
Montserrat iVMS data: results of integration with landings
data

Version Date issued Prepared by Reviewers Date to complete

Draft 1 30/07/17 Dan Edwards,
(JNCC)

Alice Doyle (JNCC),
Paul Brickle (SAERI),
Paul Brewin (SAERI)

05/09/17

Final Draft 06/09/17 Dan Edwards

Introduction

This report details the production of value maps for fisheries around Montserrat using novel
iVMS (inshore vessel monitoring system) technology, using data gathered over the first year
of deployment of iVMS hardware. The project is part of a territory to territory partnership
between the Falklands Islands Government and the Government of Montserrat, facilitated
and assisted by JNCC and funded by the UK government.

iVMS data

iVMS data were collected using a Succorfish M2M SC2 iVMS unit fitted with a solar powered
battery charger intended to operate in harsh environments for prolonged periods of time with
no maintenance. Units were set to record and report (ping) vessel position, course and
speed every 15 minutes via the GSM network, with data being stored and maintained by
Succorfish M2M. 7 units were installed on 7 fishing vessels working from Little Bay,
Montserrat, and were operational over varying time periods between July 2015 and April
2017.

Landings Data

Landings data were collected via interview by Government of Montserrat staff and was
available in the form of a monthly excel sheet covering the period between January 2016
and April 2017 (the iVMS unit installed and operating in 2015 was faulty and the data could
not be used, so landings from 2015 were not required). Data were available for a total of
633 fishing trips by 23 vessels.

Method and tools

Data were processed in R using the VMStools package (Hintzen et al 2012). The script
used is included in Appendix 1.

http://nielshintzen.github.io/vmstools/

iVMS data were cleaned to remove impossible locations, speeds and headings, duplicates
and pseudo-duplicates (instances where misconfigured iVMS units were reporting more
frequently than every minute), points on land, and points where the vessel was in port (using
a 200m radius of Little Bay port and moorings). The number of unique days when the vessel
was away from port and travelling between 0 and 6 knots (typical fishing speeds) were
counted to give an estimate of the total vessel activity over the period when iVMS units were
operational.

The date format within the landings data was inconsistent and changed between UK
(dd/mm/yyyy) and US (mm/dd/yyyyy) format. This was manually corrected in the original
.xlsx workbook where each month’s landings were contained on a different sheet and the
intended date could be determined. A cleaning routine was then applied to identify and
remove any duplicates entries or erroneously large landings values, and a unique ID was
generated for each valid landing record. Total values were calculated using a unit value of
$8xcd/lb for garfish and ballyhoo, and $10xcd for all other species. Recording of fishing start
and end time within the landings data was inconsistent and so could not be used to refine
the identification of fishing activity. Instead, it was assumed that all times on a fishing day
were potential fishing activity. The landings data were then joined with the iVMS data based
on the vessel ID and date (as time could not be used). Each unique day was classified as a
“trip” and provided information on the fishing gear used that day. Once iVMS data was
linked to a trip and associated gear type, fishing activity could then be separated from vessel
transit activity based on speed thresholds, with different speeds being used to identify fishing
activity with different gear types. Appropriate speed thresholds were selected through
frequency analysis, where peaks in frequency of reported speeds were identified
corresponding to different repeated activities (fishing, transiting, hauling/setting gear) which
were subsequently validated using local knowledge. Appendix 2 gives the speed thresholds
used. The landings for a fishing trip were then distributed equally among the iVMS pings
considered to represent fishing activity during that trip.

Data were then aggregated to a 0.01 decimal degree grid for plotting and analysis, and data
falling outside of the Montserrat EEZ (which included all gill net activity and all activity by
vessel X1004) were removed from further analysis.

Results

Cleaning of iVMS data removed a total of 89,133 pings (Table 1), with the majority of these
corresponding to pings in harbour. Data from
vessel X1001 were corrupted as the speeds and
headings were inconsistently rerecorded and only
recorded at certain recurring values, most likely
due to a faulty unit. As a result, these data could
not be used in the final analysis. All of the data
from vessel X1004 that was linked to landings
originated outside of the Montserrat EEZ and so
was also excluded from further analysis. There
were no landings records with corresponding
iVMS data for vessel X1006; the vessel had a
functional iVMS unit installed for a total of only 24
days, and during that period the analysis of
activity suggests that the vessel was only active
away from port on 4 days, none of which were
surveyed by the fisheries data collectors.

Table 1 iVMS cleaning routine results

Cleaning of landings data did not remove any records, leaving a total of 633 landings
records for 23 vessels.

Table 2 Time coverage of iVMS data, estimated activity, and quantity of data linked to landings

Table 2 presents the temporal coverage of iVMS data, total days iVMS unit was operating,
number of days the vessel was assumed to be active away from port, and the number of
fishing trips that had corresponding landings data after all data had been cleaned. iVMS

units were operational for a total of 595
days, covering a potential 202 fishing
trips. 85 of these trips had associated
landings data, representing around 42%
of the estimated vessel effort within the
sample.

Figure 1 presents the total value of
landings linked to iVMS data by those
vessels sampled, and Figure 2 shows
landings per unit effort (average
landings per fishing trip).

The quantity of linked iVMS and landings data by gear type are presented in Table 3.

Appendix 3 contains maps of landings per unit of effort by individual vessel (figure 4) and by
gear type (figure 5), as well as total landed values by vessel (figure 6).

Table 3 Quantity of data collected by gear type

Figure 1 Total landings linked to iVMS

Figure 2 Landings per unit effort

 Discussion/Limitations

Community validation
The data presented is a preliminary analysis that has not been validated by the local fishing
community. Local knowledge can resolve many artefacts that may be present in the data
that may not be identified due to limitations in the methodology, and the outputs of the
analysis should not be considered finalised until such a review has been completed. For
instance, analysis of the data suggests that the high cell values apparent on the west coast
of Montserrat in data from Vessel X1003 and seine net layers (Appendix 3, figures 4 and 5)
are valid and are a result of large catches of mainly garfish, however, until validated by the
operator/fishing community it remains possible that this could be an artefact cause by, for
example, repeatedly using the same area for fish processing.

Furthermore, if the results of an incomplete sample of fishing activity are likely to be
extrapolated to the fleet level by marine planners, then it is important that fishers who have
not participated in the spatial data collection have opportunity to analyse and comment on
preliminary outputs to ensure that key areas supporting their livelihood are also represented
somehow within the outputs.

In light of the voluntary nature of the current iVMS data collection programme, it is also
important that agreement is sought with the fishing community as to the level of spatial
resolution at which the data products are published in order to maintain trust. Too coarse a
resolution and the data is of limited value for marine planning, but too fine a resolution may
be commercially sensitive and may provide a disincentive for participation. These
discussions about the outputs have yet to take place with the fishing community, but are
anticipated to occur in early November 2017.

Limited data samples
The values presented are just a sample from those vessels from which both iVMS and
landings data had been collected and could be matched. Landings data without
corresponding iVMS data and iVMS data without corresponding landings data, have not
been used. Due to issue with the iVMS (there were only 4 vessels collecting good quality
iVMS data for more than 4 fishing days, and periods of coverage were intermittent) and the
Government of Montserrat’s fisheries data collection programme (analysis of iVMS suggests
only 42% of fishing trips were sampled), the quantity of known activity data is quite limited,
and this has influenced the outputs presented in this report. Data from vessel X1002 shows
extremely high level of landings per unit effort, however, this is an artefact due to having
landings data available for only 1 single fishing trip and values would be expected to fall
quite significantly with a longer time series of data as the vessel’s footprint increased. This
can be addressed by deploying appropriate and effective iVMS hardware, and increasing the
frequency that corresponding landings data collected.

A targeted approach towards recording landings from the iVMS enabled vessels should be
taken in order to maximise the value returned from the deployment of the iVMS units, and
this could be assisted by using the geofence notifications functionality available within the
Succorfish software system to send emails to data collectors as vessels approach port after
fishing.

The iVMS data set has a poor time coverage and iVMS units worked for inconsistent and
intermittent durations, which complicates extrapolating this activity to the fleet level.
Furthermore, fishing is a seasonal activity with changes in distribution and abundance of
species, especially migratory ones. In order to build an accurate picture of fishing activity
across the seasons that can effectively be extrapolated to fleet level then ideally at least 1

year of continuous coverage is required of both iVMS and landings from a well-designed
representative sample of vessels.

Quality of sample surveyed
In the absence of an estimate of total fleet effort it is not possible to satisfactorily extrapolate
the activities sampled to the fleet level. Without a detailed survey of total effort properly
stratified by the different activity types within the fleet it is also unclear how representative
the current sample of vessels is. It is noted however that stratification of the sample across
fishing gears could be improved, and that not all gear types are covered (there are little and
no landings for gill net and spear fishing linked to iVMS data), and the spatial coverage of
pot fishing grounds is much less than anticipated and witnessed by the author. Validation
with the fishing community should be able to inform an assessment of how well overall
activity has been represented.

Landings sampling bias
There is some evidence of a strong bias in sampling of the landings surveyed. Vessel
X1007 had landings recorded for 67% of the 39 days when the vessel was active away from
port, whereas vessel X1002, apparently more active with 43 days away from port, had only 1
(2%) trip with associated landings data. It is possible that this vessel is actively engaged in
tasks other than fishing (goat hunting, for example, or transporting goods), which could lead
to an inflated estimate of vessel activity levels, but this is thought to be unlikely at the levels
witnessed.

Furthermore, catches are generally estimated in the landings data collection process, and no
assessment has been done on the accuracy of the estimates.

Fishing times
In the absence of accurate reporting of fishing start and finish times, it must be assumed that
all vessel activity away from port on a day when a landing record has been generated is
fishing activity. This may not be the case and the daily footprint of activity may be
overestimated. However, it is expected that significantly of this occurring extensively on the
same day as fishing activity will be relatively few.

