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Summary 
 
Peatland restoration is a significant target of a number of key policy areas within all four UK 
administrations. Developing cost-effective methods for monitoring key indicators of peatland 
condition, such as; vegetation cover of Sphagnum mosses, areas of bare unvegetated peat, 
soil depth and drainage, can help to inform the targeting of restoration strategies and 
establish whether efforts are successful in promoting recovery (SNH 2020). This report 
investigates the use of earth observation data for monitoring peatland condition through 
exploring whether the amount of bare peat cover can be detected in an automated process 
from very high-resolution imagery (aerial and satellite) and how this can then be scaled up to 
lower resolution satellite imagery covering a wider extent. This report outlines a framework 
for mapping bare peat which includes ways of determining the amount of imagery required to 
inform models and the best modelling approach for accurate predictions of bare peat cover 
using machine learning algorithms.  
 
Firstly, we investigated whether Very High Resolution (VHR) satellite imagery or aerial 
photography can be used to develop a methodology for automating bare peat detection. We 
compared data from Pleiades-1A satellite imagery and Aerial Photography for Great Britain 
(APGB) taken over the Peak District, UK in June 2018 and explored differences in spectral 
band and derived indices signatures between observed vegetated and non-vegetated 
regions of peat.  Thresholding rules were then developed to classify pixels of bare peat in 
the two sets of imagery.  
 
Secondly, we investigated whether the modelled bare peat from the VHR imagery could be 
used to predict bare peat cover over wider areas using low resolution Sentinel-2 optical 
imagery. The classified pixels from VHR data were aggregated to a percentage cover of 
bare peat at 10m spatial resolution. These data were used to train regression models to 
predict bare peat cover within Sentinel-2 imagery, allowing prediction over a much wider 
spatial extent. A variety of different predictor variables and machine learning algorithms were 
trialled, along with the sampling methodologies for selecting training points and the number 
of points required for an accurate prediction.  
 
The results of our first investigation showed that the APGB aerial photography displayed 
distinguishable differences between areas of vegetated and non-vegetated peat, and 
through thresholding derived indices of NDVI, Brightness, Red/Green and Red/Blue ratios 
was able to create fine-scale maps of bare peat.  However, the methodology was unable to 
distinguish the bare peat pixels using the Pleiades imagery due to overlap in the spectral 
and indices signatures when compared with vegetated pixels. In addition, for both data 
sources, using a pixel-based indices thresholding approach to classify land areas had some 
limitations, with some neighbouring pixels not meeting threshold criteria as expected, and 
thresholding rules having limited transferability to different geographical areas.  This was 
likely due to differences in atmospheric conditions, hill shade, blurriness from wind, and sun 
illumination during different flights impacting the spectral band values.  Our research 
identified several options to address these deficiencies, which could be explored to help 
improve the fine-scale mapping approach.   
 
The results of our second investigation showed that regression modelling informed by the 
fine-scale bare peat maps and Sentinel-2 imagery, successfully scaled up these predictions 
to a wider landscape, producing maps of the amount of bare peat cover per 10m pixel.  From 
our results, we recommend the following workflow (Figure 1) of how best to inform this type 
of analysis. Training the models with a range of values of bare peat cover per pixel was 
found to be key in generating accurate results, particularly in extrapolated regions. From this 
we demonstrate how Sentinel-2 imagery trained on aerial photography derived data, can be 
used to predict across large areas of the landscape the fraction of bare peat cover below 



 

 

10m2. Highest accuracy was achieved where aerial photography was spatially distributed 
across an area and contained a range of pristine and degraded peatland conditions. 
 

 

 
Figure 1: Infographic of the suggested workflow for creating bare peat maps using high-resolution 
imagery and Sentinel-2 optical imagery. 
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1 Introduction 
 
Peatlands occupy over 10% of the UK, estimated to cover an area between 46,000-
77,000km2 (Bain et al. 2011). They are areas of naturally accumulated peat formed from 
layers of decaying plant matter under water-logged conditions, with the three main types in 
UK being blanket bogs, raised bog and fen (Natural England 2010). Peatlands are important 
ecosystems for regulating climate and greenhouse gas emissions, regulating drinking water 
supply, flood prevention, and providing habitat for nationally and internationally important 
species (FAO 2020).  Statistics submitted for Article 17 2013-2018 report to meet the 
requirements of the Habitats Directive estimate 16.5% of bogs, mires and fens in the UK are 
not in good condition, with only 1.8% thought to be in good condition and 81.7% being in an 
unknown state (JNCC 2019). Human activities such as peat extraction, land use change and 
drainage activities to support agriculture or the forestry industries contribute to the 
degradation of these natural landscapes (Bain et al. 2011). Damaged peatlands can release 
carbon dioxide back into the atmosphere, adding to greenhouse gas emissions and can 
have detrimental impacts towards ecosystem function, causing a reduction in the delivery of 
key ecosystem services (Dickie et al. 2015).  
 
Assessing the state of peatlands and restoring these to good condition is therefore a key 
component for reducing greenhouse gas emissions, preserving biodiversity and habitat 
resilience. Peatland restoration is significant to a number of key policy areas and targets 
have been set within all four UK administrations as well as overarching policy targets for the 
wider UK. The majority of peatland in the UK is in Scotland, where an estimated 70% of 
blanket bog and 90% of raised bog area is damaged (SNH 2015). Scotland’s National 
Peatland Plan recognises the need for long term monitoring of sites to assess condition and 
highlights the need for knowledge on the current state of peatlands and the best practices for 
restoration (SNH 2015). It supports a major programme of peatland restoration funded by 
the Scottish Government under the Peatland ACTION restoration project and commitment to 
future support through the Scottish Rural Development programme in efforts to mitigate 
climate change and create a healthier landscape (SNH 2015). The scheme aims to help 
meet targets set by the Scottish Biodiversity Strategy Route Map in adhering to the EU 
biodiversity target of restoring at least 15% of degraded ecosystems and the 2020 Challenge 
for Scotland’s Biodiversity (Scottish Government 2015). In England, restoration is embedded 
in Defra’s 25-year Environment Plan with £10m funding dedicated to peat restoration 
projects (Defra 2018a, Defra 2018b). In Wales, schemes such as the Welsh Peatlands 
project under the Sustainable Management Scheme, are helping to meet ministerial targets 
of bringing Welsh peatlands into sustainable management by 2020 (Welsh Government 
2018). In Northern Ireland, peatlands cover around 12% of land and is the only habitat 
protected under policy to ensure representative areas of habitat are protected for the benefit 
of future generations (DAERA 2020). The UK Peatland Code is a UK-wide scheme to 
encourage the private sector to invest in peatland restoration, to aid in the goals of the UK 
Peatland Strategy set out by the IUCN Peatland Programme (IUCN 2018; SNH 2015) in 
promoting restoration as an action towards tackling climate change and promoting 
biodiversity. The UK Peatland Strategy also highlights both national and international 
policies which recognise their significance in adapting to climate change and supporting rare 
and threatened species, such as the UN Convention on Biological Diversity Aichi Biodiversity 
targets, reporting under the EU habitats directive and UN Sustainable Development goals 
(IUCN 2018). Careful monitoring of the condition of these habitats is therefore essential to 
understand their impact upon greenhouse gas emissions and maintaining peatland water, 
biodiversity and carbon (FAO 2020).  
 
Monitoring is essential to assessing the recovery condition of these vital habitats, and the 
success of restoration projects (Bonnett et al. 2009). Current peatland monitoring strategies 
have been ground based surveys such as the Phase 1 habitat surveys, National Vegetation 
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Classification (NVC), Heather Trust and Scottish Natural Heritage peat condition surveys 
and JNCC’s Common Standards Monitoring (CSM) (Bonnett et al. 2009).  These rely on 
experts to go into the field to survey indicators of condition, such as; vegetation cover of 
Sphagnum mosses, evidence of erosion or burning, areas of bare unvegetated peat, soil 
depth and drainage (SNH 2020). This can be time consuming, expensive, restricted to 
accessible sites and data can vary depending upon human error, sampling methods and 
effort and in their spatial extent. Increasingly, NGOs and peatland partnerships are moving 
towards using drone-derived data to assist in peatland monitoring strategies, providing 
imagery that can cover a much wider area than ground observations (Artz et al. 2020). Earth 
observation (EO) data provides a cost-effective rapid methodology for mapping large areas 
of the UK in real-time. EO can be used to observe types of vegetation and changes in plant 
cover and growth, as well as other environmental measures such as soil moisture 
(Copernicus Global Land Service 2019). For peatlands, bare peat is considered a visible 
indicator of peatlands in poor condition, often resulting from erosion, drying, and damage 
from overgrazing or trampling (SNH 2020). It can occur in both large expanses and small 
patches across the landscape, which can be hard to derive from satellite data at lower 
resolutions. Artz et al. (2019) used a time series of Moderate Resolution Imaging 
Spectroradiometer (MODIS) data to derive peatlands in favourable condition in Scotland, 
with random forest regression models found to give good predictive capacity of 0.915 ROC 
accuracy. Work in the region has also been carried out by Blake and Frake (2020), who 
explored classifying 10m Sentinel-2 imagery into classes of bare peat, rock, water, shadow 
and other, aggregating these predictions to a national map of area predictions for bare peat 
cover per 1km.  These studies demonstrate how bare peat can be mapped nationally up to 
10m spatial resolutions; however, this is relatively coarse when considering the number of 
small patches of bare peat in the landscape where such an approach may underestimate.  
Several studies have used high-resolution aerial photography to assess peatland condition, 
as it has been found successful at detecting fine scale changes in the landscape (Artz et al. 
2019). Williamson et al. (2018) used two high-resolution aerial images to derive the extent of 
exposed bare peat through using a Random Forest Classification (RFC) to first define areas 
of bare peat, then used these predictions to train a Random Forest Regression (RFR) model 
to derive the bare peat coverage from Sentinel-2 imagery, aggregating data to different 
levels. This methodology was able to accurately estimate the proportion of bare peat within a 
pixel, with data prepared at 40m resolution data performing the best, however this provided 
a relatively coarse estimate. Other studies such as Blake et al. (2019) used a similar 
methodology in the Cairngorms, finding this performed best when training the models using 
imagery from the same year and season as imagery used for the predictor variables. 
Although these studies have demonstrated that such an approach is possible, these have 
taken place over a relatively small area with limited suggestions to operationalising such an 
approach over a wider landscape. 
 
This study aimed to investigate methods of monitoring peatland habitat condition, building on 
previous studies using EO data and high-resolution aerial photography.This built upon the 
methodology of Williamson et al. (2018)’s study, aiming to derive a framework for deploying 
this type of habitat analysis rapidly across the landscape. Firstly, we investigated whether we 
could derive bare peat training pixels from earth observation using high-resolution imagery 
from two different sources: Pleiades-1A multispectral imagery at 2m spatial resolution 
captured daily and APGB aerial photography at 25cm and 50cm spatial resolution captured 
every 3-5 years. The study then focused upon scaling these predictions to 10m Sentinel 2 
imagery across a wider extent. This explored various aspects of the methodology to assess 
how best to sample the training datasets and trialling different combinations of predictor 
variables, machine learning algorithms and the numbers of training points to use, and their 
spatial distribution.  
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The hypotheses tested were: 
 

1. Is it possible to derive bare peat pixels from high resolution imagery? 
To investigate whether pixels of bare peat can be determined in the high-resolution 
imagery using different indices and spectral band data. This aimed to identify whether 
it is possible to automate a methodology to identify bare peat training points from both 
the Pleiades-1A and APGB imagery.  

 
2. What is the best methodology for deriving sample data? 

This aimed to determine the best sampling methodology to apply to the high-resolution 
data in order to create the training data for the regression models. Here we used 
training data from the outputs of hypothesis 1, trialling under four sampling 
methodologies;  

a. Random Sampling  
b. Equal Interval Sampling  
c. Equal Interval Sampling and filling  
d. Quantile Sampling 

 
3. Which predictors are important to include in the regression analysis? 

This explored which predictor variables were important to include in the regression 
models used to scale up the bare peat cover predictions. This was assessed through 
rerunning the regression models with different combinations of spectral, indices and 
environmental layers and evaluating which provided the most accurate predictions. 

 
4. What is the best performing machine learning technique for extrapolating the 

data? 
This tested various types of machine learning algorithms used in the regression 
analyses; Random Forest Regression (RFR), Quantile Forest Regression (QFR), 
Support Vector Machines (SVM), Bayesian Regularization of Neural Networks (BRNN) 
and Boosted Regression Trees (BRT). The performance of each model was assessed 
to determine which methodology is best for this type of assessment. 

 
5. What is the minimum number of images/training points required to make 

accurate predictions across a given extent? 
This investigated the number of images and training points derived from these required 
to train accurate regression models. Knowing this can help to determine future data 
collection, particularly in defining the number of aerial images required to derive bare 
peatland pixels in Sentinel-2 data. How these images were spatially distributed was 
also explored.  
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2 Methodology 
 
Figure 2 summarises the workflow undertaken to detect and scale up bare peat predictions. 
This was established by building upon previous work commission by DEFRA’s Earth 
Observation Centre of Excellence, conducted by CEH and the James Hutton Institute 
(Williamson et al. 2018). Here, we have further developed  R scripts by Ned Horning of the 
American Museum of Natural History (AMNH, Horning 2018) which were utilised in the 
Williamson et al. (2018) report, by adding in well-established machine learning and sampling 
approaches to increase the accuracy of these models and evaluate model performance both 
within the area where our model is trained and outside of this in extrapolated regions. 
 

