
Biomathematics and Statistics Scotland 

  

 

 

 

  
 Prediction of New Colonies – Seabird Tracking 

Data (Under Agreement C10-0206-0387) 

CONTRACT No: C10-0206-0387 

 

 

Report submitted to: 

 

Joint Nature Conservation Committee 

November 2012 

 

 

 

 

Authors:  

Mark J Brewer, Jackie M Potts, 

Elizabeth I Duff, David A Elston 



2 

 

 

CONTENTS PAGE 

  

1. Non-Technical Summary 3 

2. Introduction 4 

3. Data 6 

4. Methodology 14 

5. Results 17 

6. Prediction Maps of Usage 29 

7. Discussion 42 

 

 

In addition to this report, there are two further documents 

associated with this project: 

 

(i) BioSS Terns Report II – Results Appendix; 

 

(ii) BioSS Terns Report II– Software; 

 

and also ancillary files: 

 

(i) Spreadsheet files of grid predictions for each of the 

thirteen species/colony combinations for unsurveyed 

colonies; 

 

(ii) R code files for: ordination; fitting models to a 

combination of sites; cross-validation; grid predictions 

 

(iii) cleaned and standardised versions of the data files (for 

survey data and grids). 

 

 

 

 

This report is © Biomathematics and Statistics Scotland 2012



3 

 

 

1.  Non-Technical Summary 

The Joint Nature Conservation Committee (JNCC) is working on the identification of important 

marine areas around the UK that are used by five species of tern during the breeding season.  For the 

four larger tern species (Arctic, common, roseate and Sandwich terns), data are available from boat 

surveys, using both visual tracking and transect survey methods. 

Following a competitive tendering process, in June 2012 BioSS was tasked with making predictions 

of usage and preference for Arctic, common and Sandwich terns for colonies lacking visual tracking 

data. 

This work forms part of  Phase II of a larger tern project JNCC are undertaking, and follows on from a 

previous project completed by BioSS earlier in 2012 as part of Phase I of the tern project. The Phase I 

work we undertook previously used visual tracking data to learn about important associations between 

terns’ usage/preference and environmental covariates, and to map usage/preference for each tern 

species for those colonies with tracking data.  The methodology developed from the Phase I project – 

essentially a flexible weighted logistic regression model – would be used in this new, Phase II project. 

Predictive models were defined for all new colonies which combined data from all relevant colonies 

for each species separately.  An evaluative procedure (employing assessment by a form of cross-

validation) determined that in terms of the colonies with data, better predictions were obtained by 

combining data in this way rather than using ecological consideration or multivariate analysis of 

environmental data to suggest subsets of “similar” colonies for prediction.  As part of the cross-

validation analysis, we discovered that the most important predictors are distance to colony, distance 

to shore, bathymetry and chlorophyll concentration. 

Based upon the above analysis, predictions and prediction maps were produced for all requested 

unsurveyed colonies. 
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2.  Introduction 

2.1  Background – Previous Phase 

This project represents Phase II of analysis of data sets on four species of tern in several colonies in 

UK offshore waters.  Phase I was concerned with developing models specifically designed for the 

type of tracking data available.  The report for Phase I (Brewer et al., 2012) will be referred to 

throughout this document as “the Phase I report”. 

The Phase I analysis determined that a weighted logistic regression was appropriate for analysing the 

data; the data itself was formed of individual tracks of known foraging instances (forming cases) with 

sets of randomly generated perturbations of those tracks (forming controls).  The analysis thus took a 

case-control form.  It was found that hierarchical (or random effect, mixed) models were not required, 

as had been used in previous tracking analysis work by Aarts et al. (2008) and Wakefield et al. (2010) 

– the difference being that for JNCC’s dataset, there were no known repeat observations per 

individual.  In this framework, the cases represent “presence” and the controls represent “absences”.  

A number of explanatory variables were included in the regression, representing the environmental 

conditions at different locations, but also including the measures “distance to colony” and “distance to 

shore”. 

Different forms of weighted logistic models were considered during Phase I analyses, using a range of 

facilities in R.  Both GLMs and GAMs were considered with various model selection strategies where 

appropriate.  Spatial autocorrelation of the response data was addressed, both by the weighting in the 

regression and via a spatial correlation network derived using the INLA (Integrated Nested Laplace 

Approximation) package in R (INLA, 2012).  Different models were appropriate depending on the 

purpose of the modelling – for example, whether the aim was to identify significant relationships with 

the environmental covariates or to make predictions of usage and/or preference by each species in 

each location. 

Further details can be found in the Phase I report itself. 

2.2  Second Phase – Colonies Without Tracking Data 

JNCC wish to provide predictions for a number of colonies which have no tracking data available 

(Phase II).  The task at hand is to use data from surveyed colonies, using models such as those 

developed in Phase I, to make predictions for these new colonies. 

The new colonies as specified in the invitation to tender and subsequently modified by JNCC (with 

agreement from BioSS) are the following (with colony names we shall use in the rest of this report in 

bold): 
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Table 1. Colonies without tracking data available, for which predictions are to be made. 

Common tern 

Dungeness 

Foulness (Greater Thames) 

Breydon Water (Norfolk) 

Liverpool Bay (The Dee estuary; Ribble & Alt estuaries) 

Strangford Lough (N Ireland) 

Carlingford Lough (N Ireland) 

Farne Islands (Northumberland) 

Isle of May (Firth of Forth) 

 

Sandwich tern 
Liverpool Bay (Duddon Estuary) 

 Carlingford Lough (N Ireland) 

 Strangford Lough (N Ireland) 

Arctic tern 
Strangford Lough (N Ireland) 

Isle of May (Firth of Forth) 

 

These colonies supplement the list of colonies in the Phase I report; however, we provide a list here of 

colonies with data, as some new colonies (indicated with *) have been added for this Phase II work: 

Table 2. Colonies with tracking data available. 