Effective and accurate recording of fishing times as part of the standard landings data
collection process would allow for a more refined measure of fishing effort as a standard trip
time could be established.

Low confidence in gear type recorded
Multiple gears used in a day are not consistently or effectively recorded in the landings
interview, and in many cases just the main gear used that day is reported. This results in an
underestimate of the use minor gears that may be used alongside other more
active/profitable gears within the same fishing trip. The clearest example of that here is with
the gillnet fishery, which fails to appear in the outputs as anticipated. In the few cases where
gill net fishing was recorded it was by a single vessel operating outside of the Montserrat
EEZ, and so was removed from further analysis.

Landings data interviews do not discriminate between trolling for pelagic species and ground
fishing for demersal species, and both are simply recorded as line fishing. As a result, in the
current analysis, ocean pelagic landings have been attributed to demersal line fishing
grounds and demersal fish landings attributed to open ocean pelagic fishing grounds. It
would be possible given additional data processing time to correct for this by separating
landings recording ocean pelagic species, applying additional speed filtering (trolling occurs
at around 4-7 knots) or spatial filtering based on bathymetry and local knowledge.

Ideally data should be collected on all gears used on a fishing trip and the contribution to
landings apportioned to each. However, it is recognised that this can be challenging and
impractical to collect when landings are only recorded at the end of the trip and not
throughout the day.

Data processing method- splitting daily catches
Daily catches have been divided equally amongst all locations recorded that day where the
vessel reported typical fishing speeds. This fails to recognise the reality of heterogeneity
across fishing grounds visited in a single day. This is a limitation of the data and could only
properly be resolved by fishers collecting catch data at intervals throughout the day.

Data processing method- static gear effort
Identifying fishing effort through vessel activity is a poor method for estimating effort in static
gear fisheries, where the quantity of gear and time it is deployed are the key components of
fishing effort. However, in the absence of additional data for these parameters then vessel
activity is the only available proxy.

Recommendations/Next steps

Increased iVMS coverage
At least one year of continuous data from a well-designed, representative sample of fishing
vessels should be collected to ensure an accurate picture of fishing across seasons.

Improved coverage of landings data
Better coverage of vessel landings data is required to maximise the value of the iVMS data
collected. It is recommended that steps are taken to increase the sampling frequency of
landings from those vessels (improved training and a redesigned data collection framework).
This could be facilitated in part by use of the alerts available through the Succorfish being
set to automatically notify data collectors when vessels are approaching port.

Improved quality of landings data
The confidence in data collected during landings interviews is low, and it is recommended
that steps identified by Brewin (2017) are followed to bring the quality of the data collected
up to standard.

Fleet structure and effort
Regular surveys of fleet structure and effort are also recommended in order to allow for a
better survey design and deployment of iVMS units across a representative sample of
vessels, as well as enabling the effective extrapolation of mapped results (and landings) to
the fleet level.

Data management
Landings data are currently digitised and stored only in excel sheet format. This has led to
inconsistencies in data entry, particularly regarding date format, and has required some time
to correct manually. The government of Montserrat should replace their own data holdings
2016-April 2017 with those corrected as part of this analysis. The use of a properly
configured database would reduce some of this data cleaning and processing burden in
future and should be adopted.

Static gear measurement
The use of vessel activity is a poor proxy for fishing effort in static gear fisheries. RFID
attached to static gear and scanned when deployed and hauled offer the potential to quantify

both the amount of gear and the duration for which it is fished, giving a much more accurate
understanding of landings per unit of effort than that presented here. The use of RFID tags
and scanners may also offer potential for improving discrimination between effort and catch
in the troll fishery for ocean pelagic species.

References

Brewin, P, 2017, Fishery data collection and integration strategy for underpinning
sustainable fisheries management in Montserrat, South Atlantic Environmental Research
Institute.

Hintzen, N. T., Bastardie, F., Beare, D., Piet, G. J., Ulrich, C., Deporte, N., et al. (2012). VMS
tools: Open-source software for the processing, analysis and visualisation of fisheries
logbook and VMS data. Fisheries Research, 115–116, 31–43

Appendix 1

Script to extract and process iVMS and landings data for Montserrat

By: Dan Edwards

Code by: Dan Edwards

Contact: dan.edwards@jncc.gov.uk

Date: August 2017

Prep workspace --

rm(list=ls())

#Load necessary packages and functions- add required packages to vector

necessary <-

c("cluster","data.table","doBy","maps","mapdata","maptools","PBSmapping","s

p", "shapefiles", "rgdal", "raster", "GISTools", "classInt", "svIO",

"R2HTML", "svIDE", "svSocket", "utils", "Matrix", "vmstools", "tidyverse",

"xlsx", "mixtools", "raster", "tableHTML")

installed <- necessary %in% installed.packages()[, 'Package']

if (length(necessary[!installed]) >=1)

 install.packages(necessary[!installed], dep = T)

library(vmstools)

library(Matrix)

library(rgdal)

library(maptools)

library(plyr)

library(tcltk)

library(data.table)

library(ggplot2)

library(raster)

library(dplyr)

library(RColorBrewer)

library(rgeos)

library(tableHTML)

#set wd and create directories

setwd("D:/1_wd")

dir.create("inputData")

dir.create("outputs")

dir.create("working")

Load shapefiles used --

#read MNI shapefile to mask raster to EEZ

mniEEZ <- readOGR(dsn= "InputData/shapefiles", "MontserratEEZ")

#load bathymetery for plot

bathy <- readOGR("InputData/shapefiles", "Bathymetry Contours")

#read in land shapefile

mni <- readOGR("InputData/shapefiles", "mni")

Load iVMS data --

tacsat <- read.csv("InputData/SC2tacsat.csv")

tacsat <- formatTacsat(tacsat)

CLEAN IVMS DATA ---

#save removed records

remrecsTacsat <-

matrix(NA,nrow=7,ncol=2,dimnames=list(c("total","notPossible",

"duplicates","pseudoDuplicates","OnLand",

"InHarbour","OutOfRegion"),c("rows","percentage")))

remrecsTacsat["total",] <- c(nrow(tacsat),"100%")

#remove impossible points####

#points not on the globe

idx <- which(abs(tacsat$SI_LATI) > 90 | abs(tacsat$SI_LONG) > 180)

#adding points with heading outside compass range

idx <- unique(c(idx,which(tacsat$SI_HE < 0 | tacsat$SI_HE > 360)))

#add points with unreasonable speeds (>25knots)

idx <- unique(c(idx,which(tacsat$SI_SP > 25)))

length(idx)

if(length(idx)>0) tacsat <- tacsat[-idx,]

remrecsTacsat["notPossible",] <- c(nrow(tacsat),100+round((nrow(tacsat) -

an(remrecsTacsat["total",1]))/an(remrecsTacsat["total",1])*100,2))

remrecsTacsat

#check for duplicates####

#create one date-time stamp

tacsat$SI_DATIM <- as.POSIXct(paste(tacsat$SI_DATE,tacsat$SI_TIME,sep=" "),

 tz="GMT", format="%d/%m/%Y %H:%M")

#get records as a string to easily check for duplicates

uniqueTacsat <-

paste(tacsat$VE_REF,tacsat$SI_LATI,tacsat$SI_LONG,tacsat$SI_DATIM)

tacsat <- tacsat[!duplicated(uniqueTacsat),] #get rid of the

duplicates

print(nrow(tacsat))

remrecsTacsat["duplicates",] <- c(nrow(tacsat),100+round((nrow(tacsat) -

an(remrecsTacsat["total",1]))/an(remrecsTacsat["total",1])*100,2))

remrecsTacsat

#remove pseudo duplicates ####

#- Remove points which are pseudo duplicates as they have an interval rate

< x minutes- some units were pinging much too fast

intThres <- 0.5 #Minimum difference in time interval in minutes to

prevent pseudo duplicates

intvThres <- 30 # Maximum difference in time interval in minutes to prevent

intervals being too large to be realistic##### Any pings higher than this

are reset to this value #

tacsat <- sortTacsat(tacsat)

tacsatp <- intervalTacsat(tacsat,level="vessel",fill.na=T)

#tacsat <- tacsatp[which(tacsatp$INTV > intThres |

is.na(tacsatp$INTV)==T),-grep("INTV",colnames(tacsatp))] #doesnt wrtite

intv

tacsat <- tacsatp[which(tacsatp$INTV > intThres |

is.na(tacsatp$INTV)==T),]

#reset high pings to intvThres

tacsatp$INTV[tacsatp$INTV> intvThres] <- intvThres

#keep all pings above 3min intThres

tacsat <- tacsatp[which(tacsatp$INTV > intThres),]

remrecsTacsat["pseudoDuplicates",] <-

c(nrow(tacsat),100+round((nrow(tacsat) -

an(remrecsTacsat["total",1]))/an(remrecsTacsat["total",1])*100,2))

remrecsTacsat

tacsatBackup <- tacsat

tacsat <- tacsatBackup

Operational Dates ---

#Measure length of installation/operation on vessel ####

tacsat$SI_DATE <- as.Date(tacsat$SI_DATE, format = "%d/%m/%Y")

vessel01 <- range(subset(tacsat, VE_REF == "1001")$SI_DATE)

vessel02 <- range(subset(tacsat, VE_REF == "1002")$SI_DATE)

vessel03 <- range(subset(tacsat, VE_REF == "1003")$SI_DATE)

vessel04 <- range(subset(tacsat, VE_REF == "1004")$SI_DATE)

vessel05 <- range(subset(tacsat, VE_REF == "1005")$SI_DATE)

vessel06 <- range(subset(tacsat, VE_REF == "1006")$SI_DATE)

vessel07 <- range(subset(tacsat, VE_REF == "1007")$SI_DATE)

operational <- data.frame(vessel01, vessel02, vessel03, vessel04, vessel05,

vessel06, vessel07)

operational <- as.data.frame(t(operational))

names(operational) <- c("Start", "Finish")