 

Figure 2: Workflow for the detection of bare peat pixels in high-resolution imagery and the scaling up 
of these prediction to Sentinel Imagery, with further evaluation in extrapolated regions 

 
The Peak district in the UK was chosen as a study region due to the availability of high- and 
low-resolution imagery, with previous JNCC projects having focused upon this region. 
Blanket Bog is estimated to cover 20,838ha of the Peak District and are one of the best 
studied peatland regions in the UK (Peat District National Park 2011). The AOIs where the 
imagery was obtained are shown in Figure 3. 
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Figure 3: Area of interest in the Peak district, UK, where APGB and Pleiades imagery was obtained 
from June 2018. 

 

2.1 Data sources 
 
All data were georeferenced to British National Grid (ESPG:27700) and cropped to the area 
of interest. Data processing and transformation was conducted in R version 3.6.0 (R Core 
Team 2019), with GDAL functionality integrated through the ‘gdalUtils’ package (Asher et al. 
2018). Visual comparisons and some basic manipulation were conducted in QGIS v. 3.4.5-
Madeira (QGIS Development Team 2020). 
 

2.1.1 High-resolution imagery 
 
Two data sources were compared for providing high resolution imagery to train areas of bare 
peatland coverage.  
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Pleiades-1A 
AIRBUS Defence & Space Pleiades-1A multispectral satellite data was acquired at 2m 
spatial resolution for 2018. The satellite imagery features four spectral bands (blue, green, 
red and IR) and has an image location accuracy of 3m (CE90) without ground control points 
(Satellite Imaging Corporation 2019). Five images from the following dates and locations 
were used in the analyses: 
 

• Pleiades 27th June 2018 - latitude 53, longitude 15 

• Pleiades 28th June 2018 - latitude 54 longitude 196 

• Pleiades 28th June 2018 - latitude 54 longitude 212 

• Pleiades 25th September 2018 - latitude 53 longitude 20 

• Pleiades 28th June 2018 - latitude 54 longitude 149 
 
The Pleaides data were processed to an Analysis Ready Data (ARD) product in an Amazon 
Web Services ec2 virtual machine. The processing steps undertaken produce a 
topographically correct surface reflectance product, correcting for atmospheric effects. Due 
to the variations of elevation in the area of interest, this led to inherent distortion in the 
Pleiades data. To prepare the data for use, an orthorectification step was performed. This 
enables the topography to be accounted for and attempts to accurately remove image 
distortions. This step was implemented using the open-source Orfeo Toolbox (CNES 2020) 
suite of tools. Subsequently, they have been processed to surface reflectance using the 
Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI) software, v3.1.6 
(http://rsgislib.org/arcsi).” 
 
Aerial photography 
Aerial photography was provided by DEFRA’s APGB service as RGB aerial photography at 
25cm and Colour infrared aerial photo (CIR) at 50cm spatial resolution (Bluesky International 
2019). 2660 tiled aerial images from 2018 were used, covering a total area of approx. 
509km2. In order to include the Near Infrared band from the CIR photos in our analysis, this 
image was resampled to 25cm using a bilinear interpolation. 
 
Low-resolution imagery 
Sentinel-2 is a multispectral high-resolution imaging mission part of the European Union’s 
Copernicus Programme operated by ESA. Sentinel-2 data were processed to an Analysis 
Ready Data (ARD) product. The processing steps undertaken produce a topographically 
corrected surface reflectance product with cloud and topography masks that can be applied 
to the imagery. The ARCSI software (http://www.rsgislib.org/arcsi) was used to produce 
ARD. During the processing, the 20m image bands are sharpened to 10m through the 
application of linear regression models. This produces a final output with 10 by 10m 
multispectral bands. The 60m bands are used for atmospheric aerosol processes and 
therefore removed from the final product. This is as per the processing chain developed by 
JNCC as part of the Sentinel-2 ARD Provision Service (Jones et al. 2017). The 2018 
Sentinel-2 summer mosaic was generated using the mosaic function within RSGISLIB 
(https://www.rsgislib.org/rsgislib_imageutils.html). This function is a series of Python 
bindings that combines multiple raster datasets into a new raster dataset, optimised for 
working with a large number of raster datasets. 
 

2.1.2 Peatland boundaries 
 
A peatland boundaries layer was obtained from classified peat soil maps of England 
developed by Evans et al. (2014) and a Centre of Excellence commissioned study by 
Williamson et al. (2018).  For the purposes of this study, the peatland classifications for 
30UWE South Pennines were dissolved to create a single mask for determining the 
boundary of where peat soils were present. To account for inaccuracies associated with the 

http://rsgislib.org/arcsi
http://www.rsgislib.org/arcsi
https://www.rsgislib.org/rsgislib_imageutils.html
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peat mapping technique, as visual clues of sub-surface peat are not always reliable, the 
boundaries layer was buffered by 10m to encompass a wider extent likely to include peat 
soils.  
 

2.1.3 Variable layers 
 
The CEH 2015 Land cover map (Rowland et al. 2017) was obtained at a spatial resolution of 
25m. This was used to mask out the urban land class from the derived training points, to 
ensure no training points were sampled in urban areas. Urban areas were removed as roads 
and buildings also yield low NDVI values, which could create a source of error in our data 
when trying to obtain the bare peat pixels from our imagery. 
 
Several variables were trialled in the regression models to assess their importance in 
predicting the bare peat cover. These included products of Surface Soil Moisture (SSM) and 
Soil Water Index (SWI) generated by Copernicus’ Global Land Service (2019) at 1km spatial 
resolution obtained for 27- 28 June 2018. A roads layer was also obtained from Ordnance 
survey’s Open Roads open access data layer for the Sentinel imagery AOI (OS 2019).  
Digital Terrain Model (DTM) data at 2m spatial resolution were collected from Environment 
Agency’s Integrated Height Model (IHM) using Lidar data (Kilcoyne et al. 2017). Finally, 
climatic variables were obtained from the Met Office (2019) HadUK gridded 1km monthly 
product available through CEDA’s archive. Data trialled included monthly precipitation and 
maximum, minimum and average temperatures for June 2018. All variable layers were 
resampled to 10m spatial resolution to match that of the Sentinel-2 imagery. 
 

2.2 Deriving bare peat pixels 
 
To assess the differences which could be observed in the imagery between areas of bare 
and vegetated peat, polygons representing each of the classes were manually digitised in 
overlapping regions between the two imagery sources. This was performed through visual 
assessments of the high-resolution imagery, making comparisons with Google Earth® 
(2019) satellite imagery and Google’s publicly available photo library, shown in Figure 4. The 
photo library provided ground-truthed photographs from sites, although their publishing dates 
varied greatly and therefore may not be representative of site conditions present during the 
period our imagery was collected. Points of bare and vegetated peat were randomly 
sampled from within the digitised polygons.  
 
To observe the different spectral signatures of the bare and vegetated classes, these points 
were used to extract values from each of the spectral bands of high-resolution imagery. 
Indices were also calculated from the multispectral data, to see if these could be used to 
determine between the bare and vegetated peat pixels. The indices analysed included 
Brightness, Enhanced Vegetation Index (EVI), Green Leaf Index (GLI), Green Normalised 
Difference Vegetation Index (GNDVI), Normalized difference vegetation index (NDVI), Red-
Blue ratio (RB), Renormalized Difference Vegetation Index (RDVI), Red-Green ratio (RG) 
and Soil Adjusted Vegetation Index (SAVI). Indices such have these have been commonly 
used in studies mapping vegetation amount and cover, habitat classifications and peat 
mapping. For instance, NASA (2019) suggests an NDVI less than 0.1 to represent barren 
rock, snow or sand, with values 0.2-0.3 representing shrub and grassland habitats. Studies, 
such as Montandon and Small (2008), have also observed that the NDVI values of bare soil 
are often underestimated, with their observations displaying values averaging 0.2 and is 
highly variable (SD=0.1). Enhanced Vegetation Index has been widely used in studies as an 
indicator of vegetation and is thought to be most topographically sensitive than NDVI due to 
the added soil adjustment factor (Matsushita et al. 2007). The indices calculations are 
summarised in Appendix 1. The spectral and indices profiles of the two peat classes were 
analysed to assess whether differences in their signatures could be used to identify bare 
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peat from the APGB and Pleiades imagery sources.  The knowledge from this assessment 
was then used to aid in the development of rules to using threshold values for the indices to 
separate out the bare peat pixels. The outputs were then validated against digitised 
polygons of bare and vegetated peat and 100 randomly sampled points throughout the 
image, to give an indicative accuracy of the predicted results.  
 

 
Figure 4: Comparisons between the aerial photography (top left) and Google Earth® satellite imagery 
(top right) and user photographs. Site 1 (bottom left) shows the same site as the top two images, with 
patches of bare peat, whereas site 2 (bottom right). 

 

2.3 Bare peatland classification 
 
To evaluate how the bare peat layer created through indices thresholding compared against 
other methodologies, the predicted layer was compared to the results of a random forest 
classification model. The model was trained on points randomly sampled from the digitised 
polygons of bare and vegetated peat, taking an equal number of points from each class. The 
random forest classification model was built using the red, green, blue and near-infrared 
spectral bands as predictors, with the performance evaluated using 25% of the data. As only 
a limited number of polygons were digitised, this comparison was only drawn from three 
classified APGB tiles, however given more time this comparison could be more in depth 
covering the greater extent.   
 

2.4 Bare peat percentage cover  
 
The bare peat training data derived from the high-resolution APGB imagery at 25cm spatial 
resolution was scaled up and converted into a percentage cover of bare peat at 10m 
resolution, to match the Sentinel-2 imagery. This was performed by first aligning the high-
resolution training data and sentinel imagery, where one 10m sentinel cell containing 40x40 
cells in the high resolution 0.25m. Within each Sentinel-2 cell, cell values were then 
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extracted from the high-resolution data and summed as a percentage cover per low-
resolution pixel, demonstrated in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Grid cells in the high-resolution image (black) in comparison with the cell size in the low-
resolution image (purple), and how the bare peat pixels (brown) were compiled per cell into a 
percentage cover. 

 
This generated a 10m raster of bare peat percentage cover per cell. This provided training 
data for the regression analysis to scale up the bare peat predictions to 10m to match the 
resolution of the Seninel-2 imagery. 
 

2.5 Regression analysis 
 
The bare peat coverage data were used to derive the training data for the regression 
modelling.  Several methods of sampling these data were trialled: 
 

• Method 1: Random Sampling – The desired number of training points were randomly 
sampled from the data layer.  

• Method 2: Equal interval sampling – The training data was divided into four 
categories equally based on the minimum and maximum values, with an additional 
category for values where bare peat was absent (coverage was 0). These categories 
were 0, 0-0.25, 0.25-0.5, 0.5-0.75 and 0.75-1 percentage cover of bare peat. The 
desired number of training points were then equally divided between each category 
and attempted to be sampled from each category. The actual total points sampled 
would depend upon the number of points available within each category. 

• Method 2b – Equal interval sampling with categorised filling – This method was 
the same as Method 2, however if a category did not have the required number of 
points available, the remaining points were then divided amongst the other categories 
and sampled until the actual total points sampled met the desired number of training 
points.  

• Method 3 – Quantiled sampling of values above 0.1 - The training data was first 
separated into those where coverage was equal to 0 and those where coverage was 
greater than 0 but below 0.1%.  divided into four categories equally based on the 
minimum and maximum values 

 
As well as the sampling methodology, the number of training points used to train the 
regression models were also trialled. The models were run with 2000, 5000, 10000, 20000, 
50,000 and 100,000 target points. For each of the model runs, the training data were split; 
with 75% used to train the models and the remaining 25% used for model evaluation. The 
models were each run for 5 times and the Root Mean Square Error (RMSE) and R-squared 
metrics were used to compare their performance. The resulting predicted maps of the five 



Developing a framework for using Earth Observation imagery to monitor peatland condition 

10 

model runs were averaged for each raster cell, to alleviate variation from the random 
sampling of training points, to produce the final maps of predicted bare peat cover. 
 
Other aspects of the regression modelling were trialled in order to build a suitable framework 
for scaling up predictions. The variables used to predict the presence of bare peat in the 
Sentinel imagery were also assessed through rerunning the models with different 
combinations of layers and assessing their performance. The variable combinations were 
chosen through looking at previous studies (Williamson et al. 2018; Blake et al. 2019) and by 
producing a correlation matrix to eliminate those highly correlated with each other. This 
assessment was carried out with the ‘Corrval’ function in the ‘JNCCsdms’ package (JNCC 
2019) aiding in reducing redundancy and computational demands of the model. Each 
variable combination was run with 10,000 target training points, to see which had the greater 
predictive performance. The predictor combinations trialled are shown in Table 1. 
 
