *Rubus chamaemorus* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland heathland. Data from Vascular Plant Database.



**Figure A1.51.** Temporal change in the probability of presence of *Trientalis europaea* between survey periods (1930-1969, and 1987-1999) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland heathland. Data from Vascular Plant Database.

# **Electronic appendix 2**

## **BSBI Local Change survey**

Spatial analysis

## Acid grassland - upland



**Figure A2.1.** Spatial change in the probability of presence of *Agrostis vinealis* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.2.** Spatial change in the probability of presence of *Bromopsis erecta* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.3.** Spatial change in the probability of presence of *Campanula glomerata* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.4.** Spatial change in the probability of presence of *Carex spicata* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.5.** Spatial change in the probability of presence of *Centaurea scabiosa* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.6.** Spatial change in the probability of presence of *Daucus carota* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.7.** Spatial change in the probability of presence of *Ononis repens* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.8.** Spatial change in the probability of presence of *Sanguisorba minor* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.9.** Spatial change in the probability of presence of *Viola odorata* in lowland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.

## Calcareous grassland - upland



**Figure A2.10.** Spatial change in the probability of presence of *Persicaria vivipara* in upland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.11.** Spatial change in the probability of presence of *Rubus saxatilis* in upland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.12.** Spatial change in the probability of presence of *Thalictrum alpinum* in upland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.

## Heathland - upland



**Figure A2.13.** Spatial change in the probability of presence of *Agrostis vinealis* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.14.** Spatial change in the probability of presence of *Listera cordata* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.



**Figure A2.15.** Spatial change in the probability of presence of *Vaccinium vitis-idaea* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BSBI Local Change.

## Temporal analysis

#### Heathlands - lowland



**Figure A2.16.** Temporal change in the probability of presence of *Scleranthus annuus* between survey periods (1987-1988, and 2003-2004) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland heathland. Data from BSBI Local Change.



**Figure A2.17.** Temporal change in the probability of presence of *Viola lactea* between survey periods (1987-1988, and 2003-2004) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in lowland heathland. Data from BSBI Local Change.

## Heathlands - upland



**Figure A2.18.** Temporal change in the probability of presence of *Lycopodium annotinum* between survey periods (1987-1988, and 2003-2004) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland heathland. Data from BSBI Local Change.



**Figure A2.19.** Temporal change in the probability of presence of *Trientalis europaea* between survey periods (1987-1988, and 2003-2004) against total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>) for hectads in upland heathland. Data from BSBI Local Change.
## **Electronic appendix 3**

### British Lichen Society data analysis results

Acid grassland



**Figure A3.1.** Spatial change in the probability of presence of *Cetraria aculeata* in acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.2.** Spatial change in the probability of presence of *Peltigera didactyla* in acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.3.** Spatial change in the probability of presence of *Catapyreneum lachneum* in acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.

### **Calcareous grassland**



**Figure A3.4.** Spatial change in the probability of presence of *Cladonia foliacea* in calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.5.** Spatial change in the probability of presence of *Diploschistes muscorum* in calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.6.** Spatial change in the probability of presence of *Cladonia arbuscula squarrosa* in bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.

Bog



**Figure A3.7.** Spatial change in the probability of presence of *Cladonia portentosa* in bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.

#### Heathland



**Figure A3.8.** Spatial change in the probability of presence of *Cetraria aculeata* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.9.** Spatial change in the probability of presence of *Cetraria muricata* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.10.** Spatial change in the probability of presence of *Cladonia arbuscula squarrosa* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.11.** Spatial change in the probability of presence of *Cladonia cervicornis cervicornis* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.12.** Spatial change in the probability of presence of *Cladonia cervicornis verticillata* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.13.** Spatial change in the probability of presence of *Cladonia floerkeana* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.14.** Spatial change in the probability of presence of *Cladonia glauca* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.15.** Spatial change in the probability of presence of *Cladonia portentosa* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.16.** Spatial change in the probability of presence of *Cladonia strepsilis* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.17.** Spatial change in the probability of presence of *Cladonia subulata* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.18.** Spatial change in the probability of presence of *Cladonia uncialis biuncialis* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.19.** Spatial change in the probability of presence of *Dibaeis baeomyces* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.20.** Spatial change in the probability of presence of *Diploschistes muscorum* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.21.** Spatial change in the probability of presence of *Lichenomphalia hudsoniana* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.22.** Spatial change in the probability of presence of *Lichenomphalia umbellifera* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.



**Figure A3.23.** Spatial change in the probability of presence of *Peltigera hymenina* in heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BLS.