#Calculate range of operation duration ####

operational$DateRange <- difftime(operational$Finish, operational$Start,

units = "days")

operational$DateRange <- round(operational$DateRange, 0)

Days working ####

v1 <- length(unique(subset(tacsat, VE_REF == "1001")$SI_DATE))

v2 <- length(unique(subset(tacsat, VE_REF == "1002")$SI_DATE))

v3 <- length(unique(subset(tacsat, VE_REF == "1003")$SI_DATE))

v4 <- length(unique(subset(tacsat, VE_REF == "1004")$SI_DATE))

v5 <- length(unique(subset(tacsat, VE_REF == "1005")$SI_DATE))

v6 <- length(unique(subset(tacsat, VE_REF == "1006")$SI_DATE))

v7 <- length(unique(subset(tacsat, VE_REF == "1007")$SI_DATE))

operational$DaysiVMSOperating <- c(v1,v2,v3,v4,v5,v6,v7)

operational

Clip Land ---

#make class Spatial Polygons for PointOnLand

mni <- as(mni, "SpatialPolygons")

##Find out prj4string of land shapefile for function below

proj4string(mni)

#index points on land

idx <- pointOnLand(tacsat, mni, proj4string = CRS("+proj=longlat

+datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"))

#save points on land to check if wanted

pol <- tacsat[which(idx == 1),]

#make tacsat points NOT on land

tacsat <- tacsat[which(idx == 0),]

remrecsTacsat["OnLand",] <- c(nrow(tacsat),100+round((nrow(tacsat) -

an(remrecsTacsat["total",1]))/an(remrecsTacsat["total",1])*100,2))

remrecsTacsat

Clip harbours ---

#Create Harbour Data for Little bay for Point in Harbour Function.

harbour <- c("LittleBayMooring", "LittleBayPier") #names of landing spots

lon <- as.numeric(c("-62.2078", "-62.2059")) #longitudes

lat <- as.numeric(c("16.8031","16.8033"))#latitudes

range <- as.numeric(c("0.2", "0.2"))#range/size of harbour in km

harbours <- data.frame(harbour, lon, lat, range)

#indes points in harbour

idx <- pointInHarbour(tacsat$SI_LONG,tacsat$SI_LATI,harbours)

#save points in harbour if wanted

pih <- tacsat[which(idx == 1),]

#make tacsat only points not in harbour

tacsat <- tacsat[which(idx == 0),]

remrecsTacsat["InHarbour",] <- c(nrow(tacsat),100+round((nrow(tacsat) -

an(remrecsTacsat["total",1]))/an(remrecsTacsat["total",1])*100,2))

save(remrecsTacsat,file="working/remrecsTacsat.RData")

#write out points in harbour and on land to check

NotAtSea <- rbind(pih, pol)

write.csv(NotAtSea,"working/OnLandInHarbour.csv")

#some problems with iVMS tracking en route from UK to MNI. Remove all

pings outside MNI region ####

idx <- which(tacsat$SI_LATI > 17 | tacsat$SI_LATI < 16.5 | tacsat$SI_LONG <

-62.5 | tacsat$SI_LONG > -61.9)

length(idx)

if(length(idx)>0) tacsat <- tacsat[-idx,]

remrecsTacsat["OutOfRegion",] <- c(nrow(tacsat),100+round((nrow(tacsat) -

an(remrecsTacsat["total",1]))/an(remrecsTacsat["total",1])*100,2))

remrecsTacsat

save(tacsat, file = "working/tacsat.RData")

tacsatBackup2 <- tacsat

remrecsTacsat

print("Tacsat cleaning is done!")

Check possible fishing days ---

--

#Indicatation of total effort? Select only fishing speeds 1- 6 knots.

Coarse test. Count unique days

vess1 <- length(unique(subset(tacsat, VE_REF == "1001" & SI_SP <6 & SI_SP

> 1)$SI_DATE))

vess2 <- length(unique(subset(tacsat, VE_REF == "1002" & SI_SP <6 & SI_SP

> 1)$SI_DATE))

vess3 <- length(unique(subset(tacsat, VE_REF == "1003" & SI_SP <6 & SI_SP

> 1)$SI_DATE))

vess4 <- length(unique(subset(tacsat, VE_REF == "1004" & SI_SP <6 & SI_SP

> 1)$SI_DATE))

vess5 <- length(unique(subset(tacsat, VE_REF == "1005" & SI_SP <6 & SI_SP

> 1)$SI_DATE))

vess6 <- length(unique(subset(tacsat, VE_REF == "1006" & SI_SP <6 & SI_SP

> 1)$SI_DATE))

vess7 <- length(unique(subset(tacsat, VE_REF == "1007" & SI_SP <6 & SI_SP

> 1)$SI_DATE))

UnlinkedDays <- c(vess1, vess2, vess3, vess4, vess5, vess6, vess7)

operational$VesselActive <- UnlinkedDays

#add results to summary table

operational$landingsLinkedDays <- "NA"

operational

print(paste("DaysiVMSworking = ", sum(operational$DaysiVMSOperating), sep =

" "))

print(paste("Possible fishing days =", sum(operational$VesselActive), sep

=" "))

LANDINGS DATA ---

require(XLConnect)

landWB <- loadWorkbook("InputData/landings16_17.xlsx")

sheet <- getSheets(landWB)

for (i in 1:length(sheet)){

tmp <- read.xlsx("InputData/landings16_17.xlsx", sheetIndex = i,

sheetName = NULL, colIndex = NULL, startRow = NULL,

endRow = NULL,

as.data.frame = TRUE, header = T)

if (i == 1) landings <- tmp else landings <- rbind.fill(landings, tmp)

}

DATES IN LANDINGS DATA VERY INCONSISTENT - UK & US formats and lots of

errors.

The quickest way to fix this is to inspect and re-enter the data sheet by

sheet in excel

Write out to a seperate csv for each month/worksheet

Load and combine landings data --

fileNames <- list.files("InputData/landings")

#combine

landings <- do.call(rbind.fill, lapply(paste("InputData/landings/",

fileNames, sep = ""), read.csv, na.strings=c(""," ","NA")))

#write file for backup

write.csv(landings, file = "working/mergedLandings.csv")