Table 1: Predictor Variable Combinations. 

Combination name Layers Included 

varstack_sbands Sentinel bands 1-10: Blue band (1), Green band (2), Red band (3), Red-
edge1 band (4), Red-edge2 band (5), Near infrared (narrow) band (6), Near 
infrared band (8), Short Wave Infrared 1 band (9), Short Wave infrared 2 
band (10) 
 

varstack_blake Blue band (1), Green band (2), Red band (3), Red-edge 1 band (4), Short 
Wave Infrared 1 band (9), Slope, NDVI 

varstack_imp DTM, Slope, Red/Green ratio, Red/Blue ratio, Brightness, Surface Soil 
Moisture (SSM) 

varstack_all All variables shown in Figure. 

varstack_RD_SWIR Red-edge 1 band (4), Red-edge 2 band (5), Red-edge 3 band (6), Short 
Wave Infrared 1 band (9), Short Wave Infrared 2 band (10), Slope, NDVI, 
Surface Soil Moisture (SSM) 
 

varstack_slope Red-edge 1 band (4), Red-edge 2 band (5), Red-edge 3 band (6), Short 
Wave Infrared 1 band (9), Short Wave Infrared 2 band (10), Slope 
 

varstack_NBR Brightness, Red/Blue ratio, Red/Green ratio, Normalized Burn Ratio (NBR), 
Surface Soil Moisture (SSM), Slope 

varstack_climMax Brightness, Red/Blue ratio, Red/Green ratio, Normalized Burn Ratio, slope, 
Monthly rainfall, maximum monthly temperature 

varstack_climAv Brightness, Red/Blue ratio, Red/Green ratio, Normalized Burn Ratio, slope, 
Monthly rainfall, average monthly temperature 

varstack_darkveg Brightness, NDVI, RG, satimgband7, satimgband2, satimgband4, slope, 
SSM, SWI, NBR, rainfall 

 
The regression algorithm was also explored, comparing how several machine learning 
algorithms performed in the models and which produced the most accurate predictions of 
bare peat cover.  Random Forests have been widely used with both classification and 
regression analyses, particularly with large datasets, with applications including habitat and 
soil classification mapping (Kilcoyne et al. 2017; Veronesi & Schillaci 2019). A random forest 
is an ensemble machine learning technique using a bagging methodology to train subsets of 
the data on multiple decision trees (Kuhn & Johnson 2013). In the regression model, the 
prediction is the mean response across all the trees (Meinshausen 2006). The models were 



Developing a framework for using Earth Observation imagery to monitor peatland condition 

11 

built in R version 3.6.0 using the ‘randomForest’ package (Breiman & Cutler 2018). Where 
training points were sampled randomly under method 1, the random forest predictions were 
bias corrected, as random forest is known to reduce the variance of regression predictors 
causing underestimation of larger values and overestimation of smaller values (Zhang & Lu 
2012; Xu 2013). Following the methodology set out by Ned Horning (2011), this was 
performed using a linear regression, adjusting the predictions of the random forest model 
with the following equation: 
 
 
 
Where CorrVal is the bias corrected prediction value, PredVal is the predicted value from the 
model, and slope and intercept are calculated through a linear model of predicted values 
compared against the training values. For the stratified sampling methodologies, this 
correction was not performed as the training data had a suitable variance where correction 
was deemed unnecessary.  
 
Quantile regression forests (QRF) are based on the random forest methodology but differ 
where they keep the value of all the observations for each node in each tree, as opposed to 
just the mean, and evaluates the empirical quantile estimates (Meinshausen 2006). 
Estimates incorporating conditional quantiles have proven to provide accurate prediction, 
however, can create bias in feature selection and prediction bias (Nguyen et al. 2014). The 
models were built in R using the ‘QRT’ R package (Meinhausen 2017) called through the 
‘caret’ wrapper package (Kuhn et al. 2020). 
 
As well as random and quantile regression forests, three other machine learning algorithms 
popular with regression analysis were trialled. These included Boosted Regression Trees 
(BRTs), Support Vector Machines (SVM) and Bayesian Regularization of Neural Networks 
(BRNN) algorithms (Veronesi & Schillaci 2019; Räsänen et al. 2019; Fukuda et al. 2013). 
Many of these or similar algorithms were similarly trialled in Rudiyanto’s (2018) analysis of 
mapping peat thickness in tropical peatlands, with quantile regression forests and random 
forests resulting in two of the three best modelling approaches outperforming continuous 
parametric models, such as Neural Networks and SVMs. These models were built using the 
‘brnn’ (Rodriguez & Gianola 2020), ‘brt’ (Zheng & Yu 2018) and ‘kernlab’ (Karatzoglou et al. 
2019) packages respectively, called through using the ‘caret’ wrapper package (Kuhn et al. 
2020). 
 

2.6 Model performance in extrapolated areas 
 
The evaluation statistics RMSE and R-squared were used to assess at how well the models 
performed against the test dataset, within our initial training data region. To assess how well 
they predicted bare peat cover in regions outside of the training region, APGB imagery from 
the same time period were also obtained for two additional areas, shown in Figure 6. This 
assessment aimed to inform the practicalities of the scaling approach, to see if one area of 
aerial photography was sufficient, or whether additional areas would be required in order to 
produce an accurate map of bare peat coverage. 
 
The performance in the extrapolated areas was assessed by further digitising bare and 
vegetated peat polygons in the areas ‘Eval1 and ‘Eval2, given a value of 1 was where bare 
peat was present and 0 where peat soils were vegetated. The polygons were then used to 
extract values from the predicted bare peat cover output by the models. A threshold of 5% 
cover was used to classify the predicted values, with values above 5% representing the 
presence of bare peat. A confusion matrix comparing the polygon dataset and the predicted 
bare peat absence/presence was then generated. This showed how well the model was able 
to predict cells where bare peat was present.  
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Figure 6: The areas displaying where APGB imagery tiles were obtained to assess the extrapolated 
model predictions across the Sentinel-2 image, derived from training points within the APGB training 
area. 

 
As well as looking at the extrapolated predictions for presence and absence of bare peat, we 
wanted to assess the values of bare peat cover which were being generated. For this, 
several tiles where bare peat was clearly present from the aerial photography, were 
thresholded as per the training area methodology outlined in Section 2.2, to identify the bare 
peat pixels. These were then scaled up to give a percentage cover of bare peat at 10m 
resolution, which were then used to further evaluate the model predictions in the 
extrapolated regions.   
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2.7 Further experimenting of improving predictions 
 
Further testing was carried out to see whether the predictions improved locally when trained 
on a greater number of tiles from within a spatial range, and overall if predictions improved 
across the whole area of interest when trained on data covering a range of spatial 
distributions. Several zones from within each of the Training, Eval1 and Eval2 areas were 
selected where bare peat was clearly seen in the aerial photography, with each zone made 
up of between one and four 1km2 tiles.  
 
The zones are shown in Figure 7, and regression models were trained with data from: 
 

- Eval 1 Zone 1 – 4 x 1km2 tiles 
- Eval 1 Zone 3 – 1 km2 tile 
- Eval 1 Zone 1 & 3 – 5 x 1km2 tiles 
- Eval 1 Zone 1 & 3 and Eval 2 Zone 2 – 7 x 1km2 tiles 
- Eval 1 Zone 1 & 3 and Eval 2 Zone 2 & 3 – 9 x 1km2 tiles 
- Eval 1 Zone 1 & 3 and Eval 2 Zone 2, 3 & 4 – 10 x 1km2 tiles 
- Eval 1 Zone 1 & 3 and Eval 2 Zone 2, 3 & 4 and Training Zone 1 – 12 x 1km2 tiles 
- Eval 1, Eval 2 and Training areas -18 tiles in total: 8 x 1km2 tiles from Training area, 5 

x1km2 tiles from Eval 1 and 5 x 1km2 tiles from Eval2.  
 

The results were assessed using 2000, 5000 and 10,000 training points sampled by equal 
intervals will category filling (method 2b). The models were also run with all available training 
data created from the training area and two additional areas Eval 1 and Eval 2 to see if 
overall this produced a higher performing model than that of a smaller sample across the 
three areas. 
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Figure 7: The model extents used to examine reach of the predictions using training data from Eval1. 
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3 Results and Discussion 
 

3.1 Deriving bare peat pixels from the high-resolution imagery 
 
The bare and vegetated peat classes demonstrated different responses between the APGB 
aerial photography and the Pleiades imagery. Figure 8 displays significant difference 
between the imagery sources, with a significant difference between the means of 54.3 in 
their red bands (t=199.1, p=<2.2e-16) and -56.6 in their near-infrared bands  
(t=-74.9, p=<2.2e-16). The reflectance values in the APGB imagery had higher mean values 
and greater variance within the red, blue and green bands in comparison to the Pleiades 
imagery. Only the near-infrared band demonstrated a higher mean value in the Pleiades 
data. Some of the differences in spectral values may be due to where the sensors are 
capturing the data, with the Pleiades data captured further from the earth’s surface than the 
aerial photography requiring pre-processing steps to atmospherically correct the imagery. 
However, the APGB imagery being captured within the atmosphere means variation may 
arise from weather conditions during flights. These results suggest that values associated 
with these classes may not be comparable between the aerial and satellite derived data. 
 

Figure 8: Spectral profiling of bare and vegetated peat training points from the APGB Aerial Imagery 
(left) and Pleiades Imagery (right). 

 
The boxplots shown in Figures 9 to 12 display graphically the differences between the areas 
of bare and vegetated peat from the two sources of imagery, with the bold line within the box 
denoting the mean, the upper and lower edges of the box display the upper and lower 
quartile and the dots displaying outliers. In the APGB imagery, the spectral signature shown 
in Figure 9 demonstrates greatest differentiation between bare and vegetated peat pixels in 
the near-infrared band, significant increasing where vegetation was present (t=78.6, 
p=<2.2e-16). A significant increase with vegetation is also apparent in the green band 
(t=12.8, p=<2.2e-16). 
 
In the Pleiades imagery, the vegetated pixels were significantly higher values in all the bands 
compared with the bare peat pixels (p=<2.2e-16). Like the APGB imagery, the near-infrared 
band had the greatest difference between the vegetated and bare peat classes, with a mean 
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difference of 114.4 (t=93.8, p=<2.2e-16), highlighting its importance in both data sources to 
differentiating between the two classes. 
 

Figure 9: The spectral profile of the APGB imagery for bare and vegetated peat soils. 
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Figure 10: The spectral profiles of the Pleiades imagery for bare and vegetated peat soils. 
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Figure 11: The indices profile of the APGB imagery for bare and vegetated peat soils. 
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Figure 12: The indices profile of the Pleiades imagery for bare and vegetated peat soils. 
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Similarly, there were significant differences between the indices profiles shown with the 
different imagery sources, described in Figure 11 and Figure 12. Overall, the indices were 
significantly correlated between the two imagery sources demonstrating similar trends in 
their distributions (SAVI: Pearson’s correlation 0.9, t=118.2, p=<2.2e-16). However, NDVI 
displayed significantly greater values in the Pleiades imagery when compared with the 
APGB imagery (mean diff=0.51, t=424.9, p=<2.2e-16).  
 
In the Pleiades imagery, a paired t-test of NDVI values showed a significant difference of 
0.15 between the vegetated and bare peat classes (t=103.8, p=<2.2e-16). However, 
examination of the NDVI layer did not show any discernible pattern to distinctly separate out 
the regions of bare peat visible in the imagery,  demonstrated in Figure 13.This would 
suggest that although this has shown to help to determine bare soil in previous studies from 
remote sensing imagery, patterns with bare peat may be harder to distinguish in this type of 
imagery. EVI, RNDVI and GNDVI also displayed similar differences between the bare and 
vegetated classes, although similarly these layers failed to display a distinguishable 
threshold between bare peat and vegetated peat pixels. The brightness index also 
demonstrated a significant difference between the two classes with a mean difference of 
12.0 (t=52.2, p=<2.2e-16). The narrower data ranges and no overlap in the interquartile 
ranges of the bare and vegetated classes may indicate its suitability to aid in distinguishing 
between the two classes in the Pleiades data. 
 

 
Figure 13: Eroded peatland seen in the Pleiades imagery (left) and compared to the calculated NDVI 
value (right). 

 
The Pleiades imagery did not demonstrate a discernible difference in NDVI between 
vegetated and bare peat pixels. There were some significant differences displayed between 
the classes, however none of the indices alone seemed able to separate out the bare and 
vegetated peat in the imagery, showing overlap between class values which would be 
difficult to separate through thresholding. Combinations of these and the spectral bands 
could be further explored to determine if thresholding rules for bare peat pixels could be 
established with the Pleiades imagery.  
 
