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Summary 
 
The analyses reported here are necessarily tentative, given the limited time available 
for the study, and the size and complexity of the dataset from which conclusions 
were drawn. In fact, it has been possible to draw only limited conclusions about areas 
of regular high harbour porpoise density (referred to herein as ‘hotspots’, for brevity). 
While it is not clear whether further  development of the methodology used will locate 
such areas more reliably (or indicate areas of low density/absence of the species), it 
is clear that methodological development will enable more-reliable inferences to be 
made. Data were inadequate to examine calf-adult ratios.  
 
Evidence of hotspots 
 
For the most part, evidence of persistent areas of high porpoise density are lacking. 
The strongest suggestion of a ‘hotspot’ is in the south Irish Sea, with weaker 
indications of hotspots in the central Irish Sea and east of the Moray Firth and Firth of 
Forth.  
 
Recommendations 
 

• Investigate further the possible hotspots in the Irish Sea and off eastern 
Britain. 

• Develop and apply methods that address the deficiencies highlighted in this 
analysis, to make optimal use of the data. 
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1 Introduction 
 
The EC Habitats Directive requires member states to consider Special Areas of 
Conservation (SACs) for all species listed in the Directive’s Annex II.  The Annex 
includes bottlenose dolphins (Tursiops truncatus) and harbour porpoises (Phocoena 
phocoena).  The aformentioned inhabit relatively discrete areas of coastal water in 
several parts of the European Union, but the latter are much more widely distributed, 
and there is little evidence of longterm ‘residence’ in any particular area.  There are 
no obvious discrete areas where densities of harbour porpoises are high enough to 
suggest a significant proportion of the population is ‘resident’, unless such areas 
were to extend to ICES Division scale. 
 
One of the best sources of information on the distribution of porpoises in north-
western European waters is the ‘Joint Cetacean Database’ (JCD) – a database 
consisting of over 20 years of sightings data from three major sources. These are the 
EC funded SCANS project1, the European Seabirds at Sea consortium, which also 
maintains records of cetacean sightings, and the Sea Watch foundation database of 
sightings collected from a wide variety of sources since 1979. Data from these three 
sources have been collated into a single JCD database, with a common format. 
Together, these datasets comprise a unique and valuable source of information 
about the distribution of harbour porpoise in waters around Britain. Note, however, 
the Sea Watch data were not available in time for inclusion in the analyses reported 
here. 
 
The objective of the study reported here was to apply statistical modelling techniques 
to these data in order to look for areas of high porpoise density that might be suitable 
as SACs.   
 
It is important to understand that although these data have been collated in a 
common format, the means of data collection have been quite varied.  A wide variety 
of platforms have been used, so that observer eye height and vessel speed, for 
example, are highly variable throughout the database.  It is also known that 
porpoises react aversively to vessels, and the degree of this reaction will depend on 
certain characteristics of the vessel, such as the amount of noise it makes.  It is also 
known that there is considerable variability among observers in detecting porpoises.  
These and other factors can have order of magnitude effects on sightings rates, and 
they cannot be controlled in such wide-scale surveys.  Whereas it might be hoped 
that such effects would not bias any interpretation of the overall sightings rates of 
porpoises, a casual examination of the data would reveal that this is highly unlikely.  
Many vessels and observers, for example, focus their activities on relatively small 
areas or repetitive transects, while some platforms or observers are only active for 
earlier or later parts of the survey period. 
 
There is therefore a real concern that any detailed simple examination of the 
sightings data in the JCD could be significantly biased by the sightings efficiencies of 
different platforms or observers.   
 
To address such issues, Bravington (2000a) developed a suite of statistical tools that 
are intended to model sightings rates of cetaceans spatially and with respect to 
covariates such as platform, observer and environmental conditions.  These tools 
have been used here to examine data in the JCD in order to try to determine whether 
there are any areas within UK waters that show consistently high porpoise densities. 

                                                
1 Distribution and Abundance of the harbour porpoise and other small cetaceans in the North Sea and 
adjacent waters.  LIFE 92-2/UK/027 
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2 Methods 
 
2.1. Data 
 
The JCD was initially compiled in 1999, and was based on the existing SCANS data 
set, the ESAS 2 data set (comprising European Seabirds at Sea data up to 1998) 
and a version of the Sea Watch Foundation (SWF) database.   
 
It was decided early in the project to try to work with the latest data available, and 
accordingly the ESAS-3 dataset was successfully updated to JCD format with data 
up to the year 2000.  Consultations with the Sea Watch Foundation indicated that 
there were some serious inconsistencies within the SWF database as supplied to the 
JCD, but that these were being addressed and corrected.  It was initially anticipated 
that the SWF database would be corrected and updated within the JCD by January 
2002. 
 