Rename columns to be eflalo compatibe

landings = landings %>% rename(FT_LHAR = Landing.Site, VE_NAME =

Vessel.Name, VE_REG = Vessel.Registration.., NO_CREW = Number.of.Crew,

LE_GEAR = Gear.Type, FISHERY = Fishery.Type, FT_DTIME = Start.Time,

FT_LTIME = End.Time, LE_CDAT = Start.Date, LE_EDAT = End.Date, AREA =

Fishing.Area, LE_KG_BLV = Queen.Triggerfish, LE_KG_AQO = Blue.Tang,

LE_KG_AQH = Doctorfish, LE_KG_EEU = Red.Hind, LE_KG_HCZ =

Long.Jawed.Squirrelfish, LE_KG_CFJ = Coney, LE_KG_PWT =

Stoplight.Parrotfish, LE_KG_RSN = Red.Snapper, LE_KG_LJJ = Dog.Snapper,

LE_KG_SNY = Yellowtail.Snapper, LE_KG_LJM = Mahogany.Snapper, LE_KG_LJU =

Blackfin.Snapper, LE_KG_RBY = Rock.Beauty, LE_KG_CDB = Porgy.Jolthead,

LE_KG_SKH = Shark, LE_KG_LJN = Mutton.Snapper, LE_KG_NCY =

Honeycomb.Cowfish, LE_KG_HLC = Caeser.Grunt, LE_KG_GPN = Nassau.Grouper,

LE_KG_UDU = Spotted.Goatfish, LE_KG_KYS = Bermuda.Chub, LE_KG_SLC =

Carribean.Spiny.Lobster, LE_KG_HNU = Black.Margate, LE_KG_ANW =

Queen.Angelfish, LE_KG_GRA = Gray.Angelfish, LE_KG_FRA = French.Angelfish,

LE_KG_BAR = Barracuda, LE_KG_CVJ = Crevalle.Jack, LE_KG_CXR = Bar.Jack,

LE_KG_GAR = Gar, LE_KG_AJK = Comad, LE_KG_LTJ = Silk.Snapper, LE_KG_NXU =

Black.Jack, LE_KG_SNL = Lane.Snapper, LE_KG_HNR = Porkfish.Grunt, LE_KG_LJG

= Mutton.Grouper, LE_KG_RPU = Vermillion.Snapper, LE_KG_LIO = Lionfish,

LE_KG_TUN = Tuna, LE_KG_MAB = Black.Grouper, LE_KG_DOX = Dolphin, LE_KG_WAH

= Wahoo,LE_KG_NBR = Yellow.Jack, LE_KG_USP = Creole.Wrasse, LE_KG_LJI =

Grey.Snapper, LE_KG_HLU = White.Margate, LE_KG_RRU = Rainbow.Runner,

LE_KG_CZT = Ocean.Trigger, LE_KG_EEE = Queen.Snapper, LE_KG_GGG = Graysby,

LE_KG_MWP = Sand.tilefish, LE_KG_WSK = White.Shark, LE_KG_PLM = Palometa,

LE_KG_BOF = Bonefish, LE_KG_SDF = Scrawled.filefish, LE_KG_ASX =

Black.Snapper, LE_KG_TRE = Skip.Jacks, LE_KG_USN = Princess.Parrot,

LE_KG_HTU = Glasseye.Snapper, LE_KG_HLV = French.Grunt, LE_KG_LJP =

Schoolmaster, LE_KG_CER = Mackerel, LE_KG_USU = Blue.Parrot , LE_KG_BZX =

Bonita, LE_KG_BAL = Ballyhoo, LE_KG_NXL = Horseye.Jack, LE_KG_EFD =

Rockhind, LE_KG_MGP = Mango.Snapper, LE_KG_KGF = Kingfish, LE_KG_STP =

Spotlight.Parrotfish, LE_KG_QAF = Queen.Angelfsih, LE_KG_EEO = Bream,

LE_KG_BGI = Bungi, LE_KG_MOA = Moonfish, mackerel_CER = Mackeral,

blueParrot_USU = Blue.parrot, scrwFilefish_SDF = Scrawled.Filefish,

LE_KG_BDR =Spanish.Hogfish , LE_KG_RSY = Redtail.Parrot, LE_KG_BSJ

=Bigeye.Scad..Jacks. , LE_KG_LOB = Lobster, AlmacoComad_AJK =

Almaco.Jack..comad., LE_KG_RGR = Red.Grouper, LE_KG_MOR = Moray, LE_KG_MIX

= Mixed.Fishes, LE_KG_RBP = Redband.Parrotfish, LE_KG_WFF = White.Filefish,

QueenSnapperEEE = Queen.snapper..bream., VermillionSnapper_bungi_RPU_BGI =

Vermillion.Snapper..bungi., Porkfish_HNR = Porkfish, LE_KG_BDN =

Black.Durgon, LE_KG_TAL = Tailor, LE_KG_WSF = Whitespotted.Filefish,

LE_KG_UNI = Unicorn.Filefish, OceanTrigger_CZT = Ocean.Triggerfish,

princess_USN = Princess.Parrotfish, BlueParrot_USU= Blue.Parrotfish,

LE_KG_GAJ= Greater.Amberjack, O_trigger_CZT = Ocean.triggerfish, LE_KG_WGT

= White.Grunt, wahoo_WAH = Wahoo.1, comad_AJK = Almaco.Jack..Comad.)

consolidate duplicated columns ####

landings$LE_KG_CER <- rowSums(landings[, c("LE_KG_CER", "mackerel_CER")],

na.rm= TRUE)

landings$LE_KG_USU <- rowSums(landings[, c("LE_KG_USU",

"blueParrot_USU","BlueParrot_USU")], na.rm= TRUE)

landings$LE_KG_SDF <- rowSums(landings[, c("LE_KG_SDF", "scrwFilefish_SDF"

)], na.rm= TRUE)

landings$LE_KG_AJK <- rowSums(landings[, c("LE_KG_AJK", "AlmacoComad_AJK",

"comad_AJK")], na.rm= TRUE)

landings$LE_KG_EEE <- rowSums(landings[, c("LE_KG_EEE", "QueenSnapperEEE"

)], na.rm= TRUE)

landings$LE_KG_RPU <- rowSums(landings[, c("LE_KG_RPU",

"VermillionSnapper_bungi_RPU_BGI")], na.rm= TRUE)

landings$LE_KG_HNR<- rowSums(landings[, c("LE_KG_HNR", "Porkfish_HNR")],

na.rm= TRUE)

landings$LE_KG_CZT<- rowSums(landings[, c("LE_KG_CZT", "OceanTrigger_CZT",

"O_trigger_CZT")], na.rm= TRUE)

landings$LE_KG_USN<- rowSums(landings[, c("LE_KG_USN", "princess_USN")],

na.rm= TRUE)

landings$LE_KG_USU<- rowSums(landings[, c("LE_KG_USU", "BlueParrot_USU")],

na.rm= TRUE)

landings$LE_KG_WAH<- rowSums(landings[, c("LE_KG_WAH", "wahoo_WAH")],

na.rm= TRUE)

landings$NO_CREW <- rowSums(landings[, c("NO_CREW", "Number.Of.Crew")],

na.rm= TRUE)

drop ununsed colomns and reorder

landings <- landings[, c("Data.Officer", "Date", "FT_LHAR", "Fisher",

"VE_NAME", "VE_REG", "NO_CREW", "LE_GEAR", "FISHERY", "FT_DTIME",

"FT_LTIME", "LE_CDAT", "LE_EDAT", "AREA","LE_KG_BLV", "LE_KG_AQO",

"LE_KG_AQH", "LE_KG_EEU", "LE_KG_HCZ", "LE_KG_CFJ", "LE_KG_PWT",

"LE_KG_RSN", "LE_KG_LJJ", "LE_KG_SNY", "LE_KG_LJM", "LE_KG_LJU",

"LE_KG_RBY", "LE_KG_CDB", "LE_KG_SKH", "LE_KG_LJN", "LE_KG_NCY",

"LE_KG_HLC", "LE_KG_GPN", "LE_KG_UDU", "LE_KG_KYS", "LE_KG_SLC",

"LE_KG_HNU", "LE_KG_ANW", "LE_KG_GRA", "LE_KG_FRA",

"LE_KG_BAR","LE_KG_CVJ", "LE_KG_CXR", "LE_KG_GAR", "LE_KG_AJK",

"LE_KG_LTJ", "LE_KG_NXU", "LE_KG_SNL", "LE_KG_HNR", "LE_KG_LJG",

"LE_KG_RPU", "LE_KG_LIO", "LE_KG_TUN", "LE_KG_MAB", "LE_KG_DOX",

"LE_KG_WAH","LE_KG_NBR", "LE_KG_USP", "LE_KG_LJI", "LE_KG_HLU",

"LE_KG_RRU", "LE_KG_CZT", "LE_KG_EEE", "LE_KG_GGG", "LE_KG_MWP",

"LE_KG_WSK", "LE_KG_PLM", "LE_KG_BOF", "LE_KG_SDF", "LE_KG_ASX",

"LE_KG_TRE", "LE_KG_USN", "LE_KG_HTU", "LE_KG_HLV", "LE_KG_LJP",

"LE_KG_CER", "LE_KG_USU", "LE_KG_BZX", "LE_KG_BAL", "LE_KG_NXL",

"LE_KG_EFD", "LE_KG_MGP", "LE_KG_KGF", "LE_KG_STP", "LE_KG_QAF",

"LE_KG_EEO", "LE_KG_BGI", "LE_KG_MOA", "LE_KG_BDR", "LE_KG_RSY",

"LE_KG_BSJ", "LE_KG_LOB", "LE_KG_RGR", "LE_KG_MOR", "LE_KG_MIX",

"LE_KG_RBP","LE_KG_WFF", "LE_KG_BDN", "LE_KG_TAL", "LE_KG_WSF",

"LE_KG_UNI", "LE_KG_GAJ", "LE_KG_WGT")]

Add in EFLALO columns ####

#create a unique ID for each fishing record

landings$FT_REF <- c(10001:10592)

#Add in some other columns that are part of the EFLALO format and are used

in various VMStools functions

landings$FT_DCOU <- "MNI"

landings$FT_DHAR <- "MSLTB"

landings$FT_LHAR <- "MSLTB"

landings$LE_ID <- landings$FT_REF

landings$LE_SLAT <- "-62.2"

landings$LE_SLON <- "16.8"

landings$LE_ELAT <- "-62.2"

landings$LE_ELON <- "16.8"

landings$LE_MSZ <- "10"

landings$LE_RECT <- "45F05"

landings_LE_DIV <- "IV"

landings$VE_LEN <- "10"

landings$VE_KW <- "10"

landings$FT_LCOU <- "MNI"

landings$LE_DIV <- "IV"

landings$LE_KG_ALL <- "0"

landings$LE_EURO_ALL <- "0"

landings$VE_COU <- "MNI"

landings$VE_FLT <- "MNI"

#dummy data above to make vmstools functions work

#date data in landings record isn't very good- lots of entry error. Just

use single "start date" (LE_CDAT) column for consistency

landings$FT_DDAT <- landings$LE_CDAT

landings$LE_EDAT <- landings$LE_CDAT

landings$FT_LDAT <- landings$LE_CDAT

change departure and arrival times ####

#(too many blank fields resulted in too mch data being lost. In absesnce

of departuira and arrival data just assume all activity on that day is

fishing activity)

landings$FT_DTIME <- "00:01"

landings$FT_LTIME <- "23:59"

give vessels Anon VE_REF ####

#create lookup table of names and anonymous reference

vessNames <- unique(landings$VE_NAME)

iVMSvessNames <- c("Ann Elizabeth", "Daily Bread", "Experience", "In God We

Trust", "Optimum", "Third choice", "Try Me")

iVMSid <- c("1001", "1002", "1003", "1004", "1005", "1006", "1007")

ixx <- as.character(c(1:7))

ids <- as.data.frame(iVMSid, ixx)

ids <- cbind(ids, iVMSvessNames)

#Populate VE_REF with vesselcode. match based on name

landings$VE_REF <- "NA"

landings$VE_REF <- ids$iVMSid[match(landingsVE_NAME, idsiVMSvessNames)]

#Format landings ####

landings <- formatEflalo(landings)

str(landings)