Common tern 

Coquet and Farne* Islands (Northumberland) 

Larne Lough (Northern Ireland) 

Glas Eileanan / South Shian (Mull area, west Scotland) 

Leith Docks (Firth of Forth) 

Cemlyn (Anglesey) 

Sandwich tern 

Coquet and Farne Islands (Northumberland) 

Larne Lough and Cockle* Island (Northern Ireland) 

Sands of Forvie (Aberdeenshire) 

Cemlyn (Anglesey) 

Arctic tern 
Coquet and Farne Islands (Northumberland)  

Copeland / Cockle Islands (Outer Ards, Northern Ireland)  

 

The question of how to determine which of the colonies with survey data should be used to predict 

which of the colonies without is addressed in the methodology Section 4.  This required us to 

determine suitable metrics for comparing models (within species) fitted using different subsets of 

colonies and different selected covariates. 
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3.  Data 

3.1  Data Summary 

The environmental covariates for this phase are as for the first part: see Section 2 of the Phase I report 

for full details. As part of this second phase, we were required to conduct a deeper inspection of the 

data in order to justify the “extrapolation” required in producing predictions and maps for the new 

colonies.  Boxplots were used to compare the ranges of the environmental covariates between 

colonies; this is discussed in Section 4.2.  Such differences in ranges were not of concern in Phase I as 

each colony was analysed separately; only when multiple colonies are considered together is range 

mismatch a potential problem.  

Boxplots were also used to identify outliers and variables which have a skewed distribution.  Section 

3.2 which follows contains a discussion of outliers in some of the environmental variables; this 

follows up a recommendation made by us in the discussion (Section 6) of the Phase I report.  We also 

considered whether we could use logged versions of chlorophyll concentrations and wave and current 

shear stresses; on the basis of our new findings, we would recommend that this transformation could 

have been applied during the Phase I analysis. 

Some of the covariates considered in Phase I of the project were not considered further in Phase II. 

Eastness, northness, slope and sand were not considered because they were not selected in any of the 

Phase 1 models.  (There was one exception where slope was selected by the AIC criterion, but was 

not significant).  The interannual standard deviation of probability of a frequent thermal front in 

spring and summer were also excluded from the model selection process for Phase II.  This was 

because even though they were selected in some Phase I models, it did not seem biologically realistic 

to suppose that the birds would respond to these variables while not responding to the probability of a 

frequent thermal front itself.  We would recommend excluding these from the Phase I models also. 

3.2  Variable Inspection – Outliers 

The boxplots in Figure 1 illustrate the range of values for each environmental covariate; as the 

predictive grids for Sandwich (out to 55km from the colony) are different from those for the other 

three species (out to 31km from the colony), there is a separate plot having only the colonies relevant 

to Sandwich terns.  The variable name is indicated by the y-axis, and the key for the colony codes on 

the x-axis is as follows: 

ce Cemlyn 

co Coquet 

fa Farnes 

ll Larne Lough 

le Leith 

mu Mull 

oa Outer Ards 

br Breydon 

ca Carlingford Lough 

dn Dungeness 

fn Foulness 

im Isle of May 

ri Ribble 
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st Strangford Lough 

fo Forvie 

du Duddon 

 

The boxplots show a negatively skewed distribution for sea surface temperature, with low values 

occurring near the shore.  The extent to which these data are reliable is uncertain.  Removal of the 

values that were considered unreliable would have resulted in considerable loss of data, particularly 

around the shore, so sea surface temperature was excluded from the analysis instead. 

Chlorophyll concentrations and wave and current shear stresses had highly positively skewed 

distributions and were therefore log-transformed prior to further analysis.  (The log-transformed 

versions are shown in the boxplots below).  There was no reason to question the reliability of these, as 

lognormal distributions frequently arise for variables such as chemical concentration which have low 

mean values, high variances, and cannot be negative.  On the other hand, some of the sea surface 

temperature values, particularly those below 0C, seemed unrealistic. 
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Figure 1. Boxplots of environmental covariates.  Colonies to the left of the vertical line are those 

with tracking data and those to the right are those without.  
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4.  Methodology 

4.1  Weighted Logistic Regression via a Case-Control Design 

As noted earlier, the form of statistical model used for analysing the tern tracking data was a weighted 

logistic regression based on a case-control design.  Full details of the modelling procedure and the 

generation of the control data can be found in the Phase I report.  We did not include INLA in Phase 

II, as it was only used for model checking in Phase I and not for making predictions. 

 

4.2  Comparisons of Environmental Data Between Colonies  

One extremely important aspect of this project is to determine which colony or colonies can be used 

to build models to make predictions for new colonies lacking tracking data.  For each species, we 

decided to compare the similarity or otherwise across colonies (or, more specifically, the foraging 

ranges of colonies) of the environmental covariates used in the modelling.  The reasoning for this is 

that if a set of colonies appears to contain approximately the same environments, this might be 

justification for using a model from one or more colonies within the set to obtain predictions for 

another.  On the other hand, colonies which are well-separated in multivariate environment space may 

present radically different environments to terns, and therefore a model from one such colony may not 

be suitable to predicting for another. 

We compare the environmental data between colonies in two ways: firstly, we look at simple boxplot 

summaries (presented in Section 3.2) for each environmental covariate in turn; secondly, we use a 

principal component analysis (PCA) to study the combination of information from all covariates 

simultaneously.  Principal component analysis takes a set of variables and replaces them with a 

smaller number of new variables (the principal components) in such a way that as much as possible of 

the information in the original variables is retained in the new ones. This allows us to plot the data in a 

concise way, for example by plotting the second principal component (PC2) against the first principal 

component (PC1). Colonies which are close together in this plot will be similar in terms of the 

original set of environmental covariates. This exploratory analysis will then help us in selecting 

suitable subsets of colonies with which to build models for making usage and preference predictions 

for the new colonies. 

Visual inspection of the boxplots in Section 3.2 can indicate which variables may be unsuitable for 

extrapolating from one colony to another.  We found two such variables: (i) Salinity is a significant 

covariate at Cemlyn, but the boxplots show that the distribution of salinity at Cemlyn is very different 

from that at other colonies; (ii) wave and current shear stress are significant covariates at Outer Ards, 

but the distribution of wave shear stress was different from that at many of the other colonies. 

The set of variables to be considered in the PCA was: 

bathy_1sec , strat_temp , summ_front , spring_front , log_chl_apr , log_chl_may , 

log_chl_june , log_ss_wave , log_ss_current , sal_spring , sal_summ. 