It is important to understand that whereas errors in a sightings database may not be 
significant for generalised or large-scale geographical overviews, the statistical tools 
utilised have a far smaller tolerance of errors.  Small errors in time or location data 
can seriously affect the analysis, either causing the programme to crash, or 
producing nonsensical results. Consequently it can be very time-consuming for the 
the analyst to try to identify problem records or batches of records.  Given the short 
length of time available for analysis it did not make sense for the project team to 
proceed with an attempted analysis of a dataset which was known to have a large 
number of inconsistencies.  The team therefore opted to wait for the revised SWF 
dataset, and to proceed in the interim with the analysis based solely on the other 
datasets.  Unfortunately, unforeseen problems with the SWF database meant that an 
updated version of these data was not received until after the termination of the  
contract, so that no analyses were been performed on the SWF part of the JCD. 
 
Working with the remaining data, it was found that even here there were a number of 
unforeseen data problems that hindered analysis.  Two major data error types within 
the updated JCD were apparent.  First, 478 out of 355,144 records were found to 
have effort start times that were later than their end times.  Secondly, some 659 
records were found to have start times that preceded the time at which the previous 
effort leg was supposed to have ended.  The origin of these data anomalies could not 
be determined, but some were simple typographical errors at data entry, while 
others, especially of the second type, may have been introduced during data 
transformation from ESAS to JCD format. 
 
It was not possible to review these 1137 records to try to correct them all manually, 
so that the analysis had to proceed by removing all such records and adjacent ones 
on the same sighting trip during the same day. This meant that 15% of the total data 
was excluded from the analysis. 
 
This problem highlights the issue of data maintenance. The JCD in total represents 
an enormous dataset, which is also a very rich source of information.  However, it 
also represents an enormous house-keeping task to ensure that all of the hundreds 
of thousands of records are error-free.  Errors may be introduced at any stage to 
such a database, and even very thorough checks will inevitably miss some types of 
error.  This is especially a problem where a new type of analysis is being attempted, 
and where errors that had been missed as unimportant to the working of previous 
analyses suddenly become highly significant.  Considerable analytical time was 
therefore spent in trying to uncover and remove these errors in timing which had not 
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previously been picked up in other analyses.  This also helps to explain why the 
project team were reluctant to attempt any analyses on the SWF part of the dataset 
before it had been corrected to the satisfaction of the SWF data manager. 
 
Despite these data problems the statistical analyses were still run with over 300,000 
effort records (typically 10 minutes of observation time, or over 50,000 hours of 
observation in all).   
 
2.2 Statistical analyses 
 
2.2.1 Pseudotime 
 
The analysis followed that of Bravington (2000a, 2000b).  With this approach, the 
amount of effort spent searching before detecting an animal or group of animals is 
the key to estimation of local density. For a given level of search effort, if you 
searched for a long time before detecting an animal, the local density is estimated to 
be low. Conversely, if little time was spent searching before making the next sighting, 
the local density is estimated to be high. Time spent searching is therefore a key 
explanatory variable in the analyses. Because there are breaks in searching, the total 
time spent searching is not the same as the time since the start of the survey or trip. 
It is therefore useful to work in terms ‘pseudotime’, which is just the sum of all time 
spent searching up to that point (see Figure 1). By analogy, if each section of 
uninterrupted effort is compared to a scene in a feature film, then the film plays in 
pseudotime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Example of how survey effort is tallied in terms of pseudotime. The top panel shows 
a section of survey transects; the middle panel shows the search effort in real time; the 
bottom panel shows the search effort converted to pseudotime. 
 
 

6am day 1 
(survey/trip starts) 

14h00 day 1  
(start after lunch) 

12h00 day 1 
(stop 
searching to 
have lunch) 

20h00 day 1 
(stop for the day) 

6am day 2 
(start 
searching) 

13h00 day 2 
(stop for lunch) 

14h00 day 2  
(resume after 

 

16h00 day 2  (bad 
weather stops search) 

Real time since start of survey/trip (in 
h ) 0 6  8 14 24 3

1 
32 34 

0 6 12 19 21 
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Pseudotime is tallied separately for each trip. Mathematical details of the analysis 
methods are given in Appendices 1 and 2. 
 
Sighting rates are modelled as a function of covariates, treating sightings as 
independent events (a Poisson process) in pseudotime, with the probability of a 
sighting in the next instant depending on the covariates only (independently of when 
the last sighting occurred). This general formulation needs to be adapted to the 
specific circumstances of these data, for example by assuming that density does not 
vary much within a grid square of predefined size, or over a certain season of the 
year. The strong independence assumption in the model is an oversimplification, but 
it allows the construction of a simple consistent estimator. Deviations from the 
independence assumption are handled by a bootstrapping approach to uncertainty 
(see Appendix 1). 
 
Because the analysis is based on pseudotime, nonsensical time values cause critical 
errors in analysis.  
 