#Create totals columns ####

#Sum landings lbs

landings$LE_KG_ALL <- rowSums(landings[, c("LE_KG_BLV", "LE_KG_AQO",

"LE_KG_AQH", "LE_KG_EEU", "LE_KG_HCZ", "LE_KG_CFJ", "LE_KG_PWT",

"LE_KG_RSN", "LE_KG_LJJ", "LE_KG_SNY", "LE_KG_LJM", "LE_KG_LJU",

"LE_KG_RBY", "LE_KG_CDB", "LE_KG_SKH", "LE_KG_LJN", "LE_KG_NCY",

"LE_KG_HLC", "LE_KG_GPN", "LE_KG_UDU", "LE_KG_KYS", "LE_KG_SLC",

"LE_KG_HNU", "LE_KG_ANW", "LE_KG_GRA", "LE_KG_FRA",

"LE_KG_BAR","LE_KG_CVJ", "LE_KG_CXR", "LE_KG_GAR", "LE_KG_AJK",

"LE_KG_LTJ", "LE_KG_NXU", "LE_KG_SNL", "LE_KG_HNR", "LE_KG_LJG",

"LE_KG_RPU", "LE_KG_LIO", "LE_KG_TUN", "LE_KG_MAB", "LE_KG_DOX",

"LE_KG_WAH","LE_KG_NBR", "LE_KG_USP", "LE_KG_LJI", "LE_KG_HLU",

"LE_KG_RRU", "LE_KG_CZT", "LE_KG_EEE", "LE_KG_GGG", "LE_KG_MWP",

"LE_KG_WSK", "LE_KG_PLM", "LE_KG_BOF", "LE_KG_SDF", "LE_KG_ASX",

"LE_KG_TRE", "LE_KG_USN", "LE_KG_HTU", "LE_KG_HLV", "LE_KG_LJP",

"LE_KG_CER", "LE_KG_USU", "LE_KG_BZX", "LE_KG_BAL", "LE_KG_NXL",

"LE_KG_EFD", "LE_KG_MGP", "LE_KG_KGF", "LE_KG_STP", "LE_KG_QAF",

"LE_KG_EEO", "LE_KG_BGI", "LE_KG_MOA", "LE_KG_BDR", "LE_KG_RSY",

"LE_KG_BSJ", "LE_KG_LOB", "LE_KG_RGR", "LE_KG_MOR", "LE_KG_MIX",

"LE_KG_RBP","LE_KG_WFF", "LE_KG_BDN", "LE_KG_TAL", "LE_KG_WSF",

"LE_KG_UNI", "LE_KG_GAJ", "LE_KG_WGT")],na.rm = TRUE)

#Add sum of prime fish $10/lb

landings$lbs_AAA <- rowSums(landings [, c("LE_KG_BLV", "LE_KG_AQO",

"LE_KG_AQH", "LE_KG_EEU", "LE_KG_HCZ", "LE_KG_CFJ", "LE_KG_PWT",

"LE_KG_RSN", "LE_KG_LJJ", "LE_KG_SNY", "LE_KG_LJM", "LE_KG_LJU",

"LE_KG_RBY", "LE_KG_CDB", "LE_KG_SKH", "LE_KG_LJN", "LE_KG_NCY",

"LE_KG_HLC", "LE_KG_GPN", "LE_KG_UDU", "LE_KG_KYS", "LE_KG_SLC",

"LE_KG_HNU", "LE_KG_ANW", "LE_KG_GRA", "LE_KG_FRA", "LE_KG_BAR",

"LE_KG_CVJ", "LE_KG_CXR", "LE_KG_AJK", "LE_KG_LTJ", "LE_KG_NXU",

"LE_KG_SNL", "LE_KG_HNR", "LE_KG_LJG", "LE_KG_RPU", "LE_KG_LIO",

"LE_KG_TUN", "LE_KG_MAB", "LE_KG_DOX", "LE_KG_WAH", "LE_KG_NBR",

"LE_KG_USP", "LE_KG_LJI", "LE_KG_HLU","LE_KG_RRU", "LE_KG_CZT",

"LE_KG_EEE", "LE_KG_GGG", "LE_KG_MWP", "LE_KG_WSK","LE_KG_PLM","LE_KG_BOF",

"LE_KG_SDF", "LE_KG_ASX", "LE_KG_TRE", "LE_KG_USN", "LE_KG_HTU",

"LE_KG_HLV", "LE_KG_LJP", "LE_KG_CER", "LE_KG_USU", "LE_KG_BZX",

"LE_KG_NXL", "LE_KG_EFD", "LE_KG_MGP", "LE_KG_KGF", "LE_KG_STP",

"LE_KG_QAF","LE_KG_EEO", "LE_KG_BGI","LE_KG_MOA", "LE_KG_BDR", "LE_KG_RSY",

"LE_KG_BSJ", "LE_KG_LOB", "LE_KG_RGR", "LE_KG_MOR", "LE_KG_MIX",

"LE_KG_RBP", "LE_KG_WFF", "LE_KG_BDN", "LE_KG_TAL", "LE_KG_WSF",

"LE_KG_UNI", "LE_KG_GAJ", "LE_KG_WGT")], na.rm = TRUE)

#add sum of small pelagic ($8/lb)

landings$lbs_BBB <- rowSums(landings[, c("LE_KG_GAR", "LE_KG_BAL")], na.rm

= TRUE)

#create value columns (XCD) ####

landings$LE_EURO_AAA <- landings$lbs_AAA * 10

landings$LE_EURO_BBB <- landings$lbs_BBB * 8

landings$LE_EURO_ALL <- rowSums(landings[,c("LE_EURO_AAA", "LE_EURO_BBB")],

na.rm = TRUE)

Fix issues with gear columns ####

#check gears

landings$LE_GEAR <- as.factor(landings$LE_GEAR)

summary(landings$LE_GEAR)

FIx problems

landings$LE_GEAR[landings$LE_GEAR == "B.S. Net"] <- "B.S.Net"

landings$LE_GEAR[landings$LE_GEAR == "Spear Fishing"] <- "Spear fishing"

#drop now unused levels

landings$LE_GEAR <- droplevels(landings$LE_GEAR)

re check

summary(landings$LE_GEAR)

#write out to use in QA

write.csv(landings, "working/landingsQA.csv")

Re order landings data ####

MNIlandings <- landings[,c("Data.Officer", "VE_REF","VE_NAME","VE_REG",

"VE_LEN", "VE_KW", "VE_COU", "VE_FLT","Fisher", "NO_CREW",

"LE_GEAR","FISHERY", "AREA", "LE_ID", "FT_REF", "FT_DCOU", "FT_DHAR",

"FT_DDAT", "FT_DTIME", "FT_LTIME", "LE_CDAT", "FT_LHAR", "FT_LCOU",

"FT_LDAT", "LE_SLON", "LE_SLAT", "LE_ELON", "LE_ELAT","LE_EDAT", "LE_MSZ",

"LE_RECT", "LE_DIV", "LE_KG_ALL","LE_EURO_ALL")]

#Now into eflalo Format

eflalo <- formatEflalo(MNIlandings)

create date-time for departure and landing

eflalo$FT_DDATIM <- as.POSIXct(paste(eflalo$FT_DDAT,eflalo$FT_DTIME, sep =

" "), tz = "GMT", format = "%d/%m/%Y %H:%M")

eflalo$FT_LDATIM <- as.POSIXct(paste(eflalo$FT_LDAT,eflalo$FT_LTIME, sep =

" "), tz = "GMT", format = "%d/%m/%Y %H:%M")

Clean Eflalo --

#keep track of removed records

remrecsEflalo <-

matrix(NA,nrow=2,ncol=2,dimnames=list(c("total","duplicated"),c("rows","per

centage")))

remrecsEflalo["total",] <- c(nrow(eflalo),"100%")

#correct any overly large landings records ####

lanThres <- 1.5 #Maximum difference in log10-transformed sorted

weights

#order columns #

Put eflalo in order of 'non kg/eur' columns, then kg columns, then eur

columns

idxkg <- grep("LE_KG_",colnames(eflalo))

idxeur <- grep("LE_EURO_",colnames(eflalo))

idxoth <- which(!(1:ncol(eflalo)) %in% c(idxkg,idxeur))

eflalo <- eflalo[,c(idxoth,idxkg,idxeur)]

#get the species names

specs <-

substr(colnames(eflalo[grep("KG",colnames(eflalo))]),7,9)

#Define maximum allowed catch is per species (errors/outliers)

specBounds <- lapply(as.list(specs),function(x){

 idx <-

grep(x,colnames(eflalo))[grep("KG",colnames(eflalo)[grep(x,colnames(eflalo)

)])];

 wgh <- sort(unique(eflalo[which(eflalo[,idx]>0),idx]));

 difw <- diff(log10(wgh));

 return(ifelse(any(difw > lanThres),wgh[rev(which(difw <=

lanThres)+1)],ifelse(length(wgh)==0,0,max(wgh,na.rm=T))))})

#Make a list of the species names and the cut-off points / error / outlier

point

specBounds <- cbind(specs,unlist(specBounds));

#Put these values to zero

specBounds[which(is.na(specBounds[,2])==T),2] <- "0"

#Get the index (column number) of each of the species

idx <- unlist(lapply(as.list(specs),function(x){

 idx <-

grep(x,colnames(eflalo))[grep("KG",colnames(eflalo)[grep(x,colnames(eflalo)

)])];

 return(idx)}))

#If landing > cut-off turn it into an 'NA'

warns <- list()

fixWarns <- TRUE #set function to auto correct or not

for(iSpec in idx){

 if(length(which(eflalo[,iSpec] > an(specBounds[(iSpec-idx[1]+1),2])))>0){

 warns[[iSpec]] <- which(eflalo[,iSpec] > an(specBounds[(iSpec-

idx[1]+1),2]))

 if(fixWarns){

 eflalo[which(eflalo[,iSpec] > an(specBounds[(iSpec-

idx[1]+1),2])),iSpec] <- NA

 }

 }

}

#set remaining NAs to zero

for(i in kgeur(colnames(eflalo))) eflalo[which(is.na(eflalo[,i]) == T),i]

<- 0

#- Remove non-unique trip numbers####

eflalo <- eflalo[!duplicated(paste(eflalo$LE_ID,eflalo$LE_CDAT,sep="-")),]

remrecsEflalo["duplicated",] <- c(nrow(eflalo),100+round((nrow(eflalo) -

an(remrecsEflalo["total",1]))/an(remrecsEflalo["total",1])*100,2))

#make a backup

eflaloBackup <- eflalo

save(remrecsEflalo,file="working/remrecsEflalo.RData")

save(eflalo, file ="working/cleanEflalo.RData")

eflaloBackup2 <- eflalo

print("EFLALO Cleaned!")