The mean difference in NDVI between the vegetated and bare classes was greater and 
more distinct in the APGB data in comparison to the Pleiades data, with less overlapping 
values observed between the different peat classes. The APGB imagery displayed greater 
correlation visually between NDVI values and areas of bare peatland, shown in Figure 14. 
Figure 11 demonstrates that most bare peat pixels tended to have low NDVI values below 0. 
The paired t-test showed a significant difference between the means of the vegetated and 
bare peat classes of 0.24 (t=98.7, p=<2.2e-16). As with the Pleiades imagery, the APGB 
imagery also displayed significantly higher Red-Green values with the bare peat class (t-
test=-83.5, p=<2.2e-16). The Red-green values displayed no overlap in their interquartile 
ranges with the majority of the vegetated class having values below 1.0 and the bare class 
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with values greater than 1.0. Similarly, the brightness index again showed little difference in 
the APGB data with only a slight significant difference between the means of the vegetated 
and bare pixels of -1.4 (t=-2.8, p=0.06). 
 

Figure 14: NDVI threshold comparison with the APGB aerial photography. 

 
The significant differences displayed with the Red/Green ratio and NDVI in the APGB 
imagery were examined for their use in automating a method of identifying the bare peat 
pixels. The NDVI values however displayed similar values in both bare peat pixels and hill 
shaded areas in the imagery. By extracting points from two tiles where the shading was 
particularly dominant, brightness could further help to separate the classes. Therefore, a 
thresholding rule proved possible to determine between the shadow pixels (where brightness 
values were below 0) and rocky, non-peat pixels (where brightness values were above 1), 
such as paths, which have similar NDVI values to bare peat. A combination of these layers 
could therefore be used to derive training data from the APGB imagery for the classification 
model using the following threshold rules: 
 

1. Bare peat: Brightness below 100, NDVI less than 0, RB greater than 1.25, RG 
greater than 1 

2. Vegetated peat: Brightness below 120, NDVI greater than 0, RB greater than 1.25, 
RG less than 1.1 

3. Rock: Brightness greater than 120, RB greater than 1 and RG greater than 0.99 
4. Shade: RG less than 0.9, Brightness less than 60 and RB less than 1 

 
The class distinction present with the APGB indices but not present in those indices derived 
from Pleiades imagery is evident by there being notably less overlap between class ranges. 
This could be due to the relatively higher variance in the near-infrared band of the Pleiades 
data, and greater differences seen between the red and near-infrared bands, both of which 
were used in several of the indices calculations.  
 
Validation against the digitised polygons demonstrated an accuracy of 83.81% (P=<2.2e-16) 
with 95% confidence intervals of 83.73% and 83.9%. The validation method against points 
created through visual assessments of the data is inherently bias towards larger patches of 
bare peat clearly visible in the imagery and spatially biased in its distribution. However, this 
does provide an indicative accuracy rating which suggests this method to be effective at 
detecting bare peat. Validation against 100 randomly sampled points also provided similar 
results with 89.8% accuracy assessed. However, the majority of these points fell within 
vegetated regions, with only 8% found within small patches of bare peat and of these none 
gave a positive prediction of bare peat.   
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3.1.2 Bare peat thresholding results 
 
The results of the indices thresholding to derive bare peat is shown in Figure 15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: The images show how the bare peat training data was derived from the APGB aerial 
photography (top), classified into bare peat pixels using indices thresholds (middle), and then scaled 
to a percentage cover of bare peat at 10m pixels (bottom). 
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Visual comparisons show close alignment between the areas of bare peat in the aerial 
photography and the determined bare peat layer created through the thresholding rule, 
shown in Figure 15. Some uncertainty is introduced where patches of bare peat are not fully 
picked up in the thresholding processes and so training data may be underestimating the 
amount of bare peat. Similarly, as this is a pixel-based approach, slight variations between 
neighbouring pixel values may mean within patches some pixels of bare peat are missed 
due to their values falling outside of the thresholding range. Further methodologies of object-
based classification alongside indices thresholding may be able to overcome this and 
provide a more accurate training classifier. Uncertainty is also introduced when scaling up to 
10m resolution, as this assumed that the bare peat coverage in each 25cm cell of the 
training data layer is 100%, where, in actuality, this may not be the case.   
 
The performance of the derived bare peat layer through thresholding was examined against 
a random forest classification, to see how the automated methodology compared with other 
common methods. The random forest classification informed by digitised bare peat 
polygons, demonstrated a model accuracy of 97.55% with a user accuracy of 92.96% for the 
bare peat class. Out of the four spectral bands tested the NIR band was found to have the 
greatest importance in determining the model predictions (Gini imp. 147732.82). The 
classified tiles showed visual similarity with the classification derived from our thresholding 
methodology, shown in Figure 16, drawing out similar bare peat pixels. 
 

Figure 16: Comparison of the APGB aerial photography tile SE0500 (left) with the thresholded image 
(middle) and random forest classification prediction (right). 

 

3.2 Regression model methodology to upscale bare peat 
coverage to Sentinel-2 

 

3.2.1 What is the best methodology for deriving sample data? 
 
The bare peat training data were scaled up from the high-resolution imagery to a percentage 
cover per sentinel-2 pixel, shown in Figure 15. Values ranged from 0% to 100% bare cover, 
the distribution of which is shown in Figure 17. The training area covered 494km2 with the 
majority of data values falling below 5% of bare peat cover. The methodology for sampling 
the training data greatly influenced the range of values being used to train the models and 
the resulting range of predicted cover values.  
 
Where points were sampled randomly under method 1, this led to underprediction where the 
training data were trained and tested against very low cover values, resulting in predictions 
with a vastly lower range of 0 – 40% cover compared with the training data. When the output 
predictions were corrected, the range of values still suggested underestimation of the bare 
peat, with a maximum cover value of 42%.   
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Figure 17: A histogram of the distribution of bare peat coverage training data 

 
Methodologies 2, 2b and 3 aimed to sample a greater distribution of values within the 
training data, reducing the overinclusion of 0-5% coverage. The results of all four 
methodologies are shown below in Table 2, modelled with 10,000 target training points using 
all the variables and a Random Forest (RF) algorithm, with RFC denoting where randomised 
results have been corrected. 
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Table 2: A comparison of the different sampling methodologies. 

Method 1 – Random 2 – Equal 
interval 

2b – Equal interval 
with category 
filling 

3 – Quantiled 
sampling of 
values above 0.1 

Max tries 5 - 5 5 
 

Target training points 10000 - 10000 10000 10000 

Training points 7500 - 5263 7500 7500 

Test points 2500 - 1756 2500 2500 

Best RMSE model  RF4 - RF1 RF1 RF5 

Best RMSE value 0.035 - 0.116 0.109 0.088 

Best R-squared model RF3 - RF1 RF1 RF3 

Best R-squared value 0.408 - 0.75 0.747 0.534 

Model results RF RFC RF RF RF 

Mean RF RMSE 0.037 - 0.117 0.111 0.089 

Eval1 RMSE 0.054 - 0.15 0.135 0.116 

Eval1 R-squared 0.152 - 0.057 0.094 0.072 

Eval1 P/A Accuracy 0.497 0.512 0.610 0.631 0.626 

Eval2 RMSE 0.04 - 0.147 0.125 0.106 

Eval2 R-squared 0.01 - 0.016 0.028 0.028 

Eval2 P/A Accuracy 0.525 0.468 0.563 0.570 0.563 

Mean P/A Accuracy 0.511 0.490 0.587 0.600 0.594 

 
The results demonstrated that, overall, the RMSE performance metrics were small 
suggesting good fit to the observed test data. The random sampling methodology had the 
lowest RMSE performance scores against the test datasets both within the training and 
extrapolated areas (Eval1 and Eval2), which may be due to the large number of low values 
being assessed in the test datasets in all three areas. The R-squared results would suggest 
that within the training area, the equal interval stratified sampling methods 2 and 2b perform 
much better than the other two methodologies at accounting for the variance in the observed 
data and fit the regression line more closely. We also see these methods showing greater 
accuracy within the extrapolated areas when looking at the presence and absence measure 
of bare peat. This can also be seen in the predicted bare peat cover layers where the 
predictions from methodologies 2 and 2b show closer alignment with the range of values of 
the training data. Figure 18 demonstrates the underpredictions seen with methodologies 1 
and 3, despite all the predictions displaying a similar pattern of cover. 
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Figure 18: A comparison of the predictions resulting from the four sampling methodologies mapped 
to the same scale; the training data (top), and the predictions from method 1 (middle left), method 2 
(middle right), method 2b (bottom left) and method 3 (bottom right). 
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3.2.2 Which predictors are important to include in the regression analysis? 
 
The correlation matrix of the predictor variables, Figure, highlighted the variable layers from 
Sentinel spectral bands, derived indices from these bands and other variable data sources 
which were highly correlated. Unsurprisingly the sentinel bands and indices were highly 
correlated as the indices were derived from these data, having high negative and positive 
relationships.  

Figure 19: Comparison matrix of the correlation between variables trialled in the regression analysis, 
with 0 representing no correlation, -1 being highly negatively correlated and 1 being highly positively 
correlated. 

 
The most important predictors when all the variables were included in the model, were the 
Red/Green Ratio (63), with Green Leaf Index (GLI) (50) and the Near infrared (narrow) band 
of the Sentinel Imagery. This is unsurprising as all three have been found to be indicators 
relating to detecting vegetation. The red and green optical bands are known to be sensitive 
to canopy colouration and ratios have been explored for their use in phenological vegetation 
discrimination (Motohka et al. 2010). Similarly, the near infrared and short-wave infrared 
bands are commonly used in indices calculations such as for NDVI, which is highly 
associated to plant productivity and canopy chlorophyll density (Zhao et al. 2007; Rajah et 
al. 2019). GLI is a widely used spectral vegetation indices, derived from the red, green and 
blue optical bands, known to relate to vegetation cover and chlorophyll content (Hunt Jr et al. 
2013) 
 
Other variables which were highlighted as having some importance in distinguishing bare 
peat cover were rainfall, DTM, slope and the Short-wave Infrared 2 band. These factors are 
likely to influence where areas of bare peat is located as a lack of precipitation would lead to 
less water availability for plants to utilise, which could result in less vegetated peatlands. The 
DTM and slope showed visual correlation with where the peat soil boundaries were located. 
Greater slope has been shown to influence erosion, and so this could also lead to patches of 
bare unvegetated peat, where soils regularly experience erosion from wind and precipitation 
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(Li et al. 2018).  The short-wave infrared band in Sentinel-2 sensors are also sensitive to 
cellulose and lignin absorption, which may help explain its importance in detecting bare peat, 
with obvious differences in vegetation and dry matter expected (Pasqualotto et al. 2019). 
 
Table 3: A comparison of the different variable combinations used in the regression models. 
 
Combination name Varstack_all Varstack_ climAv Varstack_darkveg 
Variables All variables Brightness, RB, RG, 

NBR, slope, monthly 
rainfall, average 

monthly temperature 
 

Brightness, NDVI, RG, 
Near infrared (narrow), 

Green, Red-edge 1, 
slope, NBR, monthly 

rainfall  
Method 2 2b 2 2b 2 2b 

Best RMSE model  RF1 RF1 RF1 RF5 RF1 RF1 

Best RMSE value 0.116 0.109 0.122 0.115 0.12 0.114 

Best R-squared model RF1 RF1 RF1 RF5 RF1 RF1 

Best R-squared value 0.750 0.747 0.717 0.716 0.737 0.718 

Most important variable RG RG RG RG RG RG 

Eval1 RMSE 0.150 0.135 0.078 0.077 0.114 0.105 

Eval1 R-squared 0.057 0.094 0.074 0.078 0.142 0.150 

Eval1 P/A Accuracy 0.610 0.631 0.636 0.626 0.641 0.662 

Eval2 RMSE 0.147 0.125 0.062 0.06 0.079 0.072 

Eval2 R-squared 0.016 0.028 0.024 0.027 0.044 0.042 
Eval2 P/A Accuracy 0.563 0.570 0.524 0.542 0.577 0.587 
Mean P/A Accuracy 0.587 0.600 0.580 0.584 0.609 0.624 

The variable combinations which demonstrated the best predictive accuracy with training 
points sampled by equal interval methodologies are summarised in Table 3. The 
combination named ‘varstack_darkveg’ demonstrated the best fit with the lowest RMSE 
values and highest accuracy at predicting presence and absence of bare peat in the 
extrapolated areas. This included the Red/Green ratio as highlighted earlier, but also NDVI 
and Near-Burn Ratio indices which have been used in studies to determine the amount of 
vegetation productivity and highlight the removal of vegetation, reliant on information from 
the Red-edge and Near infrared spectral sensors (Amos et al. 2018). This combination also 
included the slope and monthly rainfall which similarly displayed high importance in 
identifying bare peat pixels.  
 

3.2.3 What is the best performing machine learning technique for 
extrapolating the data? 

 
Random Forest consistently demonstrated to be the best performing model having more 
accurate predictions of bare peat in the resulting maps in comparison to the other machine 
learning algorithms trialled. Table 4 displays the results from the different machine learning 
algorithms, training each model on 100,000 training points using the variables Brightness, 
RB, RG, NBR, SSM and Slope. Overall, RF and QRF displayed greater predictive 
performance, with RF performing slightly more consistently across the models with lower 
RMSE values and higher R-squared values. This can be seen in the results in Table 4 and 
further evident in the results found in Appendix 2. The mapped outputs from each model are 
shown in Figure 20. Interestingly the range of values differed vastly between the predicted 
results, despite being trained of the same training data. The results for SVM suggests this 
method greatly underpredicted the bare peat coverage. The comparison between RF and 
QRF interestingly show less variability in the QRF results, with crisper definitions of the 
locations of high bare peat cover.   
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Table 4: A comparison of the machine learning algorithms used in the regression models. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: A comparison of the predicted maps from the different machine learning algorithms; BRNN 
(top left), BRT (top right), RF (middle left), QRF (middle right), and SVM (bottom). 