However, some of the environmental variables are not available for some of the new colonies.  For 

example, at Dungeness ss_wave, ss_current, sal_spring and sal_summ are entirely missing.  The PCA 

function in R will remove entirely any row that contains a missing value; as such, trying to use all the 
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above variables can result in all data for one or more colonies being removed.  The offending 

variables are the final four in the set above; hence, for each species, we conduct a PCA both on the 

above set of covariates (All Variables) and the following smaller set (Reduced Set of Variables): 

bathy_1sec , strat_temp , summ_front , spring_front , log_chl_apr , log_chl_may , 

log_chl_june . 

 

4.3  Cross Validation for Selecting Predictive Models for Colonies/Species 

JNCC supplied us with suggested groupings for prediction purposes and were taken into consideration 

in the cross-validation exercise.  These are summarised briefly as follows and were based loosely on 

geographical similarities. Some of these such as the close similarity between Coquet and Farne 

Islands were confirmed by the PCA. 

Table 3. Suggested colony groupings 

Common tern 

Group Model  Prediction 

1 Coquet Island, 

Farne Islands (very little data) 

Farne Islands, 

Isle of May 

2 Coquet Island, 

Farne Islands (very little data), 

Cemlyn  

Dungeness 

 

3 Larne Lough  

 

Strangford Lough, 

Carlingford Lough 

4 Larne Lough  

Cemlyn 

Strangford Lough, 

Carlingford Lough 

5 Coquet Island, 

Farne Islands,  

Leith Docks  

Foulness, 

Breydon Water 

6 Larne Lough, 

Glas Eileanan / South Shian (Mull), 

Cemlyn  

Liverpool Bay (Ribble) 

 

 

 

Arctic tern 

Group Model Prediction 

1 Coquet Island, 

Farne Islands 
Isle of May 

2 Outer Ards Strangford Lough 
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Sandwich tern 

Group Model  Prediction 

1 Larne Lough, 

Cockle Island 

Carlingford Lough, 

Strangford Lough 

2 Larne Lough, 

Cockle Island, 

Cemlyn 

Duddon Estuary, 

Carlingford Lough, 

Strangford Lough 

 

The suggested ecological groupings and the PCA exercise indicated which colonies might be similar 

in terms of environment and resulted in a series of colony groupings.  Data from each colony within 

each resulting grouping were combined to produce models that could be used to make predictions for 

new colonies.  

Cross-validation was used to select which colonies to use for prediction.  This was done by assessing 

the fit of predictions to the tracking data  from a particular colony from (i) a model developed using 

the remaining colonies in a proposed grouping and comparing this with (ii) a model developed using 

data from all the remaining colonies.  For example, it was suggested that data from Coquet and Farnes 

might be used to predict Arctic terns at the Isle of May.  We therefore tested whether Farnes was 

better predicted using a model developed for Coquet alone, or a model using all available Arctic tern 

data (Coquet and Outer Ards together). The assessment was carried out on the tracking data 

(observations and controls) rather than on the grid data because we did not have presence-absence 

data in the form of a grid. 

Two scores were used to assess quality of predictions (fitted to the tracking data): 

(1) The sum of squared errors 
2)( ii py   

If this quantity is divided by the number of observations, it gives the mean squared error, also known 

as the Brier score when applied to probabilistic predictions (Brier, 1950);
 

(2) A score related to the log-likelihood ))1log()1()log(( iiii pypy   

where y is the binary variable indicating foraging behaviour and p is the predicted probability.   

The intercept is arbitrary for case-control data as it depends on the ratio of controls to cases, which we 

have chosen, and which has no biological meaning.  An adjustment was therefore made to the 

intercept for each model before calculating the two scores.  A constant was added to the intercept to 

ensure that the sum of the predicted probabilities was equal to the sum of the values of the binary 

variable. 

There are many other measures that could have been used; see Liu et al. 2011 for a review.  For 

example, the area under the receiver operating characteristic (ROC) curve, known as the AUC, is 

widely used, although it has received some criticism (Lobo et al., 2008).  It is unlikely that the overall 

conclusions would have changed had we used a different metric – the results in the end were clear and 

consistent in terms of prediction assessment, and predicted maps tended to vary only slightly for the 

better-fitting models in any case. 

Results and interpretation from this analysis are found in Section 5.  The predictions themselves can 

be found in supplemental spreadsheets while maps of predictions are presented in Section 6. 
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5.  Results 

5.1  Principal Component Analysis - Comparisons of Environmental Data 

5.1.1  Common Tern – All Variables 

With the full set of PCA variables, it can be seen that Farnes, Isle of May, Coquet and Leith all 

occupy the same space in PC1 and PC2, suggesting that these colonies are similar in terms of the 

major sources of variation in environmental conditions.  Strangford and Carlingford Loughs appear to 

lie between (but overlapping) Ribble and Larne Lough.  Cemlyn seems to be something of an outlier 

here, but note that there are a large number of missing values for the variable ss_current, which 

removes most of the data points for that colony. 

 

5.1.2  Common Tern – Reduced Set of Variables 

With the reduced set of PCA variables, the picture changes dramatically.  From the plot of PC2 vs 

PC1, the colonies not seem to separate out at all well.  The next plot – showing PC4 against PC3 – 

shows that we need to go to the third principal component before we start getting clear colony 

distinction.  This in itself suggests that differences between colonies are not the major source of 
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variability in environmental conditions.  In the PC4 vs PC3, the patterns are similar compared with 

the plot in Section 5.1.1, but note that there are now more colonies included – those with all missing 

values in the excluded variables.  Interestingly, Dungeness seems to sit well with the Irish Sea 

colonies, although we should stress again that from the PC2 vs PC1 plot, Dungeness does not appear 

noticeably different from other colonies.  In either plot, Foulness and Breydon seem similar to each 

other; they resemble Ribble and Dungeness most closely in PC2 vs PC1, but are linked with Coquet in 

PC4 vs PC3. 
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5.1.3  Sandwich Tern – All Variables 

With the full set of PCA variables, we see that Coquet, Forvie and Farnes are similar, and that 

Duddon overlaps Cemlyn.  Larne Lough, Carlingford and Strangford lie in between these two groups. 
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5.1.4  Sandwich Tern – Reduced Set of Variables 

With the reduced set of PCA variables, as with Common Terns we see a much less clear separation of 

colonies.  What we do see is that Duddon now overlaps Cemlyn very well, and that the Loughs Larne, 