2.2.2 Pod size bias 
 
Size bias in sighting surveys arises when larger pods are more likely to be seen than 
smaller pods. In the context of relative abundance studies (such as looking for 
hotspots), size bias causes a potential problem if the underlying distribution of pod 
sizes varies from place to place. Unless the extent of size bias is known a priori, it is 
not obvious which area contains more animals if, say, more large pods are seen in 
area A but many more small pods were seen in area B. There is also a potential 
interaction between size bias and sighting conditions, in that it is not obvious whether 
relative visibility of different-sized pods will remain consistent across conditions, and 
average conditions may vary from place to place. 
 
As an attempt to circumvent the problem of bias arising from unmodelled size bias, 
double-platform data from SCANS were used to obtain estimates of absolute sighting 
probability for pods of different sizes under different sighting conditions (sea state: 0, 
1 or 2 used). Although the absolute probabilities will not apply generally to the JCD 
data because of different protocols and sighting platforms, it might be reasonable to 
expect that the relative probabilities follow the same pattern, regardless of platform. 
Further details of this analysis are given in Appendix 2. Because the analysis of non-
SCANS data here rests on analysis of the effects of conditions from SCANS that 
operated only under sea state 2 or below, it has only been possible here to use non-
SCANS sightings in sea states 2 or below. This removes about 35% of sightings. 
Further methodological developments (e.g. along the lines of Bravington 2002) would 
be required in order to utilize the high-sea-state observations. 
 
Having established relative sighting probabilities by pod size and conditions, it is 
possible to estimate the frequency distribution of pod size (i.e. the probability that a 
porpoise pod will be of size 1 or of size 2 or of size n) as a function of local time and 
place, based on local observed frequencies of pod size corrected by the estimated 
sighting probabilities under local sighting conditions. This allows calculation of true 
mean pod size, and overall relative sighting probability of any pod, also as a function 
of time and place. A more elaborate version of this procedure is described in 
Bravington (2002). 
 
In principle, the adjustments described here remove the effects of size bias, and 
allow comparable density estimates to be calculated across a wide range of times 
and places from sightings data, with the effects of sea state already allowed for. 
However, this rests on the assumption that the estimated adjustments from SCANS 
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are more widely applicable. If sea state is included as a covariate in an analysis of 
sighting rates even after the SCANS adjustment, there is still a strongly significant 
improvement in Goodness of Fit (about 81 units of log-likelihood for only 2 degrees of 
freedom). Even after allowing for the directly-estimated effects on sightability from 
SCANS, sighting rate data suggest a further reduction in sightability of around 65% in 
sea state 2 compared to sea state 0. Either there are difficulties with the double-
platform analysis (e.g. over the appropriateness of the linearity assumptions), or the 
effects of sea state on SCANS-double-platform-style observations are not applicable 
more widely. The implications of this for the size-bias corrections above, require 
further investigation. 
 
2.2.3 Patchiness 
 
Analysis using the methods described in Appendix 1 reveals significant 
clustering/patchiness of sightings. This apparent clustering potentially reflects several 
issues, including genuine short-term fluctuations in local abundance, so that 
surveying the same line twice in successive weeks can produce quite different 
results; unmodelled observer and platform effects; and systematic variations in local 
abundance on a scale too small to include in the model. 
 
Analysis suggests that the effective sample size is only about 45% of the observed 
sample size as a result of patchiness. At an intuitive level, the effective sample size 
corresponds to the number of independent bits of information available in the 
sample. Patchiness decreases the effective sample size because the data from 
sightings within a patch are not independent. (Consider an extreme case in which 
the patch is concentrated at a point; in this case as soon as you observe one animal 
in the patch, you know the location of all the others in the patch, and the effective 
sample size from the patch is 1.) Because lower effective sample size increases 
uncertainty, CVs for these data are always likely to be about 50% higher than an 
analysis assuming independence would suggest.  
 
One way to think about this, is to consider what sample sizes would be necessary to 
give a good chance of detecting a statistically significant difference between two 
areas, assuming for example that the real density is 50% higher in one area than the 
other. In that example, it turns out that, with about 50 sightings per area, a test would 
successfully detect the difference at the 5% level about half the time. For a more 
reliable test, many more sightings would be required. However, more extreme 
variations in density might be detected reliably with fewer sightings. These ideas set 
some practical limits on the size of region which can be tested for local effects, 
based on the number of sightings in that region. 
 