 
  

Model  Mean 
RMSE 

Eval1 
RMSE 

Eval1 R-
squared 

Eval1 P/A 
Accuracy 

Eval2 
RMSE 

Eval2 R-
squared 

Eval2 P/A 
Accuracy 

RF 0.094 0.055 0.142 0.533 0.026 0.031 0.531 

QRF 0.101 0.055 0.143 0.472 0.026 0.030 0.503 

BRNN 0.108 0.154 0.005 0.513 0.197 0.000 0.514 

SVM 0.144 0.047 0.096 0.451 0.027 0.299 0.503 

BRT 0.113 0.055 0.096 0.528 0.032 0.025 0.539 
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3.2.4 What is the minimum number of images/training points required to 
make accurate predictions across a given extent? 

 
The models trained on data from the training area were trialled with different numbers of 
training points, to see if including a greater number of training points produced a more 
accurate prediction when extrapolating predictions across the whole sentinel extent. The 
results were highly variable across the different sampling methodologies modelled with 
differing numbers of training points, as seen in Figure 21. 
 
Method 1: 

Method 2: 

Figure 21: A comparison of model performance with different numbers of training points when the 
bare peat cover training data were randomly sampled (Method 1) and sampled using categorised 
equal intervals (Method 2).  
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The Random sampling methodology (Method 1) demonstrated greater model accuracy in 
predicting the presence and absence of bare peat in the extrapolated areas with 20000 
training points (0.472% Accuracy). However, when the cover values were assessed with the 
RMSE and R-squared metrics, these results were variable with 100000 points having greater 
predictive strength in Eval 1 and 2000 points in Eval 2. With the equal interval sampling 
methodology (Method 2), overall, the RMSE scores decreased with a greater number of 
training points, suggesting a better fit of the models. The results varied however, with 2000 
and 5000 training points seeming to provide a greater predictive fit in Eval2 with higher R-
squared scores (RMSE 0.063,0.056) and increased accuracy in predicting the presence and 
absence of bare peat pixels in both the extrapolated areas (0.578%, 0.584%). However, 
training the models with 100,000 points seemed to provide a better fitting model in Eval 1. 
The results of the point measures were inconclusive, suggesting that model accuracy does 
not necessarily increase with a greater number of training points and the distribution of the 
training data may play a greater role in determining the predictive strength of the models.  
 
The spatial distribution and number of imagery tiles included in the training data was 
explored through using different combinations of data from the three of the APGB acquired 
regions; training, Eval 1 and Eval 2. Training and predicting the models first in the Eval 1 
area, towards the north west of the area of interest, it was found that the models had 
performed better when trained on four 1km2 tiles in zone 1 compared with on a single 1km2 
tile of zone 3 (Z1 r2 0.615, Z3 r2 0.444). Interestingly, when these tiles were combined to 
train the models on all 5 tiles, the RMSE value increased to 0.063 but the R-squared value 
decreased to 0.583, suggesting better fit to the test data despite capturing less variation 
compared with zone 1. This may have been due to the bare peat cover in the zone 3 having 
a low range of values, with lower levels of bare peat present.  
 

Figure 22: A comparison of model performance with training data derived from different numbers of 
1km tiles of the APGB high-resolution imagery. 
 
When training data were sampled from both Eval 1 and Eval 2 regions, we see a slight 
increase in the R-goodness of fit of the models, as shown in Figure 22. This suggests using 
training data with greater spatial variation can help the model to better account for variation 
in the data and lead to more accurate predictions of bare peat cover. The amount of bare 
peat visible in the Eval 1 and Eval 2 areas were fairly low, with mainly smaller patches of 
bare cover present, with a small range of training data values. This can be seen from the 
distributions of training data extracted from individual tiles, displayed in Figure 23, in graphs 
A-D. The vast difference seen when tiles from the training area are added (Figure 23, graphs 
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E-F) are evident by increases in both the RMSE and R-squared metrics when data were 
sampled with between 12 and 18 tiles. The R squared values notably increased, particularly 
when sampling 5000 and 10000 training points, likely due to more points being sampled with 
higher bare peat cover values. Graphs E and F, in Figure 23, demonstrate the distribution of 
data in one of the 1km tiles in the training area, showing data with 50-100% peat cover. The 
improvement in model performance with data from these areas suggests that the distribution 
of the training data greatly influences the modelled predictions. These findings highlight that 
the accuracy of our modelled predictions increase with the inclusion of data across a wider 
spatial distribution and of representative values across the range of high and low percentage 
cover of bare peat. 
 

Figure 23: Plots of the distribution of training data points from within single 1km tiles in Eval1 (A&B), 
Eval2 (C&D) and the Training (E&F) areas, shown as histograms of the raw (A&C&E) and categorised 
(B&D&F) data. 

 
The regression models run with all of the available training data from the three areas, had a 
wide distribution of predicted values ranging from 0 to 100% coverage and a variance of 
0.0022. Compared with the model developed from only within the Eval 1 area, the model 
trained on all available training data produced a better fit to the regression, overall capturing 
more variation in the data with R2 values of 0.718 compared to 0.497. Differences in the 
importance values were also notable, with the influence of variable factors of rainfall and 
slope having a greater importance locally with the Eval 1 model than compared to training on 
all three areas, where these factors are relatively less important than the influence of near-
infrared band. The limited range of values found in the test data derived from Eval1 may 
explain these trends and although it shows to accurately predict in the area it is trained on, in 
areas these predictions are extrapolated to it performs poorly. This is evident when looking 
at the bare peat cover predictions in an extrapolated region roughly 13km East of Eval1, 
where the local model seems to underpredict in comparison to the model trained on all three 
areas; Eval1, Eval2 and the Training area. Interestingly, the bare peat predictions seem 
more accurate when trained on data from only the Training area, an approximate distance of 
40km south from this site. Figure 24 shows these results, suggesting that when extrapolating 
predictions, the distance from the site is less influential than the distribution of values 
provided in the training data. This is also apparent from the accuracy of bare peat presence 
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in Eval 2, which is located roughly midway between Eval 1 and the training area. Accuracy 
tended to be higher with 59% accuracy in predicted presence of bare peat when modelled 
with the training area dataset as opposed to 55% accuracy when modelled with the Eval 1 
training dataset.    
 

Figure 24: A comparison of predicted bare peat cover for Bare Hill, Ilkley Moor, displaying the Sentinel 
optical imagery (top left), modelled predictions when trained on data only from Eval 1 (top right),  only 
from the training area (bottom left) and when trained on data from across all the three regions (bottom 
right).  

 
Model performance was shown to be greater when data were sampled from all available tiles 
as opposed to the 18 spatially distributed tiles used in the above analysis, with R2 values of 
0.836 compared to 0.702, as well as higher accuracy scores when predicting presence and 
absence from observed polygons in the Eval 1 and 2 areas. The models were less 
influenced by factors of rainfall and slope with higher relative importance of the spectral band 
and indices predictors.  The output prediction maps visibility aligned better to areas of bare 
peat within the training area, highlighting the need to include more training tiles in areas of 
high bare peat cover. This reiterates the importance of including imagery tiles from a range 
of high and low peat cover, with the inclusion of more tiles in areas known to have high 
amounts of bare peat helping to improve the detection of bare peat overall, particularly in 
extrapolated areas.  
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4 Conclusions  
 
The workflow outlined in this study further developed upon the work of Williamson et al. 
(2018), exploring the practicalities of using earth observation data to identify bare peat pixels 
and scaling predictions across a wider landscape. 
 
We have presented that it is possible to partially automate a process of deriving bare peat 
pixels from high-resolution aerial photography, through thresholding indices derived from the 
imagery. However, this process was informed by a manual procedure of digitising areas of 
vegetated and non-vegetated peat, and so would require some expertise to assess these in 
the imagery and develop thresholding rules which could be applied to multiple tiles. It was 
found that threshold values which would identify bare peat pixels in one image, would not 
necessarily be applicable across multiple images due to variation in brightness and 
reflectance levels, hill-shading and variates of vegetation present. This meant that 
thresholding rules were case specific and would not necessarily be transferable between 
sites requiring manual input to assess individual images. Differences may also be explained 
through flights capturing the imagery being conducted over different days, atmospheric 
conditions or blurriness from wind and sun illumination. Further work could help to explore 
these differences within the imagery derived from aerial photography and look to identify if 
there is a more consistent methodology with which bare peat can be identified. The sensor 
capture of the APGB imagery also caused some uncertainty in our results where the near 
infrared band was captured at a different resolution from the RGB imagery, and was 
consequently resampled to match the 25cm resolution of the red, green and blue bands. 
Ideally these would all be captured at the same resolution to inform this type of analysis and 
create accurate indices layers. The detection of bare peat using a pixel-based methodology 
provided a fast analysis and image classification, however it was found to miss some visible 
pixels which fell outside of the thresholding limits causing some gaps between neighbouring 
cells of bare peat. Using an object-based methodology may help to alleviate this and 
generate more accurate classifications of bare peat, by segmenting the imagery then 
classifying based on our established thresholds. Furthermore, our study found that it was not 
possible to develop a thresholding rule for the Pleiades satellite imagery with the indices we 
trialled, due to the overlap of indices signatures between areas of vegetated and bare peat. 
This could be further explored to develop a methodology for bare peat identification, trialling 
different indices and combinations to see if this could be distinguished from the Pleiades 
data.  
 
The classified maps of where bare peat were present in the high-resolution imagery, provide 
a detailed account of areas in poor condition which can be used to target management 
practices for peat restoration. Aggregating this to a percentage cover of bare peat per 10m 
pixel as opposed to a simple presence-absence approach, provides a more descriptive and 
representative way of displaying the data informed by the aerial photography. However, the 
carries over uncertainty where pixels of bare peat were missed in the thresholding process, 
resulting in an underprediction of cover estimates when scaled up to the larger cell size. This 
highlights the importance of the initial bare peat identification stage in order to obtain 
accurate cover data to inform the regression models. The regression analysis workflow has 
been fully automated and can be deployed to predict the amount of bare peat across a wider 
extent than covered by the training data. This can help to provide cost effective assessments 
of vast areas of peatland, inform ground teams as to where to target their monitoring efforts. 
This study found random forest to be the best performing machine learning algorithm for the 
regression modelling, however, the quantile regression forest algorithm performed highly 
with predicted maps providing a more defined bare peat map, reducing the noise resulting 
with the random forest predictions. The variables found most important in predicting the 
presence of bare peat included the Red-Green ratio, the Green-Leaf Index and the Near 
infrared (narrow) band of the Sentinel Imagery. Environmental variables of monthly rainfall, 
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soil wetness index and slope were also predictably important to inform the models, with drier 
steeper conditions relating to higher bare peat coverage.  
 
The most influential step in the workflow was the methodology used to sample the training 
points created in the thresholding step. Stratified random sampling of the data based on 
equal interval categories from 0 to 100% bare peat cover and randomly sampling an equal 
number of points from each category seemed to provide the better fitting models with the 
highest predictive accuracy both within the training areas and in extrapolated areas, when 
compared with random sampling methods. As the distribution of training points was skewed 
to lower cover values with fewer records of high coverage, “filling” with values from the lower 
categories was used to include more training points, which was able to account for more 
variability in the resulting predictions. Inclusion of greater numbers of training data with high 
coverage of bare peat could be further explored to see how this would influence the models, 
and whether this would still produce realistic predictions of bare peat cover across the 
landscape or tend to overpredict cover. Predictions locally improved when sampling from a 
greater number of image tiles, likely due to the increased range of values present. 
Predictions of cover in extrapolated regions improved when training data were present from 
a range of high to low cover and were spatially varied, with extrapolation distance from the 
training area demonstrating little importance to predictions. This was due to spectral band 
predictors and derived indices having a higher influence in determining bare peat cover, 
which may raise difficulties when comparing between imagery swaths captured on different 
dates or transferability of predictions between years.  Further exploration is needed to 
assess as to whether change over time in bare cover can then be determined using time 
series imagery.  
 
This study has demonstrated that high-resolution imagery has the potential to inform bare 
peat mapping in lower resolution data and indicating the condition of peatland habitats. 
Observations from representative sites undergoing a range of poor and recovering 
conditions are key for capturing the variation between different sites and improving 
predictions of bare peat cover, as well as being able to detect when a site is beginning to 
degrade.  Observations from sites where large patches of bare peat are located are 
particularly helpful in providing a basis on which to train the models, allowing predictions of 
areas of bare peat outside of a region which has been examined with the aerial photography. 
This analysis has highlighted several considerations when using such an approach and 
areas for improvement in the methodology, with a need for further ground-observations for 
validating the accuracy of predictions and assessing their limitations. Maps of bare peat 
could help to flag peatland areas which are in poor condition, target sites in need of further 
ground monitoring and provide an indication of the success of peatland restoration 
measures. This assessment provides novel techniques of applying machine learning to earth 
observation data to inform practical management measures and a cost-effective way to aid 
the design of monitoring schemes. 
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Appendix 1 
 
JNCC ARD band numbers with Sentinel-2 optical imagery: 
 
JNCC 
ARD 
bands 

Spectral band 

1 Blue 

2 Green 

3 Red 

4 Red-edge 1 

5 Red-edge 2 

6 Red-edge 3 

7 Near Infrared (narrow) 

8 Near Infrared 

9 Short Wave Infrared 1 

10 Short Wave Infrared 2 

 
Indices calculations from multispectral imagery bands, derived from IDB Project (2019) 
alongside expert knowledge from JNCCs EO specialists. 
 