# **Electronic appendix 4**

### **BBS** Database.

### Acid grassland – upland



**Figure A4.1.** Spatial change in the probability of presence of *Archidium alternifolium* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.2.** Spatial change in the probability of presence of *Dicranum fuscescens* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.3.** Spatial change in the probability of presence of *Frullania tamarisci* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.4.** Spatial change in the probability of presence of *Gymnocolea inflata* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.5.** Spatial change in the probability of presence of *Hylocomium splendens* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.6.** Spatial change in the probability of presence of *Leptodontium flexifolium* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.7.** Spatial change in the probability of presence of *Lophozia ventricosa* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.8.** Spatial change in the probability of presence of *Marsupella emarginata* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.9.** Spatial change in the probability of presence of *Racomitrium ericoides* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.10.** Spatial change in the probability of presence of *Racomitrium lanuginosum* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.11.** Spatial change in the probability of presence of *Sanionia uncinata* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A4.12.** Spatial change in the probability of presence of *Scapania gracilis* in upland acid grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.

#### Calcareous grassland – upland



**Figure A4.13.** Spatial change in the probability of presence of *Didymodon vinealis* in upland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.


**Figure A4.14.** Spatial change in the probability of presence of *Leiocolea turbinata* in upland calcareous grassland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.

## Bog – upland



**Figure A15.** Spatial change in the probability of presence of *Anastrophyllum minutum* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A16.** Spatial change in the probability of presence of *Calypogeia neesiana* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A17.** Spatial change in the probability of presence of *Calypogeia sphagnicola* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A18.** Spatial change in the probability of presence of *Cladopodiella fluitans* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A19.** Spatial change in the probability of presence of *Dicranum bonjeanii* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A20.** Spatial change in the probability of presence of *Gymnocolea inflata* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A21.** Spatial change in the probability of presence of *Lophozia incisa* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A22.** Spatial change in the probability of presence of *Odontoschisma denudatum* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A23.** Spatial change in the probability of presence of *Pleurozia purpurea* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A24.** Spatial change in the probability of presence of *Racomitrium lanuginosum* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A25.** Spatial change in the probability of presence of *Scapania umbrosa* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A26.** Spatial change in the probability of presence of *Scapania undulata* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A27.** Spatial change in the probability of presence of *Sphagnum austinii* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A28.** Spatial change in the probability of presence of *Warnstorfia fluitans* in upland bog with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.

Heathland - upland



**Figure A29.** Spatial change in the probability of presence of *Anastrophyllum minutum* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A30.** Spatial change in the probability of presence of *Aulacomnium palustre* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A31.** Spatial change in the probability of presence of *Barbilophozia atlantica* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A32.** Spatial change in the probability of presence of *Barbilophozia attenuate* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A33.** Spatial change in the probability of presence of *Barbilophozia hatcheri* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A34.** Spatial change in the probability of presence of *Bryum alpinum* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A35.** Spatial change in the probability of presence of *Calypogeia arguta* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A36.** Spatial change in the probability of presence of *Cephalozia connivens* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A37.** Spatial change in the probability of presence of *Dicranella schreberiana* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A38.** Spatial change in the probability of presence of *Douinia ovate* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A39.** Spatial change in the probability of presence of *Entosthodon attenuates* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A40.** Spatial change in the probability of presence of *Fissidens bryoides s.l.* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A41.** Spatial change in the probability of presence of *Fossombronia wondraczekii* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A42.** Spatial change in the probability of presence of *Gymnocolea inflata* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A43.** Spatial change in the probability of presence of *Hylocomium splendens* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A44.** Spatial change in the probability of presence of *Lepidozia pearsonii* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A45.** Spatial change in the probability of presence of *Leptodontium flexifolium* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A46.** Spatial change in the probability of presence of *Leucobryum glaucum* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A47.** Spatial change in the probability of presence of *Microlejeunea ulicina* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A48.** Spatial change in the probability of presence of *Mylia anomala* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A49.** Spatial change in the probability of presence of *Odontoschisma sphagni* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.


**Figure A50.** Spatial change in the probability of presence of *Polytrichum commune* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A51.** Spatial change in the probability of presence of *Racomitrium ericoides* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A52.** Spatial change in the probability of presence of *Riccardia palmate* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A53.** Spatial change in the probability of presence of *Scapania irrigua* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A54.** Spatial change in the probability of presence of *Sphagnum capillifolium* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A55.** Spatial change in the probability of presence of *Sphagnum denticulatum* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A56.** Spatial change in the probability of presence of *Sphagnum fallax* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A57.** Spatial change in the probability of presence of *Sphagnum russowii* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A58.** Spatial change in the probability of presence of *Sphagnum squarrosum* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A59.** Spatial change in the probability of presence of *Sphagnum subnitens* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A60.** Spatial change in the probability of presence of *Sphagnum tenellum* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.



**Figure A61.** Spatial change in the probability of presence of *Warnstorfia fluitans* in upland heathland with increasing total current inorganic N deposition (kg N ha<sup>-1</sup> yr<sup>-1</sup>). Data from BBS database.