Merge iVMS and Landings ---

tacsat <- formatTacsat(tacsat)

eflalo <- formatEflalo(eflalo)

tacsatp <- mergeEflalo2Tacsat(eflalo,tacsat)

#add columns from landings eflalo

tacsatp$LE_GEAR <- eflalo$LE_GEAR[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$LE_MSZ <- eflalo$LE_MSZ[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$VE_LEN <- eflalo$VE_LEN[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$VE_KW <- eflalo$VE_KW[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$LE_RECT <- eflalo$LE_RECT[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$LE_MET <- eflalo$LE_MET[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$LE_WIDTH <- eflalo$LE_WIDTH[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$VE_FLT <- eflalo$VE_FLT[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$LE_CDAT <- eflalo$LE_CDAT[match(tacsatp$FT_REF,eflalo$FT_REF)]

tacsatp$VE_COU <- eflalo$VE_COU[match(tacsatp$FT_REF,eflalo$FT_REF)]

#save unmerged data

tacsatpNoMerge <- subset(tacsatp,FT_REF == 0)

save(tacsatpNoMerge,file= "working/tacsatNotMerged.RData")

#save merged data

tacsatM <- subset(tacsatp,FT_REF != 0)

save(tacsatM, file="working/tacsatMerged.RData")

#count how many trips have been merged

NoTrips <- length(unique(tacsatM$FT_REF))

NoTrips ##check number

Find out number of days linked, by vessel ####

#subset by vessel

vl1 <- subset(tacsatM, VE_REF == "1001")

vl2 <- subset(tacsatM, VE_REF == "1002")

vl3 <- subset(tacsatM, VE_REF == "1003")

vl4 <- subset(tacsatM, VE_REF == "1004")

vl5 <- subset(tacsatM, VE_REF == "1005")

vl6 <- subset(tacsatM, VE_REF == "1006")

vl7 <- subset(tacsatM, VE_REF == "1007")

vessels <- list(vl1,vl2,vl3,vl4,vl5,vl6,vl7)

#count number of unique trip refs

uniDay <- function (x, column){

 dayz <- length(unique(x[[column]]))

 return(dayz)

}

operational$landingsLinkedDays <- lapply(vessels, uniDay, "FT_REF")

#calc percent column and add to summary table

operational$Percentage <-

paste(round(c(as.numeric(operational$landingsLinkedDays) /

as.numeric(operational$VesselActive)) * 100), "%", sep = "")

operational <- operational[,c("Start", "Finish", "DaysiVMSOperating",

"VesselActive", "landingsLinkedDays", "Percentage")]

totalPercent <- c(sum(an(operational$landingsLinkedDays)) /

sum(an(operational$VesselActive))) * 100

head(operational)

#view linking summary data ####

print("iVMS and landings data is cleaned and linked!!!!")

remrecsTacsat

remrecsEflalo

operational

print(paste("DaysiVMSworking = ", sum(operational$DaysiVMSOperating), sep =

" "))

print(paste("Possible fishing days =", sum(operational$VesselActive), sep

=" "))

print(paste("Days with corresponding landings data = ",

sum(an(operational$landingsLinkedDays))), sep = "")

print(paste("Percentage of trips with landings data = ",

round(totalPercent), "%"), sep = "")

IDENTIFY FISHING ACTIVITY ---

#remove points with NA in important fields

idx <- which(is.na(tacsatM$VE_REF) == T |

is.na(tacsatM$SI_LONG) == T | is.na(tacsatM$SI_LATI) == T |

 is.na(tacsatM$SI_DATIM) == T |

is.na(tacsatM$SI_SP) == T)

if(length(idx)>0) tacsatM <- tacsatM[-idx,]

tacsatM <- formatTacsat(tacsatM)

Auto activity Analysis ####

x11()

storeScheme <- activityTacsatAnalyse(tacsatM, units= "year", analyse.by

= "LE_GEAR", identify = "means")

storeScheme

#- Define mean values of the peaks and the number of peaks

storeScheme$means[which(storeScheme$analyse.by == "Pot")] <- c("-13

-1 0 1 13 ")

storeScheme$means[which(storeScheme$analyse.by == "Line")] <- c("-16

-7 0 7 16")

storeScheme$means[which(storeScheme$analyse.by == "Gill Net")] <- c("-7

-4 0 4 7")

storeScheme$means[which(storeScheme$analyse.by == "B.S.Net")] <- c("-12

-7 0 7 12")

tacsatM <- formatTacsat(tacsatM)

acTa <- activityTacsat(tacsatM,

units="year",analyse.by="LE_GEAR",

storeScheme=storeScheme,plot=FALSE,level="all")

tacsatM$SI_STATE <- acTa

tacsatM$ID <- 1:nrow(tacsatM)

##INSUFFICIENT DATA FOR GOOD AUTO APPROACH

#- Investigate speed pattern through visual inspection of histograms ####

#create speed array for gears

speedarr <-

as.data.frame(cbind(LE_GEAR=sort(unique(tacsatM$LE_GEAR)),min=NA,max=NA),st

ringsAsFactors=F)

speedarr$min <- rep(0,nrow(speedarr)) # adjust below

speedarr$max <- rep(6,nrow(speedarr))

#look for peaks ####

X11()

par(mfrow=c(2,2))

hist(subset(tacsatM, LE_GEAR ==

"Pot")$SI_SP,breaks=30,xlim=c(0,15),xlab="Knots",main="Pots")

hist(subset(tacsatM, LE_GEAR ==

"B.S.Net")$SI_SP,breaks=30,xlim=c(0,15),xlab="Knots",main="Seine")

hist(subset(tacsatM, LE_GEAR ==

"Line")$SI_SP,breaks=30,xlim=c(0,15),xlab="Knots",main="Line")

hist(subset(tacsatM, LE_GEAR == "Gill

Net")$SI_SP,breaks=30,xlim=c(0,15),xlab="Knots",main="Gillnet")

#fill speed array

speedarr[speedarr$LE_GEAR == "Pot",]$max <- 3

speedarr[speedarr$LE_GEAR == "B.S.Net",]$max <- 3

speedarr[speedarr$LE_GEAR == "Line",]$max <- 7

speedarr[speedarr$LE_GEAR == "Gill Net",]$max <- 3

#create .png of histograms ####

png(filename= "outputs/SpeedHistogram.png")

ggplot(data=tacsatM, aes(SI_SP)) +

 geom_histogram(breaks=seq(0, 20, by =0.4),

 col=1)+

 facet_wrap(~LE_GEAR,ncol=2,scales="free_y")+

 labs(x = "Speed (knots)", y = "Frequency") +

 theme(axis.text.y = element_text(colour="black"),

 axis.text.x = element_text(colour="black"),

 axis.title.y = element_text(size=14),

 axis.title.x = element_text(size=14),

 panel.background = element_blank(),

 panel.grid.major = element_blank(),

 panel.grid.minor = element_blank(),

 axis.line = element_line(colour = "black"),

 panel.border = element_rect(colour = "black", fill=NA))

dev.off()

#fill SI_STATE column depending on speeds ####

tacsatM$SI_STATE <- NA

metiers <- unique(tacsatM$LE_GEAR)

for (mm in metiers) {

 tacsatM$SI_STATE[tacsatM$LE_GEAR==mm & tacsatM$SI_SP >=

speedarr[speedarr$LE_GEAR==mm,"min"] & tacsatM$SI_SP <=

speedarr[speedarr$LE_GEAR==mm,"max"]] <- "f";

}

tacsatM$SI_STATE[is.na(tacsatM$SI_STATE)] <- "s"

#Looking at the data here I think it should also be possible to sperate the

trolling from the ground line fishing.

#speeds of 5-7knots are probably trolling? Add column to Investiate later-

might be able to seperate

tacsatM$Troll <- "NA"

tacsatM[tacsatM$LE_GEAR == "Line" & tacsatM$SI_SP >=5 & tacsatM$SI_SP <=

7,]$Troll <- "1"

save(tacsatM, file = "working/tacsatActivity.RData")

tacsatBackup3 <- tacsatM

print("Defining Fishing activity completed!")

SPLIT LANDINGS AMONGST iVMS PINGS ---------------------------------------

#list columns that are KG or Value

idxkgeur <- kgeur(colnames(eflalo))

#Create total columns

eflalo$LE_KG_TOT <- eflalo$LE_KG_ALL

eflalo$LE_EURO_TOT<- eflalo$LE_EURO_ALL

#remove the rest of the KG or value columns

eflalo <- eflalo[,-idxkgeur]

#Landings data that wasn't merged.

eflaloNM <- subset(eflalo,!FT_REF %in% unique(tacsatM$FT_REF))

#landings data that was merged

eflaloM <- subset(eflalo,FT_REF %in% unique(tacsatM$FT_REF))

#set SI_State to binary

tacsatM$SI_STATE[which(tacsatM$SI_STATE != "f")] <- 0

tacsatM$SI_STATE[which(tacsatM$SI_STATE == "f")] <- 1

#Refromat Data and back up.

tacsatM <- formatTacsat(tacsatM)

eflalo <- formatEflalo(eflaloM)

tacsatBackup4 <- tacsatM

#select only fishing pings

tacsatM <- subset(tacsatM, SI_STATE == 1)

#Split landings amongst fishing pings.

tacsatEflalo <-

splitAmongPings(tacsat=tacsatM,eflalo=eflalo,variable="all",level="trip",co

nserve=FALSE)

#add columns ####

tacsatEflalo$Csquare <-

CSquare(tacsatEflalo$SI_LONG,tacsatEflalo$SI_LATI,degrees=0.01)

tacsatEflalo$Year <- year(tacsatEflalo$SI_DATIM)

tacsatEflalo$Month <- month(tacsatEflalo$SI_DATIM)