Strangford and Carlingford lie between Duddon/Cemlyn and Coquet/Farnes/Forvie.  
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5.1.5  Arctic Tern – All Variables 

With the full set of PCA variables, there is very clear separation into groups.  Coquet, Farnes and Isle 

of May form one group, while Carlingford and Outer Ards form another.  Cemlyn is something of an 

outlier, but as noted for Common Terns, very many missing values for one variable means most 

observations are deleted. 
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5.1.6  Arctic Tern – Reduced Set of Variables 

With the reduced set of PCA variables, the group separation is less clear than with the full set, but still 

apparent. Coquet, Farnes and Isle of May still overlap strongly, whereas Cemlyn, now less of an 

outlier, overlaps Outer Ards.  Carlingford Lough lies between these two overlapping groups. 
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5.2  Cross-Validation for Selecting Predictive Models for Colonies/Species 

The aim was to find a set of variables that were consistent predictors across the different colonies for 

which we have data, as it is more likely that these will be successful at making predictions for new 

colonies.  We took this approach, rather than considering all variables when selecting a model for  a 

combination of different colonies, because the latter approach would have tended to select variables 

that explain a difference in intercept between colonies (which is of no interest), as well as those which 

explain the pattern of foraging within a colony.  In theory, as we have used a ratio of 12 controls to 

each data point we would expect the intercept to be the same for each colony.  However, in practice, it 

differs because points have been excluded where control tracks fell on land and where there are 

missing covariate values. 

The variables that are consistently selected are dist_col, dist_shore, bathy_1sec and chl_june.  When 

considering models for combinations of sites in the cross-validation exercise the candidate variables 

were reduced to this set.  The variable that most commonly appeared to have a nonlinear effect in the 

Phase I models was dist_col.  We therefore considered GAM models with a nonlinear term in dist_col 

as possible candidate models, but constrained the other terms to be linear. 
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Removal of some variables and log-transformation of others, as discussed in Section 3.2, led to some 

changes in the models for single colonies developed in Phase I of the project.  New models selected 

using either AIC (Akaike’s Information Criterion) or likelihood ratio tests (LRT) are shown below. 

This is to demonstrate that dist_col, dist_shore, bathy_1sec and chl_june were being selected 

consistently; where AIC selects additional variables that are not on this list we present only the results 

for LRT. 

Arctic terns 

Coquet: dist_col, chl_june, bathy_1sec (AIC and LRT) 

Farnes: dist_col, dist_shore, sal_spring (AIC; LRT omits dist_shore) 

Outer Ards: dist_col, chl_june, ss_wave, ss_current (AIC and LRT) 

Common terns 

Cemlyn: dist_col, bathy_1sec (AIC and LRT; salinity excluded) 

Leith: dist_col, dist_shore, chl_may, chl_june, sal_summ (LRT) 

Coquet: dist_col, bathy_1sec, chl_june (LRT) 

Larne Lough: dist_col, dist_shore, chl_june, bathy_1sec (LRT) 

Sandwich terns 

Cemlyn: dist_col, dist_shore, chl_apr, chl_june (AIC; LRT omits dist_shore and chl_june) 

Coquet: dist_col, dist_shore (LRT) 

Farnes: dist_shore, sum_front, spring_front, bathy_1sec, sal_summ (AIC) 

Forvie: dist_shore, strat_temp (AIC and LRT) 

Larne Lough: dist_col, dist_shore (LRT – after excluding covariates with large numbers of missing 

values)  

Cockle Island: dist_col, chl_june, ss_current (AIC and LRT) 

 

Cross-validation results are shown in Table 4 below.  Note that due to the large number of missing 

chlorophyll values for Larne Lough, chlorophyll was excluded when making predictions for Larne 

Lough, and from any models in which Larne Lough is the sole colony used to make the predictions. 

In general, predictions are better when data from all available colonies for that species are combined.  

There are some cases where predictions based on a single colony are slightly better than those based 

on all colonies combined, but they can be considerably worse.  In the final models we have therefore 

chosen to use data from all available colonies for each species, to provide a consistent approach.  The 

use of GAM models with a non-linear term for distance to colony sometimes makes predictions worse 

when the model is applied to another colony.  Chakraborty et al. (2011) note in general that GAMs 

can be poor for out-of-sample prediction.  Linear terms only were therefore used in the final 

predictive models.   
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The following covariates were used for each species in the final models: 

Arctic terns: distance to colony and bathymetry 

Common terns: distance to colony, distance to shore and bathymetry 

Sandwich terns: distance to colony, distance to shore, bathymetry and June chlorophyll concentration. 

(June chlorophyll concentration was omitted for Strangford and Carlingford Loughs due to the large 

number of missing values). 

Full details of the models are presented in the Results Appendix.
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Table 4. Results of cross-validation. Models with lower values of the sum of squared errors and higher values (i.e. lower absolute values) of the LL 

score are better; the best model in each case is shown in bold type. The notation s(dist_col) indicates a GAM with a nonlinear term in distance to 

colony. 

Species Colony to 
predict 

Model developed for Covariates LL Score Sum of 
Squared 
Errors 

Arctic Coquet Farnes dist_col -9612 2582 
  Farnes, Outer Ards dist_col, bathy_1sec -9560 2558 

Arctic Farnes Coquet dist_col, chl_june, bathy_1sec -4641 1306 
  Coquet s(dist_col), bathy_1sec, chl_june -4770 1332 
  Coquet, Outer Ards dist_col, chl_june, bathy_1sec -4297 1217 
  Coquet, Outer Ards dist_col, bathy_1sec -4132 1180 

Common Coquet Cemlyn dist_col, bathy_1sec -7657 1970 
  Leith dist_col, dist_shore, chl_may, chl_june, sal_summ -5979 1749 
  Leith dist_col, chl_june -5868 1744 
  Cemlyn, Leith, Larne Lough, Mull, Farnes dist_col, bathy_1sec -6165 1769 
  Cemlyn, Leith, Larne Lough, Mull, Farnes dist_col, bathy_1sec, dist_shore -6108 1761 
  Cemlyn, Leith, Larne Lough, Mull, Farnes s(dist_col), bathy_1sec -6123 1772 