Indices Indices name Indices Equation 

NDVI Normalized 
difference 
vegetation index 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

 

EVI Enhanced 
Vegetation Index 

𝐸𝑉𝐼 = 𝐺 𝑥
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + (𝐶1 𝑥 𝑅𝑒𝑑 − 𝐶2 𝑥 𝐵𝐿𝑈𝐸) + 𝐿
 

 
Where L is a soil adjustment factor, C1 and C2 are coefficients for 
correcting aerosol scattering in the red band by use of the blue 
band. General values used are L = 1, G = 2.5, C1=6.0 and C2=7.5 
(Matsushita, et al. 2007). 
 

GLI Green Leaf Index 
𝐺𝐿𝐼 =

2 ∗ 𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

2 ∗ 𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒
 

GNDVI Green Normalised 
Difference 
Vegetation Index 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

RDVI Renormalized 
Difference 
Vegetation Index 

𝑅𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)0.5
 

SAVI Soil Adjusted 
Vegetation Index 

𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
 (1 + 𝐿) 

Where L = 0.5 

R/B Red-Blue ratio 
𝑅𝐵 =

𝑅𝑒𝑑

𝐵𝑙𝑢𝑒
  

R/G Red-Green ratio 
𝑅𝐺 =

𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

Brightness Brightness 
𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =

(𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒 + 𝐺𝑟𝑒𝑒𝑛)

3
 

NBR Normalized 
Difference 
NIR/SWIR 
Normalized Burn 
Ratio 

𝑁𝐵𝑅 =
NIR − SWIR

NIR + SWIR
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Appendix 2 
 

2.1  Method 1: Random Sampling Results 
 

Testing Combination name

training 

points

best 

model 

best 

RMSE 

best R-

sq 

model

best R-

sq Model

mean 

RMSE

most 

important 

variable

Eval 1 

best 

RMSE

Eval 1 

mean 

RMSE

Eval1 

best R-

sq

Eval1 

mean R-

sq

Eval1 

Accuracy

Eval 2 

best 

RMSE

Eval 2 

mean 

RMSE

Eval2 

best R-

sq

Eval2 

mean R-

sq

Eval2 

Accuracy

Mean 

accuracy

10000 RF1 0.038 RF4 0.318 RF 0.041 NIR (narrow) 0.043 0.043 0.192 0.181 0.492 0.021 0.022 0.034 0.029 0.531 0.512

RFcorrect 0.493 0.487 0.490

QRF 0.045 NIR (narrow) 0.043 0.179 0.462 0.021 0.029 0.521 0.491

10000 RF3 0.037 RF5 0.242 RF 0.040 slope 0.044 0.045 0.134 0.123 0.456 0.017 0.018 0.037 0.037 0.507 0.482

RFcorrect 0.521

QRF 0.042 NDVI 0.045 0.120 0.446 0.018 0.036 0.521 0.484

10000 RF5 0.037 RF5 0.348 RF 0.039 RG 0.044 0.045 0.142 0.045 0.477 0.017 0.018 0.014 0.018 0.521 0.499

RFcorrect 0.498 0.445 0.471

QRF 0.420 RG 0.446 0.045 0.456 0.017 0.017 0.521 0.489

10000 RF4 0.035 RF3 0.408 RF 0.037 NIR (narrow) 0.054 0.101 0.152 0.060 0.497 0.040 0.090 0.010 0.011 0.524 0.511

RFcorrect 0.512 0.468 0.490

QRF 0.041 RG 0.084 0.081 0.446 0.075 0.014 0.521 0.484

10000 RF3 0.038 RF3 0.279 RF 0.041 SWIR 2 0.043 0.043 0.193 0.184 0.478 0.018 0.019 0.042 0.034 0.531 0.505

RFcorrect 0.487 0.468 0.477

QRF 0.044 SWIR 2 0.044 0.183 0.446 0.019 0.034 0.524 0.485

10000 RF1 0.04 RF2 0.247 RF 0.042 0.043 0.044 0.170 0.148 0.462 0.018 0.019 0.023 0.024 0.542 0.502

RFcorrect 0.458 0.468 0.463

QRF 0.416 0.441 0.146 0.446 0.194 0.023 0.528 0.487

10000 RF2 0.037 RF2 0.332 RF 0.041 RG 0.043 0.043 0.176 0.043 0.456 0.016 0.017 0.050 0.017 0.510 0.483

RFcorrect 0.478 0.445 0.461

QRF 0.045 RG 0.043 0.043 0.446 0.017 0.017 0.521 0.484

10000 RF1 0.037 QRF1 0.453 RF 0.040 RG 0.045 0.045 0.118 0.045 0.456 0.017 0.017 0.028 0.017 0.503 0.480

RFcorrect 0.478 0.441 0.459

QRF 0.040 RG 0.045 0.045 0.451 0.017 0.017 0.521 0.486

10000 RF1 0.034 RF4 0.322 RF 0.040 RG 0.045 0.045 0.108 0.045 0.462 0.017 0.017 0.040 0.017 0.503 0.483

RFcorrect 0.478 0.433 0.456

QRF 0.043 RG 0.045 0.045 0.451 0.017 0.017 0.521 0.486

10000 RF1 0.036 RF4 0.331 RF 0.395 RG 0.043 0.045 0.184 0.188 0.497 0.019 0.020 0.036 0.039 0.524 0.511

RFcorrect 0.507 0.483 0.495

QRF 0.423 RG 0.045 0.191 0.446 0.021 0.039 0.524 0.485

10000 RF5 0.038 QRF1 0.321 RF 0.040 RG 0.064 0.085 0.051 0.126 0.456 0.047 0.074 0.023 0.022 0.507 0.482

RFcorrect 0.458 0.468 0.463

QRF 0.043 RG 0.088 0.126 0.446 0.076 0.019 0.521 0.484

2000 RF5 0.033 BRNN2 0.385 RF 0.040 RG 0.044 0.046 0.133 0.046 0.487 0.017 0.018 0.030 0.018 0.514 0.501

RFcorrect 0.502 0.441 0.472

QRF 0.043 RG 0.046 0.046 0.451 0.018 0.018 0.521 0.486

BRNN 0.041 RG 0.058 0.576 0.472 0.582 0.582 0.503 0.488

SVM 0.046 RG 0.049 0.049 0.446 0.017 0.017 0.521 0.484

varstack_NBR

varstack_climMax

varstack_ climAv

variables

Points

varstack_sbands

varstack_blake

varstack_ imp

varstack_all

varstack_RD_SWIR

varstack_slope

varstack_darkveg

varstack_import

varstack_imp
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Testing Combination name

training 

points

best 

model 

best 

RMSE 

best R-

sq 

model

best R-

sq Model

mean 

RMSE

most 

important 

variable

Eval 1 

best 

RMSE

Eval 1 

mean 

RMSE

Eval1 

best R-

sq

Eval1 

mean R-

sq

Eval1 

Accuracy

Eval 2 

best 

RMSE

Eval 2 

mean 

RMSE

Eval2 

best R-

sq 

Eval2 

mean R-

sq

Eval2 

Accuracy

Mean 

accuracy

5000 RF4 0.037 RF1 0.375 RF 0.400 RG 0.044 0.045 0.156 0.045 0.472 0.017 0.017 0.011 0.017 0.507 0.489

RFcorrect 0.493 0.433 0.463

QRF 0.430 RG 0.045 0.045 0.451 0.018 0.018 0.521 0.486

10000 RF5 0.037 RF5 0.348 RF 0.039 RG 0.044 0.045 0.142 0.045 0.477 0.017 0.018 0.014 0.018 0.521 0.499

RFcorrect 0.498 0.445 0.471

QRF 0.420 RG 0.446 0.045 0.456 0.017 0.017 0.521 0.489

20000 RF3 0.038 RF4 0.354 RF 0.039 RG 0.044 0.044 0.168 0.044 0.477 0.017 0.018 0.013 0.018 0.521 0.499

RFcorrect 0.507 0.449 0.478

QRF 0.042 RG 0.044 0.044 0.456 0.018 0.018 0.521 0.489

50000 RF5 0.037 RF3 0.346 RF 0.038 RG 0.043 0.044 0.179 0.044 0.472 0.017 0.018 0.014 0.018 0.521 0.496

RFcorrect 0.493 0.445 0.469

QRF 0.041 RG 0.044 0.044 0.456 0.018 0.018 0.521 0.489

100000 RF2 0.036 RF3 0.398 RF 0.037 RG 0.043 0.044 0.183 0.171 0.472 0.017 0.018 0.023 0.022 0.517 0.495

RFcorrect 0.498 0.449 0.473

QRF 0.040 RG 0.044 0.170 0.456 0.018 0.023 0.521 0.489

BRNN 0.042 RG 0.918 0.001 0.451 0.929 0.001 0.503 0.477

SVM 0.048 RG 0.049 0.099 0.446 0.017 0.223 0.521 0.484

2000 RF2 0.036 RF5 0.340 RF 0.040 RG 0.043 0.044 0.026 0.017 0.456 0.017 0.017 0.198 0.043 0.503 0.480

RFcorrect 0.473 0.437 0.455

QRF 0.042 RG 0.045 0.017 0.446 0.017 0.044 0.521 0.484

5000 RF1 0.041 QRF1 0.380 RF 0.043 RG 0.044 0.044 0.187 0.174 0.456 0.016 0.017 0.060 0.052 0.510 0.483

RFcorrect 0.468 0.445 0.456

QRF 0.045 RG 0.044 0.171 0.446 0.017 0.052 0.521 0.484

10000 RF2 0.037 RF2 0.332 RF 0.041 RG 0.043 0.043 0.176 0.043 0.456 0.016 0.017 0.050 0.017 0.510 0.483

RFcorrect 0.478 0.445 0.461

QRF 0.045 RG 0.043 0.043 0.446 0.017 0.017 0.521 0.484

20000 RF4 0.04 QRF1 0.313 RF 0.041 RG 0.043 0.043 0.198 0.167 0.467 0.016 0.017 0.051 0.050 0.510 0.489

RFcorrect 0.478 0.452 0.465

QRF 0.044 RG 0.044 0.165 0.446 0.017 0.049 0.521 0.484

BRNN 0.042 0.131 0.004 0.456 0.018 0.000 0.517 0.487

SVM 0.048 0.049 0.096 0.446 0.017 0.022 0.521 0.484

50000 RF2 0.039 RF3 0.346 RF 0.039 RG 0.043 0.043 0.187 0.043 0.472 0.016 0.017 0.060 0.017 0.507 0.489

RFcorrect 0.478 0.452 0.465

QRF 0.042 RG 0.043 0.043 0.446 0.017 0.017 0.521 0.484

100000 RF5 0.042824 RF5 0.344 RF 0.040 RG 0.043 0.043 0.193 0.173 0.467 0.016 0.016 0.049 0.052 0.514 0.490

RFcorrect 0.478 0.449 0.463

QRF 0.043 RG 0.043 0.175 0.446 0.016 0.051 0.521 0.484

varstack_NBR

varstack_NBR

varstack_NBR

varstack_NBR

Points

varstack_NBR

varstack_imp

varstack_imp

varstack_imp

varstack_NBR

varstack_imp

varstack_imp
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Testing Combination name

training 

points

best 

model 

best 

RMSE 

best R-

sq 

model

best R-

sq Model

mean 

RMSE

most 

important 

variable

Eval 1 

best 

RMSE

Eval 1 

mean 

RMSE

Eval1 

best R-

sq

Eval1 

mean R-

sq

Eval1 

Accuracy

Eval 2 

best 

RMSE

Eval 2 

mean 

RMSE

Eval2 

best R-

sq

Eval2 

mean R-

sq

Eval2 

Accuracy

Mean 

accuracy

20000 RF4 0.04 QRF1 0.313 RF 0.041 RG 0.043 0.043 0.198 0.167 0.467 0.016 0.017 0.051 0.050 0.510 0.489

RFcorrect 0.478 0.452 0.465

QRF 0.044 RG 0.044 0.165 0.446 0.017 0.049 0.521 0.484

BRNN 0.042 0.131 0.004 0.456 0.018 0.000 0.517 0.487

SVM 0.048 0.049 0.096 0.446 0.017 0.022 0.521 0.484

100000 RF2 0.036 RF3 0.398 RF 0.037 RG 0.043 0.044 0.183 0.171 0.472 0.017 0.018 0.017 0.018 0.517 0.495

RFcorrect 0.498 0.449 0.473

QRF 0.040 RG 0.044 0.170 0.456 0.018 0.018 0.521 0.489

BRNN 0.042 0.918 0.001 0.451 0.929 0.929 0.503 0.477

SVM 0.048 0.049 0.099 0.446 0.017 0.017 0.521 0.484

2000 RF5 0.033 BRNN2 0.385 RF 0.040 RG 0.044 0.046 0.133 0.046 0.487 0.017 0.018 0.030 0.018 0.514 0.501

RFcorrect 0.502 0.441 0.472

QRF 0.043 RG 0.046 0.046 0.451 0.018 0.018 0.521 0.486

BRNN 0.041 0.058 0.576 0.472 0.582 0.582 0.503 0.488

SVM 0.046 0.049 0.049 0.446 0.017 0.017 0.521 0.484

methods varstack_NBR

varstack_imp

varstack_imp
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2.2  Method 2: Equal Interval Sampling Results 
 