#reorder columns

tacsatEflalo1 <- tacsatEflalo[,c("VE_NAME", "VE_REF","SI_DATE", "SI_TIME",

"SI_LONG", "SI_LATI", "SI_SP", "SI_HE", "source", "poll_id",

"received_date", "SI_DATIM", "INTV", "FT_REF", "LE_GEAR", "LE_CDAT",

"VE_COU", "Troll", "SI_STATE", "LE_KG_TOT", "LE_EURO_TOT")]

save(tacsatEflalo,file= "working/TacsatEflalo.RData")

print("Dispatching landings completed")

Create Objects to Map ---

#Individual Vessels

ves1te <- subset(tacsatEflalo1, VE_REF == "1001")

ves2te <- subset(tacsatEflalo1, VE_REF == "1002")

ves3te <- subset(tacsatEflalo1, VE_REF == "1003")

ves4te <- subset(tacsatEflalo1, VE_REF == "1004")

ves5te <- subset(tacsatEflalo1, VE_REF == "1005")

ves6te <- subset(tacsatEflalo1, VE_REF == "1006")

ves7te <- subset(tacsatEflalo1, VE_REF == "1007")

vesselsTE <- list(ves1te, ves2te, ves3te, ves4te, ves5te, ves6te, ves7te)

names(vesselsTE) <- c("vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7")

#Gears

FT_Lines <- subset(tacsatEflalo1, LE_GEAR == "Line")

FT_Pot <- subset(tacsatEflalo1, LE_GEAR == "Pot")

FT_Seines <- subset(tacsatEflalo1, LE_GEAR == "B.S.Net")

FT_Gillnet <- subset(tacsatEflalo1, LE_GEAR == "Gill Net")

gearz <- list(FT_Lines, FT_Pot, FT_Seines, FT_Gillnet)

Make rasters --

#various parameters for use in making raster and png plot

xmax <- -62

xmin <- -62.42

ymax <- 16.92

ymin <- 16.62

xlim <- c(xmin, xmax)

ylim <- c(ymin, ymax)

#function to make rasters by vessel ####

make_Vess_Raster <- function(ivms){

 vNam = unique(ivms$VE_REF)

 filNam = paste("outputs/", vNam, sep = "")

 lats = data.frame(ivms[,6]) # latitude column

 longs = data.frame (ivms [,5]) # longditude column

 coords = data.frame (cbind(longs,lats))

 emptyRaster = raster()

 extent(emptyRaster)= as.numeric(paste(c(xlim,ylim), sep=","))

 res(emptyRaster) = 0.01

 #projection(emptyRaster) = CRS("+proj=longlat +datum=WGS84")

 try({

 agg.raster = rasterize(coords, emptyRaster, ivms$LE_EURO_TOT, fun =

"sum")#, background = NA, mask = FALSE, update = FALSE, datatype=

"INT2U")#background = NA or 0

#mask to eez/ukcs

 agg.raster = mask(agg.raster, mniEEZ)

 writeRaster(agg.raster, filename= paste("outputs/", vNam, ".tif", sep =

""), format="GTiff", overwrite=TRUE)

 })

}

lapply(vesselsTE, make_Vess_Raster)

#Function to make LPUE by vessel

LPUE <- function(ivms){

 vNam <- unique(ivms$VE_REF)

 filNam <- paste("outputs/", vNam, sep = "")

 lats <- data.frame(ivms[,6]) # latitude column

 longs <- data.frame (ivms [,5]) # longditude column

 coords <- data.frame (cbind(longs,lats))

 emptyRaster <- raster()

 extent(emptyRaster)<- as.numeric(paste(c(xlim,ylim), sep=","))

 res(emptyRaster) <- 0.01

 #projection(emptyRaster) <- CRS("+proj=longlat +datum=WGS84")

 try({

 agg.raster <- rasterize(coords, emptyRaster, ivms$LE_EURO_TOT, fun =

"sum", background = NA, mask = FALSE, update = FALSE, datatype=

"INT2U")#background = NA or 0

 totEffort = length(unique(ivms$FT_REF))

 agg.raster2 <- calc(agg.raster, fun = function(x){x / totEffort})

 #mask to eez/ukcs

 agg.raster2 <- mask(agg.raster2, mniEEZ)

 writeRaster(agg.raster2, filename= paste("outputs/", vNam, "_LPUE.tif",

sep = ""), format="GTiff", overwrite=TRUE)

 })

}

lapply(vesselsTE, LPUE)

Function to make rasters by gear ####

make_Gear_Raster <- function(ivms){

 vNam <- unique(ivms$LE_GEAR)

 lats <- data.frame(ivms[,6])

 longs <- data.frame (ivms [,5])

 coords <- data.frame (cbind(longs,lats))

 emptyRaster <- raster()

 extent(emptyRaster)<- as.numeric(paste(c(xlim,ylim), sep=","))

 res(emptyRaster) <- 0.01

 #projection(emptyRaster) <- CRS("+proj=longlat +datum=WGS84")

 filNam <- paste("outputs/", vNam, sep = "")

 try({agg.raster <- rasterize(coords, emptyRaster, ivms$LE_EURO_TOT, fun =

"sum", background = NA, mask = FALSE, update = FALSE, datatype=

"INT2U")#background = NA or 0

 #mask to eez/ukcs

 agg.raster <- mask(agg.raster, mniEEZ)

 writeRaster(agg.raster, filename= paste(filNam,".tif", sep = ""),

format="GTiff", overwrite=TRUE)

 })

 }

lapply(gearz, make_Gear_Raster)

#Function to make LPUE by vessel

LPUE_gear <- function(ivms){

 vNam <- unique(ivms$LE_GEAR)

 filNam <- paste("outputs/", vNam, sep = "")

 lats <- data.frame(ivms[,6]) # latitude column

 longs <- data.frame (ivms [,5]) # longditude column

 coords <- data.frame (cbind(longs,lats))

 emptyRaster <- raster()

 extent(emptyRaster)<- as.numeric(paste(c(xlim,ylim), sep=","))

 res(emptyRaster) <- 0.01

 #projection(emptyRaster) <- CRS("+proj=longlat +datum=WGS84")

 try({

 agg.raster <- rasterize(coords, emptyRaster, ivms$LE_EURO_TOT, fun =

sum, background = NA, mask = FALSE, update = FALSE, datatype=

"INT2U")#background = NA or 0

 totEffort = length(unique(ivms$FT_REF))

 agg.raster2 <- calc(agg.raster, fun = function(x){x / totEffort})

 #mask to eez/ukcs

 agg.raster2 <- mask(agg.raster2, mniEEZ)

 writeRaster(agg.raster2, filename= paste("outputs/", vNam, "_LPUE.tif",

sep = ""), format="GTiff", overwrite=TRUE)

 })

}

lapply(gearz, LPUE_gear)

Total value Raster ####

lats <- data.frame(tacsatEflalo1[,6])

longs <- data.frame (tacsatEflalo1 [,5])

coords <- data.frame (cbind(longs,lats))

emptyRaster <- raster()

extent(emptyRaster)<- as.numeric(paste(c(xlim,ylim), sep=","))

res(emptyRaster) <- 0.01

#projection(emptyRaster) <- CRS("+proj=longlat +datum=WGS84")

TotVraster <- rasterize(coords, emptyRaster, tacsatEflalo1$LE_EURO_TOT, fun

= sum, background = NA, mask = FALSE, update = FALSE, datatype=

"INT2U")#background = NA or 0

#mask to eez/ukcs

TotVraster <- mask(TotVraster, mniEEZ)

writeRaster(TotVraster, filename= "outputs/All.tif", format="GTiff",

overwrite=TRUE)

#Total Value Per Unit Effort ####

totEffort = length(unique(tacsatEflalo1$FT_REF))

TotLPUE <- calc(TotVraster, fun = function(x){x / totEffort})

writeRaster(TotLPUE, filename = "outputs/iVMS_Total_LPUE.tif", format =

"GTiff", overwrite = T)

print("Aggregated rasters created in output folder!")

Plots ---

#clip that bathy shapefile because its taking sooo damn long to plot

b <- bbox(mni)

b[1,1] <- b[1,1]-0.5

b[2,1] <- b[2,1]-0.5

bb <- bbox(t(b))

gClip <- function(shp, bb){

 if(class(bb) == "matrix") b_poly <- as(extent(as.vector(t(bb))),

"SpatialPolygons")

 else b_poly <- as(extent(bb), "SpatialPolygons")

 gIntersection(shp, b_poly, byid = T)

}

bathyClipped <- gClip(bathy, bb)

#object lists for sp.layout

landMap <- list("sp.polygons", mni, fill = "lightgreen", lwd = 0.5, border

= "light grey")

ez <- list("sp.polygons", mniEEZ, fill = "transparent", border = "red", lwd

= 0.5)

bathym <- list("sp.lines", bathyClipped, col = "lightblue", lwd = 0.5,

first = TRUE) #, first = TRUE

maplist <- list(bathym, ez, landMap)

#Read rasters layers into Raster Stack

layerz <- list.files("outputs", pattern="tif$", full.names=TRUE)

layerss <- stack(layerz)

layerss

#Select only total layers (leave out LPUE and empties(gillnet and vesse))

Totlyrz<- layerss[[c(1,3,7,9, 11)]]

#MMake lpue multi plots for report

layerzLPUE <- list.files("outputs", pattern="LPUE.tif$", full.names=TRUE)

LPUElyrz <- stack(layerzLPUE)

LPUElyrz

#Get rid of empty layers (gillnets and vX1004)

LPUElyrz <- LPUElyrz[[c(-3, -7)]]

names(Totlyrz)

names(LPUElyrz)

names(LPUElyrz) <- c("Vessel_X1002", "Vessel_X1003", "Vessel_X1005",

"Vessel_X1007", "SeineNet", "All", "Lines", "Pots")