 Cemlyn Coquet dist_col, bathy_1sec, chl_june -3026 916 
  Coquet s(dist_col), bathy_1sec, chl_june -3021 929 
  Larne Lough s(dist_col), bathy_1sec, dist_shore -4497 1326 
  Coquet, Leith, Farnes dist_col, bathy_1sec, chl_june, dist_shore -3213 971 
  Coquet, Leith, Farnes s(dist_col), bathy_1sec, dist_shore -3325 1049 
  Coquet, Leith, Larne Lough, Mull, Farnes dist_col, bathy_1sec, dist_shore -3331 1007 
  Coquet, Leith, Larne Lough, Mull, Farnes dist_col, bathy_1sec, chl_june, dist_shore -3324 1004 

 Leith Coquet dist_col, bathy_1sec, chl_june -16574 4514 
  Coquet s(dist_col), bathy_1sec, chl_june -16091 4422 
  Coquet, Cemlyn, Farnes dist_col, bathy_1sec, chl_june -17024 4627 
  Cemlyn, Coquet, Larne Lough, Mull, Farnes dist_col, dist_shore, bathy_1sec -14806 4139 
  Cemlyn, Coquet, Larne Lough, Mull, Farnes s(dist_col), bathy_1sec -14761 4134 
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Larne Lough Cemlyn dist_col, bathy_1sec -9214 1477 
  Coquet, Farnes, Leith, Mull dist_col, bathy_1sec,dist_shore -5034 1373 
  Cemlyn, Coquet, Leith, Mull, Farnes dist_col, bathy_1sec,dist_shore -5046 1375 
  Cemlyn, Coquet, Leith, Mull, Farnes s(dist_col), bathy_1sec, dist_shore -5185 1415 

Sandwich Larne Lough Cockle Island dist_col, dist_shore -2692 794 
  Cockle Island, Cemlyn dist_col, dist_shore, bathy_1sec -2523 736 
  Cockle Island, Cemlyn s(dist_col), dist_shore -2942 879 
  Cockle Island, Cemlyn, Coquet, Farnes, Forvie dist_col, dist_shore, bathy_1sec -2063 595 
  Cockle Island, Cemlyn, Coquet, Farnes, Forvie  s(dist_col), dist_shore, bathy_1sec -2250 697 

 Cemlyn Larne Lough, Cockle Island dist_col, bathy_1sec -6742 2016 
  Larne Lough, Cockle Island, Coquet, Farnes, Forvie dist_col,bathy_1sec,dist_shore -6729 1834 
  Larne Lough, Cockle Island, Coquet, Farnes, Forvie s(dist_col), dist_shore, bathy_1sec -6606 1834 

 Cockle  Cemlyn, Larne Lough dist_col,bathy_1sec,dist_shore,chl_june -5990 1387 
 Island Cemlyn, Larne Lough, Coquet, Farnes, Forvie dist_col,bathy_1sec,dist_shore,chl_june -4760 1282 
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6.  Prediction Maps of Usage 

To calculate usage, preference is divided by distance to colony and multiplied by a scale factor which 

ensures that the probabilities sum to one.  For mapping purposes, the probabilities have been 

multiplied by 1000. A very small number of points closest to the colony were removed if this gave a 

value greater than 50. 

Common Tern, Dungeness 
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Common Tern, Foulness 
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Common Tern, Breydon Water 
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Common Tern, Dee estuary  
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Common Tern, Ribble estuary 
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Common Tern, Strangford Lough 
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Common Tern, Carlingford Lough 
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Common Tern, Farne Islands 
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Common Tern, Isle of May 
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Arctic Tern, Strangford Lough 
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Arctic Tern, Isle of May 
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Sandwich Tern, Duddon estuary 
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Sandwich Tern, Strangford Lough 
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Sandwich Tern, Carlingford Lough 
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7.  Discussion 

Cross-validation has shown that it is generally better to combine all available data for a tern species 

when making predictions for a new colony, rather than basing predictions on a colony or colonies that 

appear to be ecologically similar.  This means that the model developed for each species is more 

robust, because it is based on data from a larger number of tracks, and covering a wider range of 

environments.  It might be possible to give the colonies differing weights, but it is unclear how such 

weights should be chosen, as they would need to take account of the amount of data available for each 

colony, as well as its ecological similarity to the colony being predicted which is difficult to measure 

in relation to a terns assessment of its environment.  The analysis has also shown that whereas the best 

models for predicting the available data from a colony may involve many covariates and non-linear 

terms, simple linear models with a small number of variables (in particular distance to colony, 

distance to shore, bathymetry and chlorophyll concentration), are better for extrapolating to a different 

colony. 
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A.  Results 

This appendix contains detailed output and results from the Phase II analysis, and is supplement to the 

Phase II report. 

A.1  Principal Component Analysis Output 

This section presents the textual output for the principal component analysis of Section 5.1 of the 

main Phase II report.  It is organised by species, and there are two analyses reported per species as 

detailed in Section 4.2 of the main report – essentially, two subsets of variables were considered for 

each species as four variables were not available for some of the new colonies to be predicted. 

A.1.1  Common Tern 

A.1.1.1  All Variables 

Importance of components: 

                         PC1    PC2    PC3     PC4     PC5     PC6     PC7 

Standard deviation     2.126 1.5258 1.2821 0.89203 0.82528 0.56805 0.47707 

Proportion of Variance 0.411 0.2116 0.1494 0.07234 0.06192 0.02933 0.02069 

Cumulative Proportion  0.411 0.6226 0.7721 0.84440 0.90632 0.93565 0.95634 

 

                           PC8     PC9    PC10    PC11 

Standard deviation     0.44220 0.40537 0.34546 0.03171 

Proportion of Variance 0.01778 0.01494 0.01085 0.00009 

Cumulative Proportion  0.97412 0.98906 0.99991 1.00000 

 