This very rough analysis is not definitive, for several reasons: it does not attempt to 
take into account individual observer/vessel effects; it does not allow for estimation of 
other parameters, such as platform or sea state effects; does not allow for 
confounding between particular platforms/conditions and particular times/places; it is 
dependent on the spatial scale of the original model from which autocorrelations 
were estimated; and it does not reflect local patterns in segments (e.g. whether or not 
several different platforms were used within one area, whether observations were 
made over one short period or split over several periods some time apart). In 
addition, it does not reflect uncertainties about pod size. Most of these factors will 
mean that real CVs are worse than one might expect, even after allowing for 
clustering. However, the clustering-based CV correction does take account of the 
main factor controlling uncertainty in local estimates of abundance/density, namely 
the absolute number of sightings. 
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3 Results 
 
3.1 Breaking up the analysis by geographical zone and by 

season 
 
Because of the geographical complexity of the entire study region, and the wide 
variations in amount of sampling, the analysis has been broken up into three main 
geographical areas: Irish Sea, North-West coast (Western and far Northern 
Scotland), and Eastern Britain. In general, these areas have been analysed 
separately. In theory it is possible to fit completely different geographical models 
within each area, while still fitting a shared term to describe, for example, the effects 
of sea state or platform speed across all regions, but this complicated procedure was 
not possible in the time available for the analysis. 
 
An important point is how sparse the non-summer observations have been over the 
last 10 years, apart from a few set routes.  This is shown in Figures 2 and 3: 

 
Figure 2. Winter tracklines (January to April) and sightings 
 

 
Figure 3. Autumn tracklines (September to December) 
 
Apart from the usual paucity of sightings in the English Channel, it is clearly 
impossible to make any rigorous inferences about hotspots at those times of year 
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since 1990, because effort and sightings are relatively sparse. However, some 
seasonal modelling is possible in some areas, assuming that seasonal patterns pre-
1990 have been consistent.  
 
3.2 Irish Sea 
 
The data for the Irish Sea illustrates many of the practical and methodological issues 
common to all areas, and the remarks below are pertinent to analyses of the JNCC 
data as a whole. 

 
Figure 4. Tracklines and sightings in the Irish Sea region 
 
Of the 280 boat-based sightings at sea state < 3 in the Irish Sea (Figure 4), almost all 
are concentrated along set routes. This again makes identification of hotspots 
difficult. Along the Welsh coast, there is a cluster of sightings around 52.5oN despite 
low effort, but there are only 7 sightings here, which is far too few to make any 
reliable statement (see below). These are aircraft sightings, which have been 
excluded from analyses here because no independent corrections for size-bias 
effects can be applied; there is no reason to assume that SCANS-based corrections 
will apply to aircraft. 
 
The cluster of sightings around 5.5oW, 51.7oN is more interesting, although there are 
still only 33 sightings in total (see the discussion on Clustering above). A fit to 
sighting rate, adjusting for platform speed and sea state, suggests that about 80% of 
the abundance in the box bounded by [52.3oN, 51.5oN, 4.5oW, 6.8oW] lies within 
about 30nm of 5.5oW, 51.7oN, with a standard error of about 10%. This is based on 
the whole time period considered, but with very few sightings in winter. 
 
The southern Irish Sea sightings are based on several boats and observers, so the 
apparent concentration is unlikely to be due to a boat or observer effect. However, to 
fully understand the contribution of “southern animals” to the abundance in the whole 
Irish Sea), it would be necessary to allow for the possibility of boat and/or observer 
effects, because different boats and observers are used in the south and in the north.  
 
This raises a statistical problem, because of the limited number of samples available. 
Although it is simple to fit a ‘boat effect’ and an ‘observer effect’, the number of per-
boat and per-observer observations is very small. About 16 Irish Sea observers failed 
to see any porpoises at all. As far as a naive statistical model is concerned, the most 
restrained explanation is that these observers had zero probability of detecting 
porpoises, but this is not very realistic.  
 
The issue of unwanted ‘random’ covariates is particularly problematic for 
presence/absence data such as sightings, because there is a realistic possibility of 
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getting no sightings for some observers/platforms, which will correspond to estimates 
of zero probability of detecting porpoises. Further, in platform of opportunity datasets 
such as in JNCC, coverage of some areas and times is completely correlated with 
who was doing the observing, so data from observers who make no sightings will 
convey no information at all about abundance in those areas. 
 
To get around this problem, it is possible to fit ‘random effects’ models, which take 
account of the fact that all observers and boats are drawn from a common 
population. Among observers with plenty of accumulated sighting effort, it is possible 
to see how much sighting rates vary (after allowing for other factors such as time, 
place, and platform). If for these observers, there is only a 30% difference between 
the best and the worst, then a similar range is likely to hold for other observers 
without enough observation time to be able to develop an accurate estimate of 
personal sighting rates. Random-effects models include this variation; in this 
framework, it becomes more parsimonious to ascribe one observer’s lack of sightings 
to a low but finite spotting ability, rather than to an infinite lack of talent. This allows 
some inferences to be made about animal density in areas covered only by that 
observer. 
 