Individual Plots --

x11()

hist(Totlyrz)

#no common scale suitable

#Color Ramp

col <- colorRampPalette(c("yellow", "orange", "red", "dark red"))

#remved from first try line below

#Loop through layers and create png maps

for(i in 1:nlayers(Totlyrz)){

 FilNam <- names(Totlyrz[[i]])

 max <- round(max(maxValue((Totlyrz[[i]]))))

 try({png(filename = paste("outputs/", FilNam, ".png", sep =""))

 main = paste(FilNam, " total landed value linked to iVMS data", sep =

"")

 sub = "EC$"

 p <- spplot(Totlyrz[[i]], alpha.regions = 0.5,

 sp.layout= maplist,

 xlim = xlim,

 ylim= ylim,

 margin = F, main = main, sub = sub,

 col.regions = col,

 at = pretty(0:max, 20),

 colorkey = list(space="bottom", width = 0.9, height = 0.9)

)

 plot(p)

 })

 dev.off()

}

Multipanel plot All vessel landings -------------------------------------

Multipanel plot of All vessels total landings on same scale

main = "All iVMS linked landings"

max <- round(max(maxValue(Totlyrz)))

png(filename = "AllLandingsMultiPanel.png")

p <- spplot(Totlyrz, c("X1002", "X1003", "X1005", "X1007"),

 names.attr = c("Vessel X1002", "Vessel X1003", "Vessel X1005",

"Vessel X1007"),

 pretty = TRUE, alpha.regions = 0.6,

 as.table = TRUE,

 sp.layout = maplist,

 xlim = xlim,

 ylim = ylim,

 margin = F,

 main = main,

 sub = sub,

 col.regions = col,

 at = pretty(0:max, 80),

 colorkey = list(space="bottom", width = 0.9, height = 0.9))

plot(p)

dev.off()

LPUE Plots --

-

subtitle <- "LPUE EC$"

#function to make single LPUE Maps

make_maps <- function(x){

 FilNam = names(x)

 png(filename = paste("outputs/", FilNam, ".png", sep =""))

 main = paste(FilNam, " iVMS linked landings value per unit effort", sep

= "")

 p <- spplot(x, pretty = TRUE, alpha.regions = 0.6,

 as.table = TRUE,

 sp.layout = maplist,

 xlim = xlim,

 ylim = ylim,

 margin = F,

 main = main,

 sub = subtitle,

 col.regions = col,

 colorkey = list(space="bottom", width = 1.5, height = 1,

axis.line = list(alpha = 0),labels = list(at = seq(0.5, length(colbreaks) -

0.5), labels = colbreaks))

)

 plot(p)

 dev.off()

}

#lapply(cutLPUE, make_maps)

#Couldn't get function to work? Poor practise, but here's a loop instead.

#Color Ramp

for(i in 1 : nlayers(LPUElyrz)){

 FilNam <- names(LPUElyrz[[i]])

 max <- round(maxValue((LPUElyrz[[i]])))

 png(filename = paste("outputs/", FilNam, "_LPUE.png", sep =""))

 main = paste(FilNam, " iVMS linked Landings per Unit Effort", sep = "")

 subtitle = "EC$"

 p <- spplot(LPUElyrz[[i]], alpha.regions = 0.6,

 as.table = TRUE,

 sp.layout= maplist,

 xlim = xlim,

 ylim= ylim,

 margin = F, main = main, sub = subtitle,

 col.regions = col,

 at = pretty(0:max, 20),

 colorkey = list(space="bottom", width = 0.9, height = 0.9))

 plot(p)

 dev.off()

}

Multi PLots for Report --

#check ranges for scaling

X11()

hist(LPUElyrz)

summary(LPUElyrz)

Breaks

colbreaks <- c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200)

#covert to factor for better scaling of colorRamps

make_Cuts <- function(LPUEx){

 LPUEx <- cut(LPUEx, breaks = c(colbreaks, Inf))

}

cutLPUE <- make_Cuts(LPUElyrz)

names(cutLPUE)

summary(cutLPUE)

x11()

hist(cutLPUE)

#titles

main <- "Landings Per Unit Effort"

sub <- "LPUE EC$"

names(cutLPUE)

#write png and plot

#plots of lpue by vessel

png(filename = "outputs/LPUEvessel.png")

p <- spplot(cutLPUE, c("Vessel_X1002", "Vessel_X1003", "Vessel_X1005",

"Vessel_X1007"),

 names.attr = c("Vessel X1002", "Vessel X1003", "Vessel X1005",

"Vessel X1007"),

 alpha.regions = 0.6,

 as.table = TRUE,

 sp.layout = maplist,

 xlim = xlim,

 ylim = ylim,

 margin = F,

 main = main,

 sub = sub,

 col.regions = col,

 at = c(1:14),

 colorkey = list(space="bottom", height = 0.9, width = 0.9,

labels = list(labels = colbreaks, at = seq(0, length(colbreaks) +0.5)))

)

plot(p)

dev.off()

plots of lpue by gear type

png(filename = "outputs/LPUEgear.png")

p <- spplot(cutLPUE, c("SeineNet", "Pots", "Lines", "All"),

 names.attr = c("Beach Seine Net", "Pot", "Lines", "All"),

 pretty = TRUE, alpha.regions = 0.6,

 as.table = TRUE,

 sp.layout = maplist,

 xlim = xlim,

 ylim = ylim,

 margin = F,

 main = main,

 sub = sub,

 col.regions = col,

 at = c(1:14),

 colorkey = list(space="bottom", height = 0.9, width = 0.9,

labels = list(labels = colbreaks, at = seq(0, length(colbreaks) +0.5)))

)

plot(p)

dev.off()

Write out points shapefile --

#write shapefile of points

lats <- data.frame(tacsatEflalo1[,6])

longs <- data.frame(tacsatEflalo1[,5])

coords <- data.frame(cbind(longs,lats))

pts <- SpatialPoints(coords, proj4string = CRS("+proj=longlat

+ellps=WGS84"))

atts <- SpatialPointsDataFrame(pts, tacsatEflalo1, coords.nrs = numeric(0),

 proj4string = CRS("+proj=longlat

+ellps=WGS84"), match.ID = TRUE)

tacsatEflalo1$SI_DATIM <- as.character(tacsatEflalo1$SI_DATIM)

writePointsShape(atts, "outputs/TacsatEfaflo")

Write tables for report ---

#Get trip count

trips_count <- function(x) {

 y <- length(unique(x$FT_REF))

 return(y)

}

tripCountgear <- lapply(gearz, trips_count)

#Sum Hrs Fishing

sum_hrs <- function(x){

 round(sum(x$INTV) / 60)

}

sumHrsGear <- lapply(gearz, sum_hrs)

#Percentage of total recorded landings

perc_tot <- function(x){

 a <- round(sum(x$LE_EURO_TOT) /sum(subset(MNIlandings, LE_GEAR ==

unique(x$LE_GEAR))$LE_EURO_ALL)*100)

 return(a)

}

pTotLan <- lapply(gearz, perc_tot)

pTotLan

CovByGear <- as.data.frame(cbind(tripCountgear, sumHrsGear, pTotLan))

names(CovByGear) <- c("Number of fishing days", "Fishing hrs", "% of total

landings")

row.names(CovByGear) <- c("Lines", "Pot", "Seines", "Gillnet")

CovMat <- as.matrix(CovByGear)

#write html tables

#data coverage by gear

DataCovGear <- tableHTML(CovMat, width = c(80,80,80,80), theme =

"scientific")

print(DataCovGear, type = "html")

#operation times, trips, landings linked

names(operational) <- c("Start", "Finish", "Days iVMS operational", "Days

vessel active", "Active days linked to landings", "Vessel activity

covered")

row.names(operational) <- c("Vessel X1001", "Vessel X1002", "Vessel X1003",

"Vessel X1004", "Vessel X1005", "Vessel X1006", "Vessel X1007")

DataColOp <- tableHTML(operational, width = c(120, 100, 100,60,60,90,60),

theme = "scientific")

print(DataColOp, type = "html")

#tacsat cleaning

remrecsTacsat <- data.frame(remrecsTacsat)

remrecsTacsat$percentage <-

round(as.numeric(as.character(remrecsTacsat$percentage)), digits = 2)

TecRemrecBU <- remrecsTacsat

names(remrecsTacsat) <- c("Rows remaining", "% of total")

remrecsTacsat[1,2] <- 100

remrecsTacsat

TacClean <- tableHTML(remrecsTacsat, theme = "scientific")

print(TacClean, type = "html")

Speed Array

speedarr[1,1] <- "Beach Seine Net"

rownames(speedarr) <- speedarr$LE_GEAR

speedarr$LE_GEAR <- NULL

speedarr1 <- tableHTML(speedarr, theme = "scientific", headers = c("min

speed", "max speed"), caption = "Fishing speed thresholds used for each

gear analysed")

print(speedarr1, type = "html")

#Print summaries to console

print("iVMS and landings data is cleaned, linked and aggregated")

print(paste("DaysiVMSworking = ", sum(operational$DaysiVMSOperating), sep =

" "))

print(paste("Possible fishing days =", sum(operational$VesselActive), sep

=" "))

print(paste("Days with corresponding landings data = ",

sum(an(operational$landingsLinkedDays))), sep = "")

Appendix 2

Fishing speed threshold identification

Figure 3 Histogram of speed frequencies for different gear types

Appendix 3

Figure 4 Landings per unit effort (average landed value per day fishing) by vessel

Figure 5 Landings per unit effort (average landed value per day) by gear type.

Figure 6 Total landed value of data, by vessel

	Montserrat iVMS data: results of integration with landings data
	Introduction
	iVMS data
	Landings Data
	Method and tools
	Results
	Discussion/Limitations
	Recommendations/Next steps
	References
	Appendix 1
	Appendix 2
	Appendix 3