Rotation: 
                       PC1          PC2         PC3         PC4           PC5 

bathy_1sec     -0.34789018  0.114531529 -0.40377495  0.05648162 -0.3423821986 

strat_temp     -0.09743510 -0.489624362 -0.35009311  0.14770468  0.0770250023 

summ_front      0.33034424 -0.135871479 -0.27434103 -0.52322618  0.0258606694 

spring_front    0.30253849 -0.145860406 -0.38013477 -0.48857297 -0.0805923661 

log_chl_apr    -0.39068907  0.123402371 -0.08681268 -0.32611016  0.2459810142 

log_chl_may    -0.41362149 -0.006161953 -0.06361030 -0.25920507  0.2290126649 

log_chl_june   -0.36799755  0.179680331  0.18250815 -0.33874803  0.3166515897 

log_ss_wave    -0.34548105  0.126556488 -0.23844791 -0.02753322 -0.6298072283 

log_ss_current  0.01170186 -0.122913502  0.60210914 -0.41516517 -0.5097045314 

sal_spring     -0.20750693 -0.556405128  0.14135013  0.03075052  0.0003298850 

sal_summ       -0.21708491 -0.564935501  0.10183582  0.01314719 -0.0001522304 

 

                       PC6         PC7         PC8         PC9        PC10 

bathy_1sec      0.02027211 -0.01285566  0.16672650 -0.06823799 -0.74119712 

strat_temp     -0.67698380  0.31282437  0.02654095  0.16653763  0.10328001 

summ_front      0.30555963  0.49846616  0.41111325 -0.10631230  0.02356664 

spring_front   -0.07187747 -0.51113293 -0.43452626  0.19445717 -0.06619282 

log_chl_apr    -0.23637725 -0.46015798  0.53018373 -0.21354450  0.25170869 

log_chl_may     0.03867851  0.27288018 -0.56205136 -0.55891159  0.02368233 

log_chl_june    0.03943222  0.21622951 -0.07278135  0.71144225 -0.15555630 

log_ss_wave     0.18201636  0.09900163 -0.07279246  0.19456774  0.56942093 

log_ss_current -0.38599921  0.07448303  0.02966573 -0.11773479 -0.14298643 

sal_spring      0.36501285 -0.16915373  0.05745333  0.03675714 -0.03983594 

sal_summ        0.26165638 -0.12379046  0.04355867  0.03591974 -0.02520122 

 

                       PC11 

bathy_1sec      0.001203605 

strat_temp      0.072024765 

summ_front      0.002687031 

spring_front    0.007917921 

log_chl_apr     0.008371709 

log_chl_may     0.019864210 



log_chl_june    0.003167847 

log_ss_wave     0.005181684 

log_ss_current  0.018147376 

sal_spring      0.677009898 

sal_summ       -0.731824969 

 

A.1.1.2  Reduced Set of Variables 

Importance of components: 

                          PC1    PC2    PC3     PC4     PC5     PC6     PC7 

Standard deviation     1.8900 1.1842 0.9854 0.71314 0.45140 0.42854 0.39847 

Proportion of Variance 0.5103 0.2003 0.1387 0.07265 0.02911 0.02623 0.02268 

Cumulative Proportion  0.5103 0.7106 0.8493 0.92197 0.95108 0.97732 1.00000 

 
Rotation: 

                     PC1         PC2         PC3         PC4         PC5 

bathy_1sec   -0.36628037 -0.30889449 -0.26629352  0.76295247 -0.27662815 

strat_temp    0.09048098  0.36518793 -0.88566451 -0.15922185 -0.12377532 

summ_front    0.33978763 -0.56001521 -0.12040266 -0.27796552 -0.60160585 

spring_front  0.32285029 -0.58616507 -0.22613592 -0.04298039  0.56172147 

log_chl_apr  -0.45668141 -0.30117855 -0.04310078 -0.15764595  0.06098516 

log_chl_may  -0.46151286 -0.13417700 -0.26139601 -0.22266652  0.37767922 

log_chl_june -0.46520094 -0.07282486  0.09416116 -0.48888358 -0.29040513 

 

                      PC6          PC7 

bathy_1sec    0.006924129 -0.202096748 

strat_temp   -0.182563903  0.006916064 

summ_front    0.289521828  0.182792828 

spring_front -0.271388726 -0.331678424 

log_chl_apr  -0.498967488  0.649103924 

log_chl_may   0.711104703  0.052750991 

log_chl_june -0.233472257 -0.625752912 

 

A.1.2  Sandwich Tern 

A.1.2.1  All Variables 

Importance of components: 
 
                          PC1    PC2    PC3     PC4     PC5     PC6    PC7 

Standard deviation     1.9941 1.7094 1.1331 0.99203 0.84194 0.59757 0.5490 

Proportion of Variance 0.3615 0.2656 0.1167 0.08947 0.06444 0.03246 0.0274 

Cumulative Proportion  0.3615 0.6271 0.7438 0.83330 0.89775 0.93021 0.9576 

 

                           PC8     PC9    PC10    PC11 

Standard deviation     0.45977 0.38954 0.31907 0.03688 

Proportion of Variance 0.01922 0.01379 0.00926 0.00012 

Cumulative Proportion  0.97683 0.99062 0.99988 1.00000 

 

Rotation: 
                        PC1          PC2         PC3         PC4         PC5 

bathy_1sec      0.300347363 -0.296482871  0.38307949 -0.01973168  0.44893437 

strat_temp     -0.001163675  0.458907292  0.43648019  0.01100438  0.15584748 

summ_front     -0.322000487 -0.196905358  0.21795174  0.47797601 -0.19503976 

spring_front   -0.299188824 -0.137454490  0.32033038  0.55817313 -0.06246183 

log_chl_apr     0.344222464 -0.226669443  0.18226455  0.07794353 -0.44750208 

log_chl_may     0.431054656 -0.003850706  0.11776160  0.15239735 -0.31170754 



log_chl_june    0.408974633 -0.145965022 -0.23462344  0.09224658 -0.31115130 

log_ss_wave     0.372426943 -0.248716291  0.21102848  0.10142341  0.44411667 

log_ss_current  0.131993143  0.034224458 -0.59384214  0.57863770  0.37151183 

sal_spring      0.210074053  0.503685288  0.06350888  0.18790402 -0.04593400 

sal_summ        0.211611069  0.504387668  0.09627790  0.20308977 -0.02494160 

 