The difficulty with random effect models, is knowing how much variance to ascribe 
(say) to between-observer variability, versus to between-platform variability, versus to 
how much density can realistically fluctuate over a short space-time scale. In linear-
model statistics, this is by now regarded as a standard problem, although the data 
requirement can still be quite high to get precise estimates. Methods do exist for 
objectively ‘trading off’ variances between the different components of the model, and 
the methods could in principle be translated to sighting-rate models of the sort used 
here, but this has not yet been done. There is a significant complication because of 
patchiness in the sightings. 
 
However, by making different assumptions about the variance trade-offs, it is at least 
possible to fit random-effect models to sighting rate data, using ‘shrinkage’ (see 
Appendix 1); it is not yet possible, though, to determine which model is most 
appropriate. A number of such models were explored for the Irish Sea, with random 
effects ascribed to observers, platforms, both, or neither. It turns out that the 
qualitative pattern of abundance in the Irish Sea, is similar whatever model is fitted 
(see Figure 5 below, where scales have been omitted because the point is to show 
the pattern). There are three (sometimes two, with the northernmost absent) peaks in 
abundance, with reasonable separation in distance. The estimated contrast between 
high (yellow) and low (red) densities is substantial (four-fold or more), except for 
models where almost unrestricted observer effects and vessel effects are included. 
With both observer and vessel effects, it is possible to explain almost all the variation 
in densities without invoking much spatial change in density, although the small 
estimated variations are qualitatively similar to those shown above. 
 
It is of concern, however, that these peaks occur only in places where there has been 
quite heavy sampling. Although not every heavily-sampled area is suggestive of high 
densities, the question must arise of what ‘hotspots’ might be unobserved in areas 
where sampling has been less intense. 
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Figure 5. Estimated relative distribution of harbour porpoise in the Irish Sea 
 
Further, almost all of the sightings in the southern Irish Sea are pre-1995, and almost 
all the sightings in the north are post-1995. This makes north-south comparisons 
particularly difficult. 
 
At present, all that can safely be said is that there is a strong suggestion of a local 
concentration within the southern Irish Sea, around 5.5oW, 51.7oN, but it is too early 
to assess how significant this is for Irish Sea porpoises as a whole. Possible 
movement of porpoises in and out of this region should be investigated before strong 
conclusions about a hotspot are drawn. 
 
There is also a hint of a high density patch around 5.5oW, 51.7oN, but effort is 
somewhat sparser in this region and the patch may be a sampling artefact. 
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3.3. Eastern Britain 
 
There are no obvious gaps in distribution, in either summer or winter. 

 
Figure 6. Tracklines and sightings off Eastern Britain. Summer 
 

 
Figure 7. Tracklines and sightings off Eastern Britain. Autumn and Winter 
 
Mean pod size and size bias effects were investigated as described under Section 
2.2.2 for this subset of the data. Various model structures were explored, and the use 
of Akaike’s Information Criterion (Akaike, 1973; an objective way of trading off 
increased complexity against apparent goodness-of-fit) suggested that a complex 
model with seasonal effects, distance from shore, and distance along shore effects 
within season, was most appropriate. However, no particularly consistent pattern 
emerged from subsequent analysis, and this issue therefore requires further 
investigation. In autumn and winter, estimated mean pod sizes were largest offshore 
and to the North, but the opposite was evident in summer. 

 
Figure 8. Mean pod size contours in Winter 
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Figure 9.  Mean pod size in Summer 
 

 
Figure 10. Mean pod size contours in Autumn 
 
At least with current techniques, smooth fits of sighting density have a tendency to 
place illusory hotspots in low-data areas. For hot-spot purposes, it seems safer to 
divide up the area of interest in grid-fashion, with density in each grid cell being 
estimated independently (and simultaneously estimating other shared effects, such 
as sea state). Even when using grids2, strange estimates (very high abundances) 
can result when there are very few observations; in the results below, obviously 
strange results have been removed. For the British East coast, a ‘grid’ was used 
based on distance offshore and distance alongshore (moving towards the northwest), 
the outlines of which are apparent in Figures 8 to 10. 
 
The graphs below show the estimated relative porpoise abundance (shading, with 
darkest red corresponding to zero) and the corresponding percentage of total 
abundance (the numbers) within each ‘grid square’, within the time period of the title. 
 