 
 

Testing Combination name

target 

training 

points

training 

points

test 

points

best 

model 

best 

RMSE 

best  R-

sq 

model

best  R-

sq Model

mean 

RMSE

most 

important 

variable

Eval 1 

best 

RMSE

Eval 1 

mean 

RMSE

Eval1 

best  

R-sq

Eval1 

mean 

R-sq

Eval1 

Accuracy

Eval 2 

best 

RMSE

Eval 2 

mean 

RMSE

Eval2 

best  

R-sq

Eval2 

mean R-

sq

Eval2 

Accuracy

Mean 

accuracy

10000 5263 1756 RF5 0.131 RF4 0.689 RF 0.133 NIR (narrow 0.090 0.093 0.178 0.093 0.554 0.072 0.076 0.027 0.076 0.552 0.553

QRF 0.141 NIR (narrow 0.093 0.093 0.508 0.075 0.075 0.535 0.521

10000 5263 1756 RF5 0.138 RF5 0.645 RF 0.143 NDVI 0.082 0.084 0.104 0.084 0.574 0.060 0.064 0.022 0.064 0.570 0.572

QRF 0.151 NDVI 0.084 0.084 0.492 0.064 0.064 0.524 0.508

varstack_imp 10000 5263 1756 RF2 0.129 RF3 0.695 RF 0.132 RG 0.067 0.070 0.096 0.070 0.590 0.046 0.049 0.012 0.049 0.538 0.564

10000 5263 1756 RF1 0.116 RF1 0.750 RF 0.118 RG 0.150 0.159 0.057 0.041 0.610 0.147 0.152 0.016 0.017 0.563 0.587

QRF 0.124 RG 0.163 0.040 0.518 0.156 0.018 0.535 0.526

10000 5263 1756 RF3 0.130 RF3 0.679 RF 0.136 Red-edge 2 0.104 0.110 0.123 0.110 0.621 0.063 0.068 0.027 0.068 0.580 0.600

QRF 0.143 Red-edge 2 0.110 0.110 0.508 0.069 0.069 0.552 0.530

10000 5263 1756 RF1 0.141 RF1 0.636 RF 0.145 Red-edge 2 0.104 0.110 0.128 0.110 0.621 0.074 0.076 0.032 0.076 0.598 0.609

QRF 0.154 Red-edge 2 0.110 0.110 0.533 0.774 0.077 0.573 0.553

10000 5263 1756 RF5 0.132 RF5 0.680 RF 0.136 RG 0.077 0.081 0.123 0.129 0.615 0.044 0.048 0.033 0.033 0.559 0.587

QRF 0.143 RG 0.081 0.127 0.503 0.048 0.032 0.531 0.517

BRNN 0.153 0.119 0.005 0.585 0.133 0.000 0.538 0.562

SVM 0.164 0.103 0.104 0.554 0.100 0.041 0.535 0.544

10000 5263 1756 RF2 0.123 RF2 0.724 RF 0.126 RG 0.077 0.083 0.093 0.083 0.631 0.059 0.064 0.025 0.064 0.535 0.583

QRF 0.132 RG 0.083 0.083 0.518 0.065 0.065 0.528 0.523

10000 5263 1756 RF1 0.122 RF1 0.717 RF 0.125 RG 0.078 0.084 0.074 0.084 0.636 0.062 0.065 0.024 0.065 0.524 0.580

QRF 0.131 RG 0.084 0.084 0.492 0.064 0.064 0.535 0.514

10000 5263 1756 RF1 0.120 RF1 0.737 RF 0.123 RG 0.114 0.120 0.142 0.120 0.641 0.079 0.082 0.044 0.082 0.577 0.609

QRF 0.130 RG 0.119 0.119 0.492 0.081 0.081 0.528 0.510

10000 5263 1756 RF1 0.122 RF1 0.717 RF 0.125 GLI 0.078 0.084 0.074 0.084 0.636 0.062 0.065 0.024 0.065 0.524 0.580

QRF 0.131 GLI 0.084 0.084 0.492 0.064 0.064 0.535 0.514

5000 RF1 0.120 RF1 0.737 RF 0.123 RG 0.114 0.120 0.142 0.120 0.641 0.079 0.082 0.044 0.082 0.577 0.609

QRF 0.130 RG 0.119 0.119 0.492 0.081 0.081 0.528 0.510

varstack_imp 545 409 136 RF1 0.148 RF1 0.803 RF 0.158 RG 0.106 0.114 0.028 0.020 0.559 0.071 0.087 0.015 0.010 0.486 0.522

2000 1281 428 RF2 0.143 RF2 0.736 RF 0.153 RG 0.087 0.094 0.067 0.047 0.636 0.063 0.067 0.019 0.018 0.521 0.578

QRF 0.160 RG 0.092 0.050 0.518 0.065 0.016 0.510 0.514

BRNN 0.174 1.069 0.005 0.590 1.080 0.001 0.550 0.570

BRT 0.179 0.116 0.089 0.564 0.085 0.024 0.500 0.532

varstack_imp 5000 3013 1006 RF2 0.133 RF2 0.743 RF 0.143 RG 0.078 0.083 0.076 0.059 0.641 0.056 0.059 0.015 0.015 0.528 0.584

varstack_imp 10000 5263 1756 RF2 0.129 RF3 0.695 RF 0.132 RG 0.067 0.070 0.096 0.082 0.590 0.046 0.049 0.012 0.015 0.538 0.564

varstack_imp 20000 9763 3256 RF1 0.119 RF3 0.666 RF 0.119 RG 0.061 0.064 0.110 0.090 0.554 0.043 0.045 0.014 0.013 0.535 0.544

varstack_imp 50000 21087 7031 RF2 0.103 RF4 0.661 RF 0.104 RG 0.055 0.055 0.121 0.117 0.569 0.036 0.037 0.012 0.016 0.542 0.556

varstack_imp 100000 36087 12031 RF2 0.087 RF2 0.646 RF 0.088 RG 0.048 0.048 0.129 0.127 0.544 0.029 0.029 0.011 0.015 0.500 0.522

varstack_NBR 2000 1281 428 RF5 0.153 RF5 0.711 RF 0.159 RG 0.097 0.101 0.113 0.110 0.610 0.059 0.065 0.025 0.027 0.528 0.569

points

varstack_imp

variables varstack_sbands

varstack_blake

varstack_all

varstack_RD_SWIR

varstack_NBR

varstack_climMax

varstack_climAv

varstack_darkveg

varstack_import

varstack_import

varstack_slope
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Testing Combination name

target 

training 

points

training 

points

test 

points

best 

model 

best 

RMSE 

best  R-

sq 

model

best  R-

sq Model

mean 

RMSE

most 

important 

variable

Eval 1 

best 

RMSE

Eval 1 

mean 

RMSE

Eval1 

best  

R-sq

Eval1 

mean 

R-sq

Eval1 

Accuracy

Eval 2 

best 

RMSE

Eval 2 

mean 

RMSE

Eval2 

best  

R-sq

Eval2 

mean R-

sq

Eval2 

Accuracy

Mean 

accuracy

10000 5263 1756 RF5 0.132 RF5 0.680 RF 0.136 RG 0.077 0.081 0.123 0.129 0.615 0.044 0.048 0.033 0.033 0.559 0.587

QRF 0.143 RG 0.081 0.127 0.503 0.048 0.032 0.531 0.517

BRNN 0.153 RG 0.119 0.005 0.585 0.133 0.000 0.538 0.562

SVM 0.164 RG 0.103 0.104 0.554 0.100 0.041 0.535 0.544

varstack_NBR 20000 9763 3256 RF1 0.123 RF1 0.639 RF 0.125 RG 0.073 0.075 0.125 0.129 0.605 0.040 0.042 0.035 0.037 0.545 0.575

varstack_NBR 50000 21087 7031 RF5 0.109 RF3 0.619 RF 0.110 RG 0.062 0.064 0.139 0.139 0.549 0.032 0.033 0.034 0.031 0.549 0.549

100000 RF1 0.093 RF1 0.588 RF 0.094 RG 0.047 0.055 0.097 0.142 0.533 0.024 0.026 0.028 0.031 0.531 0.532

QRF 0.101 RG 0.055 0.143 0.472 0.026 0.030 0.503 0.488

BRNN 0.108 0.154 0.005 0.513 0.197 0.000 0.514 0.513

SVM 0.144 0.047 0.096 0.451 0.027 0.299 0.503 0.477

BRT 0.113 0.055 0.096 0.528 0.032 0.025 0.538 0.533

10000 5263 1756 RF5 0.132 RF5 0.680 RF 0.136 RG 0.077 0.081 0.123 0.129 0.615 0.044 0.048 0.033 0.033 0.559 0.587

QRF 0.143 RG 0.081 0.127 0.503 0.048 0.032 0.531 0.517

BRNN 0.153 RG 0.119 0.005 0.585 0.133 0.000 0.538 0.562

SVM 0.164 RG 0.103 0.104 0.554 0.100 0.041 0.535 0.544

2000 1281 428 RF2 0.143 RF2 0.736 RF 0.153 RG 0.087 0.094 0.067 0.047 0.636 0.063 0.067 0.019 0.018 0.521 0.578

QRF 0.160 RG 0.092 0.050 0.518 0.065 0.016 0.510 0.514

BRNN 0.174 1.069 0.005 0.590 1.080 0.001 0.550 0.570

BRT 0.179 0.116 0.089 0.564 0.085 0.024 0.500 0.532

100000 36087 12031 RF1 0.093 RF1 0.588 RF 0.094 RG 0.047 0.055 0.097 0.142 0.533 0.024 0.026 0.028 0.031 0.531 0.532

QRF 0.101 RG 0.055 0.143 0.472 0.026 0.030 0.503 0.488

BRNN 0.108 0.154 0.005 0.513 0.197 0.000 0.514 0.513

SVM 0.144 0.047 0.096 0.451 0.027 0.299 0.503 0.477

BRT 0.113 0.055 0.096 0.528 0.032 0.025 0.538 0.533

varstack_NBR

varstack_imp

varstack_NBR

varstack_NBR

points

methods

varstack_NBR
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2.3  Method 2b: Equal Interval Sampling with categorised filling Results 
 

 
 
 

2.4  Method 3: Quantiled sampling of values above 0.1 Results 
 

 
  