                       PC6          PC7         PC8         PC9         PC10 

bathy_1sec      0.07367752 -0.017152148  0.12495652  0.17164119  0.649849736 

strat_temp     -0.41334401 -0.003479685 -0.15234649 -0.60814631  0.080965489 

summ_front     -0.19505887 -0.678941342  0.20073549  0.05762667  0.030086604 

spring_front    0.38623791  0.547758877 -0.08296824 -0.12741151 -0.033044644 

log_chl_apr    -0.60027800  0.387730138  0.19447365  0.19332394 -0.068531903 

log_chl_may     0.16329126 -0.232032610 -0.76662381  0.09470947  0.046954905 

log_chl_june    0.29728979 -0.096555000  0.36431504 -0.62848448  0.160082871 

log_ss_wave     0.05705436 -0.124143590  0.07911575 -0.07484866 -0.718923109 

log_ss_current -0.32706431  0.093454705 -0.14438251 -0.01709872  0.137164496 

sal_spring      0.17795834 -0.021444453  0.28057598  0.29261301 -0.030056850 

sal_summ        0.13862287 -0.024302771  0.22340982  0.21974761 -0.006848133 

 

                        PC11 

bathy_1sec      0.0102950910 

strat_temp      0.0632935915 

summ_front      0.0030573329 

spring_front    0.0096516048 

log_chl_apr    -0.0043683231 

log_chl_may     0.0230833626 

log_chl_june    0.0035268900 

log_ss_wave     0.0003777987 

log_ss_current  0.0160549147 

sal_spring      0.6806916231 

sal_summ       -0.7291241870 

 

 

A.1.2.2  Reduced Set of Variables 

Importance of components: 
                         PC1   PC2    PC3    PC4     PC5     PC6     PC7 

Standard deviation     1.798 1.252 0.9329 0.7380 0.58243 0.51696 0.42070 

Proportion of Variance 0.462 0.224 0.1243 0.0778 0.04846 0.03818 0.02528 

Cumulative Proportion  0.462 0.686 0.8103 0.8881 0.93654 0.97472 1.00000 

 
Rotation: 
                    PC1         PC2        PC3         PC4        PC5 

bathy_1sec    0.3606380  0.29914738  0.3034279  0.79331732 -0.1359515 

strat_temp   -0.1114965 -0.53193530  0.7473371 -0.06903824  0.1198148 

summ_front   -0.3288831  0.53543377  0.1809402 -0.24658846  0.2156151 

spring_front -0.3310363  0.48096817  0.3840976 -0.12884764 -0.4291506 

log_chl_apr   0.4282324  0.30529009  0.1914374 -0.17302966  0.7187831 

log_chl_may   0.4695898 -0.04435079  0.3288154 -0.35913617 -0.3373342 

log_chl_june  0.4856562  0.11986218 -0.1561430 -0.35993848 -0.3256655 

                     PC6          PC7 

bathy_1sec    0.17586598  0.098073924 

strat_temp    0.05146465  0.352604874 

summ_front    0.67458247  0.100249385 

spring_front -0.55740891  0.008775335 

log_chl_apr  -0.37290473 -0.033472053 

log_chl_may   0.24261168 -0.606436520 

log_chl_june  0.05232566  0.697881602 

 

 

A.1.3  Arctic Tern 

A.1.3.1  All Variables 



Importance of components: 
                          PC1    PC2    PC3     PC4     PC5     PC6     PC7 

Standard deviation     2.1616 1.5885 1.2064 0.85818 0.77121 0.56408 0.48975 

Proportion of Variance 0.4248 0.2294 0.1323 0.06695 0.05407 0.02893 0.02181 

Cumulative Proportion  0.4248 0.6542 0.7865 0.85344 0.90751 0.93644 0.95824 

 

                           PC8    PC9    PC10    PC11 

Standard deviation     0.46893 0.3634 0.32626 0.03084 

Proportion of Variance 0.01999 0.0120 0.00968 0.00009 

Cumulative Proportion  0.97823 0.9902 0.99991 1.00000 

 

Rotation: 
                        PC1          PC2           PC3         PC4         PC5 

bathy_1sec     -0.333836387  0.013161993 -0.4829602728 -0.29884043  0.01879676 

strat_temp     -0.155694546 -0.533598541 -0.0791227678 -0.08359333 -0.28080338 

summ_front      0.284012176 -0.309210371 -0.0048270382 -0.01330141  0.67150701 

spring_front    0.263354007 -0.371690597 -0.1853294130 -0.06105639  0.40242120 

log_chl_apr    -0.387899409  0.083121698 -0.0009342481  0.29803032  0.29024743 

log_chl_may    -0.413888043  0.008451205  0.0693954594  0.04731083  0.26997113 

log_chl_june   -0.334075856  0.271278318  0.2736367785  0.22665728  0.31999929 

log_ss_wave    -0.339050144  0.065397063 -0.3582628866 -0.50870864  0.15981678 

log_ss_current  0.003913797  0.059759942  0.6480111024 -0.69383431  0.08499806 

sal_spring     -0.287770094 -0.437110380  0.2257176401  0.11242479 -0.08812236 

sal_summ       -0.288333731 -0.449275338  0.2172690589  0.06736447 -0.08872710 

 

                       PC6         PC7         PC8         PC9        PC10 

bathy_1sec     -0.09324483  0.20614144 -0.18796922  0.25393482  0.64378635 

strat_temp      0.06948954  0.09208073  0.55983853 -0.48692242  0.17608113 

summ_front     -0.56138198  0.20998889  0.09991796 -0.05220779  0.02540537 

spring_front    0.69602423 -0.26231843 -0.17407394  0.01574098  0.09278359 

log_chl_apr     0.36137733  0.69406928  0.08362277  0.01158837 -0.22370499 

log_chl_may    -0.00870916 -0.44772429  0.55439647  0.48878603 -0.03756157 

log_chl_june   -0.01121842 -0.28911261 -0.16929262 -0.56845975  0.38809631 

log_ss_wave    -0.08290671 -0.16260268 -0.13800296 -0.31387250 -0.56317764 

log_ss_current  0.16544059  0.20100026  0.05338970  0.06458366  0.11201638 

sal_spring     -0.11432111 -0.03783720 -0.39465065  0.14317052 -0.09477405 

sal_summ       -0.09364001 -0.04552860 -0.30051695  0.10036368 -0.06714130 

 