                                                
2 Decisions on grid size were made on the basis of rough calculations that suggested about 50 sightings 
per grid rectangle might be required to detect a twofold increase in density between a hotspot in the 
rectangle and that surrounding it. There is always some subjectivity in decisions on grid sizes and 
locations. 
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Figure 11. Estimated relative distribution off Eastern Britain: Summer pre-1985 
 

 
Figure 12. Estimated relative distribution off Eastern Britain: Summer 1985-94 

 

 
Figure 13. Estimated relative distribution off Eastern Britain: Summer post-1985 
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The three plots consistently show higher abundances of animals in the area east of 
Scotland and up towards the Shetlands (which are not shown), in particular near the 
Moray Firth. This is particularly apparent in the pre-1985 results; however, as shown 
below, there was little effort outside the Moray Firth in those years, so the pre-1985 
patterns are particularly uncertain. Post-1985, there are several hundred sightings 
during summer in each of the two blocks east of the Moray Firth and Firth of Forth, 
and several hundred sightings outside these blocks, so these results are unlikely to 
be artefacts of sample error. Of course, other phenomena such as unmodelled 
platform effects in particular areas, may still have affected the results. Note that it has 
not been possible to explore random effects models for observers or platforms in the 
North Sea. Out of 100 boats used in this area, 45 recorded no sightings (at least 
within this reduced dataset), and over 85% of all sightings were made by just 10 
boats. 
 
Even though abundances are generally higher in this region, it is not obvious that the 
region is a ‘hotspot’’ in any useful sense. The distribution covers a large area of sea, 
makes up no more than 50% of total abundance within the map area, and there are 
no obvious gaps in distribution (see the effort data). There may still be more local 
hotspots, but there has not been time to examine this during the current study. In any 
case, any such smaller local hotspots cannot contain a high proportion of North Sea 
porpoise population, since the whole east-of-Scotland region seems to contain less 
than 50% of the total abundance shown on these maps. 
 
The median number of summer sightings in each grid squares above is 43, and the 
mean is about 67, so inferences across the whole period on a per-grid square basis 
are likely to be fairly reliable. Inferences based on shorter periods (e.g. the decadal 
intervals shown above) are based on fewer sightings and are thus likely to be less 
reliable. Nevertheless, the maps show some suggestion of spatial patterning at a 
scale larger than that of the individual grid square, which lends credence to the 
results. 

 
Figure 14. Relative distribution, location of effort and sightings: Summer pre-1985 
 
For non-summer distribution, lack of data makes it difficult to extract separate 
decadal effects, so a model without a long-term time effect was used (incorporating 
summer data for purposes of estimating vessel effects). Only two of the grid squares 
have more than 40 non-summer sightings from 1978 onwards. Clearly, this means 
that it is very difficult to draw small-scale inferences. 
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Figure 15. Estimated relative distribution off Eastern Britain: Non-summer 
 
3.4 The North-West Coast 

 
Sightings here are fewer in number; there are only 270 boat-based sightings in sea 
states up to 2 over the whole period (see Figure 16). The most obvious feature of the 
data, is the concentration of sightings between the Outer Hebrides and the mainland. 
However, this is also where effort is highest. 
 
Analysis does suggest a significant ‘North Minch effect’, with densities about 60% 
higher within a 45nm circle of 58oN,5o45’W than outside. However, most of this 
reflects an inshore/offshore effect. Restricting attention to effort within 70nm of the 
coast, actually suggests that coastal densities are lower within the North Minch. 
There is therefore no real evidence of a high density region here.  
 

 
Figure 16. Location of effort and sightings off North-west Britain 
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4 Results 
 
In addition to perpendicular distance, x, the set of covariates considered was 
Beaufort (bf), vessel (ves), platform height (hgt), pod size (ss), depth of sea bed 
(depth), distance to the nearest coast (dist), latitude (lat) and longitude (lon). The 
covariate vessel, was entered as a factor with five levels using the vessel groupings 
determined from the original SCANS analysis (Hammond et al. 1995: 1 = Abel-J; 2 = 
Corvette, Dana, Gorm; 3 = Henny; 4 = Holland, Tridens, Isis; 5 = Gunnar Thorsen) 
and Beaufort was fitted as a factor with 2 levels; Beaufort 0 and Beaufort 1-2. 
Stepwise model selection was used. 
 
Starting with all the covariates listed above, the model selection procedure chose the 
covariates x, bf, ss, depth, dist, lat and lon. This is referred to as model 1. The fitted 
detection function is shown in Figure 17. The estimates of the regression parameters 
are given in Table A2.1.  
 
Excluding latitude and longitude from the set of covariates available for inclusion, 
results in a model (model 2) which contains the covariates x, bf, ss, depth and ves. 
Thus, the spatial coordinates (lat, lon, cdist) have been replaced with the vessel 
factor. Since one vessel surveyed one block, apart from one block, these covariates 
are essentially confounded. The estimates of the regression parameters for model 2 
are in Table A2.1 and the detection function is plotted in Figure 18.  
 
A further 4 models were fitted, as follows: 
 
Model 3: seen ~ x + bf + ss + ves 
Model 4: seen ~ x + bf + ss + ves + depth 
Model 5: seen ~ x + bf + ss + ves + dist 
Model 6: seen ~ x + bf + ves  
 
Results are shown in Table A2.2. Although it is not the best model for the SCANS 
data, Model 3 has been used in the analysis of JNCC data because other models 
contain location-specific covariates (lat, lon and/or depth) and the effect of these 
outside the SCANS survey area might be quite different to their effect within it. 
 