Testing

Combination 

name

target 

training 

points

training 

points

test 

points

best 

model 

best 

RMSE 

best    

R-sq 

model

best  

R-sq Model

mean 

RMSE

Eval 1 

best 

RMSE

Eval 1 

mean 

RMSE

Eval1 

best  

R-sq

Eval1 

mean 

R-sq

Eval1 

Accuracy

Eval 2 

best 

RMSE

Eval 2 

mean 

RMSE

Eval2 

best  

R-sq

Eval2 

mean 

R-sq

Eval2 

Accuracy

Mean 

accuracy

10000 7500 2500 RF4 0.130 RF4 0.633 RF 0.133 0.071 0.074 0.137 0.074 0.610 0.039 0.042 0.032 0.042 0.545 0.578

QRF 0.141 0.074 0.074 0.487 0.042 0.042 0.503 0.495

10000 7500 2500 RF5 0.114 RF4 0.722 RF 0.116 0.072 0.075 0.080 0.075 0.626 0.055 0.058 0.023 0.058 0.528 0.577

QRF 0.122 0.075 0.075 0.482 0.058 0.058 0.528 0.505

10000 7500 2500 RF5 0.115 RF5 0.716 RF 0.118 0.077 0.079 0.077 0.079 0.626 0.060 0.062 0.027 0.062 0.542 0.584

QRF 0.125 0.079 0.079 0.492 0.061 0.061 0.524 0.508

10000 7500 2500 RF1 0.109 RF1 0.747 RF 0.111 0.135 0.155 0.094 0.042 0.631 0.125 0.146 0.028 0.021 0.570 0.600

QRF 0.118 0.157 0.043 0.492 0.150 0.020 0.524 0.508

10000 7500 2500 RF4 0.125 RF4 0.666 RF 0.127 0.141 0.165 0.115 0.116 0.631 0.132 0.150 0.055 0.042 0.570 0.600

QRF 0.133 0.161 0.114 0.533 0.146 0.042 0.524 0.529

10000 7500 2500 RF1 0.114 RF1 0.718 RF 0.118 0.105 0.111 0.150 0.111 0.662 0.072 0.077 0.042 0.077 0.587 0.624

QRF 0.125 0.111 0.111 0.477 0.076 0.076 0.528 0.502

varstack_darkveg

variables varstack_NBR

varstack_climMax

varstack_climAv

varstack_all

varstack_import

Testing

Combination 

name

target 

training 

points

training 

points

test 

points

best 

model 

best 

RMSE 

best    

R-sq 

model

best  

R-sq Model

mean 

RMSE

Eval 1 

best 

RMSE

Eval 1 

mean 

RMSE

Eval1 

best  

R-sq

Eval1 

mean 

R-sq

Eval1 

Accuracy

Eval 2 

best 

RMSE

Eval 2 

mean 

RMSE

Eval2 

best  

R-sq

Eval2 

mean 

R-sq

Eval2 

Accuracy

Mean 

accuracy

10000 7500 2500 RF2 0.094 RF2 0.460 RF 0.097 0.072 0.074 0.161 0.074 0.585 0.065 0.066 0.048 0.066 0.552 0.569

QRF 0.100 0.074 0.074 0.579 0.067 0.067 0.545 0.562

10000 7500 2500 RF5 0.090 RF1 0.490 RF 0.092 0.071 0.074 0.082 0.070 0.595 0.057 0.061 0.051 0.056 0.577 0.586

QRF 0.095 0.073 0.071 0.600 0.060 0.056 0.528 0.564

10000 7500 2500 RF1 0.093 RF1 0.443 RF 0.097 0.067 0.069 0.139 0.069 0.579 0.048 0.050 0.058 0.050 0.594 0.587

QRF 0.100 0.068 0.068 0.528 0.050 0.050 0.549 0.539

10000 7500 2500 RF5 0.091 RF3 0.491 RF 0.092 0.058 0.060 0.120 0.071 0.621 0.069 0.071 0.049 0.060 0.570 0.595

QRF 0.096 0.060 0.071 0.605 0.071 0.060 0.545 0.575

10000 7500 2500 RF5 0.088 RF3 0.534 RF 0.089 0.116 0.132 0.072 0.064 0.626 0.106 0.125 0.028 0.028 0.563 0.594

QRF 0.093 0.126 0.074 0.590 0.120 0.030 0.563 0.576

variables varstack_sbands

varstack_climMax

varstack_NBR

varstack_climAv

varstack_all
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2.5  Results from sampling from all the training data: Training area, Eval 1 and Eval 2 
 

 
 
 
 

Sampling 

method

Combination 

name

target 

training 

points

training 

points

test 

points

best 

model 

best 

RMSE 

best    

R-sq 

model

best  

R-sq Model

mean 

RMSE

most 

important 

variable

Eval1 

Accuracy

Eval2 

Accuracy

Mean 

Accuracy

20000 15000 5000 RF1 0.038 RF5 0.333 RF 0.040 RG 0.467 0.521 0.494

RFcorrect 0.488 0.449 0.468

QRF 0.043 RG 0.446 0.521 0.484

BRNN 0.042 RG 0.456 0.517 0.487

SVM 0.048 RG 0.446 0.521 0.484

BRT 0.044 RG 0.456 0.521 0.489

10000 7500 2500 RF2 0.035 RF1 0.337 RF 0.038 RG 0.462 0.503 0.483

RFcorrect 0.483 0.433 0.458

QRF 0.041 RG 0.451 0.521 0.486

1000 681 228 QRF4 0.144 QRF4 0.812 RF 0.159 RG 0.559 0.528 0.543

QRF 0.165 RG 0.528 0.514 0.521

5000 3018 1008 RF2 0.135 QRF5 0.765 RF 0.139 RG 0.600 0.552 0.576

QRF 0.141 RG 0.508 0.535 0.521

10000 5268 1758 QRF1 0.122 QRF1 0.789 RF 0.127 RG 0.626 0.559 0.593

QRF 0.127 RG 0.518 0.535 0.526

20000 9768 3258 RF3 0.114 QRF3 0.760 RF 0.117 RG 0.636 0.556 0.596

QRF 0.118 RG 0.513 0.510 0.512

50000 21196 7068 QRF4 0.099 QRF2 0.755 RF 0.100 RG 0.600 0.570 0.585

QRF 0.993 RG 0.523 0.517 0.520

100000 36196 12068 QRF4 0.079 QRF4 0.801 RF 0.085 RG 0.579 0.563 0.571

QRF 0.080 RG 0.518 0.507 0.512

1 varstack_NBR

varstack_climMax

varstack_NBR

varstack_NBR

varstack_NBR

varstack_NBR

varstack_NBR

2

varstack_NBR
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Sampling 

method

Combination 

name

target 

training 

points

training 

points

test 

points

best 

model 

best 

RMSE 

best    

R-sq 

model

best  

R-sq Model

mean 

RMSE

most 

important 

variable

Eval1 

Accuracy

Eval2 

Accuracy

Mean 

Accuracy

10000 5263 1756 QRF2 0.107 QRF2 0.838 RF 0.111 RG 0.631 0.552 0.592

QRF 0.111 RG 0.559 0.531 0.545

10000 5263 1756 QRF1 0.106 QRF1 0.841 RF 0.111 RG 0.626 0.580 0.603

QRF 0.110 RG 0.523 0.510 0.517

10000 7500 2501 QRF3 0.117 QRF3 0.786 RF 0.122 RG 0.600 0.545 0.573

QRF 0.123 RG 0.523 0.517 0.520

10000 7500 2501 QRF5 0.105 QRF5 0.825 RF 0.110 RG 0.651 0.556 0.604

QRF 0.110 RG 0.538 0.528 0.533

10000 7500 2501 QRF1 0.102 QRF1 0.836 RF 0.110 RG 0.651 0.580 0.616

QRF 0.110 RG 0.523 0.524 0.524

2000 1497 504 RF5 0.132 RF5 0.810 RF 0.138 RG 0.636 0.542 0.589

QRF 0.144 RG 0.538 0.542 0.540

5000 3748 1252 RF5 0.115 RF5 0.825 RF 0.122 RG 0.656 0.577 0.617

QRF 0.125 RG 0.538 0.521 0.530

10000 7500 2500 RF3 0.092 RF3 0.447 RF 0.096 RG 0.605 0.573 0.589

QRF 0.099 RG 0.533 0.552 0.543

10000 7500 2500 RF3 0.087 RF3 0.512 RF 0.090 RG 0.621 0.584 0.602

QRF 0.093 RG 0.651 0.542 0.597

2b

3

2

varstack_darkveg

varstack_darkveg

varstack_NBR

varstack_climMax

varstack_climMax

varstack_darkveg

varstack_NBR

varstack_climMax

varstack_darkveg
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2.6  Results from patch sampling analysis 

Tiles Combination name

target 

training 

points

best 

model 

best 

RMSE 

best 

R-sq

model

best 

R-sq Model

mean 

RMSE

mean 

R-sq

Eval1 

Accuracy

Eval2 

Accuracy

Mean 

Accuracy

TZ2&3 

best 

RMSE

TZ2&3 

mean 

RMSE

TZ2&3 

best 

R-sq

TZ2&3 

mean 

R-sq

2000 RF5 0.051 RF5 0.615 RF 0.057 0.518 0.615 0.559 0.587 0.061 0.067 0.033 0.028

QRF 0.061 0.468 0.523 0.524 0.524 0.065 0.030

5000 RF3 0.043 RF3 0.479 RF 0.044 0.448 0.631 0.538 0.585 0.058 0.061 0.039 0.034

QRF 0.047 0.416 0.528 0.524 0.526 0.061 0.036

10000 RF1 0.036 RF4 0.485 RF 0.037 0.467 0.641 0.542 0.591 0.056 0.057 0.090 0.076

QRF 0.039 0.429 0.533 0.528 0.531 0.057 0.071

2000 RF1 0.017 QRF1 0.444 RF 0.020 0.291 0.446 0.535 0.491 0.052 0.052 0.239 0.219

QRF 0.021 0.316 0.446 0.524 0.485 0.053 0.200

2000 RF3 0.063 RF1 0.583 RF 0.066 0.520 0.533 0.538 0.536 0.051 0.051 0.264 0.231

QRF 0.071 0.466 0.523 0.524 0.524 0.052 0.222

5000 RF3 0.045 RF3 0.533 RF 0.048 0.495 0.533 0.531 0.532 0.051 0.052 0.257 0.242

QRF 0.052 0.438 0.523 0.524 0.524 0.052 0.241

10000 RF4 0.038 RF5 0.497 RF 0.039 0.463 0.538 0.545 0.542 0.051 0.051 0.273 0.265

QRF 0.042 0.414 0.523 0.524 0.524 0.052 0.266

2000 RF4 0.057 RF4 0.645 RF 0.063 0.576 0.528 0.531 0.530 0.051 0.052 0.247 0.203

QRF 0.068 0.518 0.523 0.524 0.524 0.052 0.198

5000 RF4 0.043 QRF4 0.539 RF 0.047 0.505 0.538 0.531 0.535 0.051 0.051 0.252 0.240

QRF 0.050 0.445 0.523 0.524 0.524 0.051 0.239

10000 RF4 0.037 RF4 0.507 RF 0.037 0.485 0.538 0.531 0.535 0.051 0.051 0.285 0.265

QRF 0.041 0.422 0.518 0.521 0.519 0.051 0.265

varstack_darkvegES1Z1 

ESZ3 

ES2Z2

varstack_darkveg

varstack_darkveg

varstack_darkveg

ES1Z1

ES1Z3

ES1Z1 

ES1Z3
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Tiles Combination name

target 

training 

points

best 

model 

best 

RMSE 

best    

R-sq 

model

best  

R-sq Model

mean 

RMSE

mean 

R-sq

Eval1 

Accuracy

Eval2 

Accuracy

Mean 

Accuracy

TZ2&3 

best 

RMSE

TZ2&3 

mean 

RMSE

TZ2&3 

best   

R-sq

TZ2&3 

mean 

R-sq

2000 RF1 0.055 RF1 0.625 RF 0.061 0.565 0.528 0.545 0.537 0.051 0.052 0.304 0.265

QRF 0.065 0.517 0.523 0.521 0.522 0.052 0.257

5000 RF4 0.046 RF4 0.510 RF 0.048 0.461 0.538 0.542 0.540 0.052 0.053 0.288 0.244

QRF 0.052 0.405 0.523 0.528 0.526 0.053 0.242

10000 RF2 0.035 RF5 0.491 RF 0.038 0.452 0.533 0.542 0.538 0.053 0.053 0.261 0.255

QRF 0.041 0.378 0.523 0.521 0.522 0.053 0.262

2000 RF3 0.052 RF3 0.657 RF 0.059 0.589 0.538 0.535 0.537 0.052 0.052 0.207 0.217

QRF 0.062 0.560 0.523 0.521 0.522 0.053 0.193

5000 RF5 0.044 QRF5 0.559 RF 0.046 0.503 0.544 0.531 0.538 0.051 0.052 0.232 0.185

QRF 0.046 0.454 0.523 0.521 0.522 0.053 0.180

10000 RF5 0.036 RF4 0.507 RF 0.037 0.481 0.538 0.531 0.535 0.052 0.053 0.237 0.179

QRF 0.044 0.427 0.518 0.524 0.521 0.053 0.180

2000 RF5 0.100 RF5 0.688 RF 0.102 0.674 0.641 0.542 0.591 0.092 0.102 0.195 0.166

QRF 0.107 0.653 0.523 0.542 0.533 0.101 0.166

5000 RF5 0.070 RF5 0.678 RF 0.072 0.669 0.579 0.542 0.561 0.075 0.082 0.201 0.202

QRF 0.078 0.626 0.518 0.528 0.523 0.082 0.195

10000 RF3 0.056 RF3 0.653 RF 0.058 0.611 0.554 0.535 0.544 0.067 0.072 0.210 0.200

QRF 0.062 0.565 0.523 0.531 0.527 0.074 0.202

2000 RF5 0.098 RF5 0.735 RF 0.107 0.706 0.646 0.573 0.610 0.056 0.059 0.508 0.499

QRF 0.103 0.689 0.538 0.538 0.538 0.059 0.498

5000 RF2 0.078 RF2 0.727 RF 0.081 0.703 0.600 0.577 0.588 0.044 0.046 0.588 0.566

QRF 0.087 0.671 0.538 0.524 0.531 0.047 0.559

10000 RF3 0.062 RF3 0.702 RF 0.064 0.669 0.579 0.563 0.571 0.037 0.038 0.636 0.630

QRF 0.069 0.631 0.528 0.524 0.526 0.038 0.629

varstack_darkvegES1Z1 

ESZ3 

ES2Z2 

ES2Z3 

ES2Z4   

TZ1

varstack_darkvegES1Z1 

ESZ3 

ES2Z2 

ES2Z3 

ES2Z4    

TZ1,2&3

ES1Z1 

ESZ3 

ES2Z2 

ES2Z3

varstack_darkveg

varstack_darkvegES1Z1 

ESZ3 

ES2Z2 

ES2Z3 

ES2Z4
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