                       PC11 

bathy_1sec      0.002323419 

strat_temp      0.064094992 

summ_front      0.002095481 

spring_front    0.007353717 

log_chl_apr    -0.007848587 

log_chl_may     0.021813060 

log_chl_june    0.003749161 

log_ss_wave     0.006860233 

log_ss_current  0.022879180 

sal_spring      0.674566177 

sal_summ       -0.734619937 

 
 

A.1.3.2  Reduced Set of Variables 

Importance of components: 
                          PC1    PC2    PC3     PC4     PC5     PC6     PC7 

Standard deviation     1.8958 1.0755 0.9820 0.79828 0.52885 0.48312 0.36688 

Proportion of Variance 0.5134 0.1652 0.1378 0.09104 0.03995 0.03334 0.01923 

Cumulative Proportion  0.5134 0.6787 0.8164 0.90747 0.94743 0.98077 1.00000 

 
Rotation: 
                     PC1         PC2         PC3        PC4         PC5 

bathy_1sec   -0.32230893  0.06226992  0.53537600 -0.7138865  0.23258760 

strat_temp   -0.01577292  0.91263966 -0.05688776  0.1186194 -0.09540982 



summ_front    0.38633145 -0.07003159  0.52270480  0.3688866  0.35579893 

spring_front  0.40106797  0.09722610  0.53519002  0.1118030 -0.25452978 

log_chl_apr  -0.43269042 -0.10340998  0.34557456  0.1993234 -0.73584324 

log_chl_may  -0.44760165  0.28589533  0.17111802  0.2810857  0.37300508 

log_chl_june -0.44518807 -0.23753779  0.04224325  0.4571425  0.25460484 

 

                     PC6         PC7 

bathy_1sec   -0.04595519  0.19942184 

strat_temp   -0.14907359  0.34381291 

summ_front   -0.55636260  0.02034051 

spring_front  0.68171514  0.03524727 

log_chl_apr  -0.30459808 -0.09321230 

log_chl_may   0.21506648 -0.65133684 

log_chl_june  0.24971332  0.63830972 

 

  



A.1  Arctic Terns 

Call: 

glm(formula = SEARCH_FORAGE ~ dist_col + bathy_1sec, family = "binomial",  

    data = complete.data.to.analyse, weights = weights) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.11201  -0.06439  -0.03924  -0.01965   0.54334   

 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept) -1.324605   0.156462  -8.466  < 2e-16 *** 

dist_col    -0.188299   0.022905  -8.221  < 2e-16 *** 

bathy_1sec  -0.016695   0.003754  -4.447 8.69e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 966.19  on 94340  degrees of freedom 

Residual deviance: 843.07  on 94338  degrees of freedom 

AIC: 6 

 

Number of Fisher Scoring iterations: 7 

Model: 

SEARCH_FORAGE ~ dist_col + bathy_1sec 

           Df Deviance     AIC     LRT  Pr(>Chi)     

<none>          843.07   6.000                       

dist_col    1   949.11 110.041 106.041 < 2.2e-16 *** 

bathy_1sec  1   861.77  22.698  18.698 1.532e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 



A.2  Common Terns 

Call: 

glm(formula = SEARCH_FORAGE ~ dist_col + bathy_1sec + dist_shore,  

    family = "binomial", data = complete.data.to.analyse, weights = weights) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.16299  -0.07414  -0.03977  -0.01809   0.51218   

 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept) -0.969564   0.116431  -8.327  < 2e-16 *** 

dist_col    -0.159943   0.016617  -9.625  < 2e-16 *** 

bathy_1sec  -0.008479   0.002167  -3.914  9.1e-05 *** 

dist_shore  -0.078295   0.030170  -2.595  0.00945 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1852.0  on 147950  degrees of freedom 

Residual deviance: 1577.7  on 147947  degrees of freedom 

AIC: 8 

Number of Fisher Scoring iterations: 7 

 

Model: 

SEARCH_FORAGE ~ dist_col + bathy_1sec + dist_shore 

           Df Deviance     AIC     LRT  Pr(>Chi)     

<none>          1577.7   8.000                       

dist_col    1   1730.2 158.503 152.503 < 2.2e-16 *** 

bathy_1sec  1   1591.6  19.940  13.940 0.0001888 *** 

dist_shore  1   1584.8  13.175   7.175 0.0073946 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



A.3  Sandwich Terns 

Call: 

glm(formula = SEARCH_FORAGE ~ dist_col + chl_june + bathy_1sec +  

    dist_shore, family = "binomial", data = complete.data.to.analyse,  

    weights = weights) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.20316  -0.03220  -0.00938  -0.00320   0.54600   

 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept) -0.645190   0.389714  -1.656 0.097814 .   

dist_col    -0.055307   0.008268  -6.689 2.25e-11 *** 

chl_june     0.429606   0.176824   2.430 0.015117 *   

bathy_1sec   0.021380   0.006717   3.183 0.001458 **  

dist_shore  -0.136294   0.041395  -3.293 0.000993 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1503.04  on 184535  degrees of freedom 

Residual deviance:  950.59  on 184531  degrees of freedom 

AIC: 10 

 

Number of Fisher Scoring iterations: 9 

Model: 

SEARCH_FORAGE ~ dist_col + chl_june + bathy_1sec + dist_shore 

           Df Deviance    AIC    LRT  Pr(>Chi)     

<none>          950.59 10.000                      

dist_col    1  1017.34 74.742 66.742 3.094e-16 *** 

chl_june    1   956.43 13.839  5.839 0.0156709 *   

bathy_1sec  1   962.31 19.713 11.713 0.0006205 *** 



dist_shore  1   965.15 22.558 14.558 0.0001359 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Excluding chl_june 

Call: 

glm(formula = SEARCH_FORAGE ~ dist_col + bathy_1sec + dist_shore,  

    family = "binomial", data = complete.data.to.analyse, weights = weights) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.18731  -0.03325  -0.00869  -0.00262   0.57833   

 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)  0.231125   0.148744   1.554 0.120222     

dist_col    -0.053509   0.008093  -6.612 3.80e-11 *** 

bathy_1sec   0.027722   0.006408   4.326 1.52e-05 *** 

dist_shore  -0.160435   0.041284  -3.886 0.000102 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1503.04  on 184535  degrees of freedom 

Residual deviance:  956.43  on 184532  degrees of freedom 

AIC: 8 

 

Number of Fisher Scoring iterations: 9 
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