Table A2.1. Estimates of the regression parameters for the selected covariates and the 
residual sums of squares (RSS) for models 1 and 2.  
 

 
Covariates 

 
Units 

Estimates of regression parameters 
Model 1 Model 2 

Intercept  -11.1090 -0.0425 
x km -3.0190 -2.9927 

bf (1-2)  -0.5937 -0.5871 
ss  0.4705 0.4703 

depth metres relative to sea level 0.01002 0.0049 
dist km -0.0034  
lat  0.1978  
lon  -0.0681  

ves  (2)   -1.2477 
  “    (3)   -0.3180 
  “    (4)   -0.9110 

     “     (5)   -1.0459 
RSS  519.47 on 611df 521.63 on 610df 
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Table A2.2. Estimates of the regression parameters for the selected covariates and the 
residual sums of squares (RSS) for models 1 and 2.  

 
Covariates Model 3 Model 4 Model 5 Model 6 

ss 1 
Model 6 

ss 2 
Model 6 

ss 2+ 
Intercept -0.5244 0.0493 -0.4830 -0.6031 2.03402 0.8594 
x -2.9520 -3.0361 -2.9341 -2.7247 -3.4978 -2.7776 
bf (1) -0.5025 -0.5256 -0.4987 -0.1893 -0.7978 -0.8192 
bf (2) -0.6569 -0.6733 -0.6512 -0.5413 -0.7225 -0.5666 
ss 0.4667 0.4647 0.4671    
ves (2) -1.1841 -1.2365 -1.1183 -1.0490 -2.4800 -0.5930 
ves (3) -0.0051 -0.2939 -0.0319 0.1987 -0.9652 -0.4731 
ves (4) -0.5275 -0.8843 -0.4803 -0.1447 -1.7101 -0.2094 
ves (5) -0.7521 -1.0428 -0.7720 -0.4439 -1.8867 -0.6904 
depth - 0.00486 -    
dist - - -0.00078    
RSS 525.5 on 610df 521.4 on 

609df 
525.4 on 609df    

Figure 17. The smooth curve shows the detection function for model 1. The dots are the 
estimated detection probabilities for individual detections and the stepped curve shows the 
duplicate proportions.  



Analysis of harbour porpoise sightings data in relation to area-based conservation 
 

17 
 

Figure 18. The smooth curve shows the detection function for model 2. The dots are the 
estimated detection probabilities for individual detections and the stepped curve shows the 
duplicate proportions.  
 
5 Conclusions 
 
This study combines an investigation of a complex dataset, with many different 
factors involved in a partly-aliased design (i.e. some variations in sighting rates could 
be explained equally by spatial effects or by platform effects), with a specific and 
fairly difficult question: identification of hotspots without pre-defined spatial scales, 
against a background of incomplete sampling of the full range of possible hotspot 
locales.  
 
Evidence of clear hotspots is lacking. The available evidence is as follows: 
 

• Irish Sea: There is a suggestion of a hotspot in the south Irish Sea. However, 
there are significant gaps in effort along the coastline to the north, which 
make it hard to assess the ‘separateness’ of the apparent southern Irish Sea 
hotspot. Aeroplane data may be helpful here, but some methodological work 
would be needed (see below) to work out how to incorporate those data. The 
suggestion of a hotspot in the central Irish Sea should be viewed with caution 
at this stage, because it is entirely due to concentrated effort from a single 
platform.  

• North-West Britain: There is not enough data to the North-West of Britain to 
say much about hotspots, except to eliminate the north Minch as a hotspot.  

• Eastern Britain: There may be high density regions just east of the Moray 
Firth and Firth of Forth. The distribution off eastern Britain merits further 
(finer-scale) investigation in a future study. 

 



Analysis of harbour porpoise sightings data in relation to area-based conservation 
 

18 
 

This is a rich and complex dataset, and given the constrained time available, it has 
been possible only carry out limited data analyses. Particular caveats attach to the 
following: 
 

• Imperfect proxy for vessel effects: It was necessary to use a very imperfect 
proxy for vessel effects, here based on mean vessel speed on the 
assumption that it will be correlated with variables affecting sightability such 
as platform height. However, two vessels with the same mean speed, could 
differ widely in their utility as platforms-of-opportunity because of bridge 
layout, height, number of observers (e.g. SCANS vs. ESAS), vessel noise, 
etc. Since certain areas tend only to be surveyed by an individual vessel, 
there is serious potential for confounding between vessel effects and small-
scale area effects.  

• Possible individual observer effects. Previous experiments with JNCC data 
(Bravington et al. 2001) did not show much success in incorporating ‘observer 
experience’ as a covariate. Nevertheless, individual observers are known in 
other studies to vary widely in their porpoise-spotting prowess; this is likely to 
be particularly true when the main focus of observation is sometimes on other 
species such as seabirds. Again, some fairly sophisticated random-effects 
models might be useful. 

• Time trends in sightability:  This is a particular problem when there are too 
few data in an area to allow estimation of a time trend.  Previous experiments 
with ESAS data have suggested a surge in sighting rates in the Moray Firth to 
an extent that seemed unlikely to be accountable purely in terms of porpoise 
abundance (Bravington et al. 2001). It may be that observers in some regions 
become more or less attuned to making porpoise sightings over time. When 
observations are so sparse that long time periods have to be lumped, there is 
a risk that data collected at different times in different areas will not be 
comparable. Investigation of this issue really requires detailed and time-
consuming analysis of local data. 

 
This analysis has necessarily been partly exploratory in its nature. While the results 
give some indication of the possible location of what might be high density regions, 
stronger conclusions regarding high density regions cannot be drawn without 
substantial further work. In particular, substantial methodological development will be 
required to address the issues raised above. This will require a substantial 
commitment of analysis time, probably of the order of 6 months of a postdoctoral 
researcher’s time. As with any methodological innovation, there it is difficult to predict 
the extent to which the methodological development will answer the questions posed. 
What is clear, however, is that the data themselves cannot be changed and 
methodological development that addresses the methodological difficulties 
encountered in analysing this dataset will result in better use of these data and more 
reliable conclusions. 
 
In order of importance, the main methodological issues that require further attention 
are:  
 

(1) A full development of random-effect sighting-rate models in the context of 
patchy data. 

(2) A better development of spatial smoothers, to cope properly with coastlines, 
varying scales of smoothing, patchiness; in particular, to avoid the symptom 
of wild results around unsampled edges of the region of interest. 

(3) Consideration of better approaches to linking long-term and seasonal trends, 
to spatial models. 
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(4) Extension of pod-size-bias approaches, to sighting conditions not covered in 
SCANS. 

 
At the time of the original MAFF-JNCC study (Bravington et al. 2001), where the 
remit was primarily to consider overall abundance, the issue of greatest concern was 
pod size bias. In the current study, this has been resolved at least partly by using 
SCANS data and new statistical methods. Of the remaining issues, although the 
random-effects and spatial-smoother issues were certainly in the air at that time, both 
are more important in the context of hotspots than they were for overall abundance. 
The reason that random-effects are particularly important, is that specific areas are 
quite likely to be covered only by one or few observers/boats, so that getting the 
observer effect right is very important; for overall abundance, on the other hand, one 
can legitimately expect that observer effects will to some extent be averaged out. As 
far as spatial smoothing is concerned, the tendency of existing GAM-based 
smoothers to put ‘spikes’ of abundance in unsampled areas, which is certainly 
disconcerting when considering total abundance, is potentially catastrophic when 
considering comparative abundance within an area. It is for that reason that grid-
based density estimates have been used in this study as the least unreliable method 
available. 
 
6 Recommendations 
 

• Investigate further the possible hotspots in the Irish Sea and off Eastern 
Britain. 

• Develop and apply methods that address the deficiencies highlighted in this 
analysis, to make optimal use of the data to detect hotspots. 
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Appendix 1 
 
A1.1 Spatial modelling methods 

 
Mathematically, the formulation for instantaneous sighting rate is 
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where δτ is a short time step. The real-valued functions { }Sshs 1 : ∈  are to be 
estimated, although their total number and individual forms are specified in advance: 
each hs can be a linear, discrete, or general smooth function of some or all 
covariates. Typically, each hs will depend on only one or two of the xr, and each xr will 
usually appear in at most one hs. The exponential operator in [1] ensures that the 
instantaneous sighting rate eλ(τ) is non-negative. Note that λ is sometimes used to 
indicate the rate of a process; here, though, the rate is eλ. 
 
Based on equation [1], it is easy to show that the log-likelihood of all the sighting 
events is 
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Setting up the model entails deciding what form each of the functions hs should take. 
For linear and discrete terms, we can just follow the usual procedure for setting up 
generalized linear models. In other words, if hs is to be a linear function of xr, then we 
write  
 
 rss xxh α=)(  
 
where αs is a parameter to be estimated. If hs is a discrete function of the ‘factor’ xr, 
then hs is replaced by a set of dummy functions with the qth dummy taking the value 
αq or 0 according as xr takes its qth possible value. The coefficients αq are to be 
estimated. The usual rules apply for factor coding, contrasts, and extensions to 
interactions of two or more factors. This extension of hs from one to several functions 
does not disrupt the notational convention of [2]; we can simply define a new 
extended set of hs that includes the new dummies but not the original discrete 
function. 
 
A1.2 Smooth terms 
 
A smooth (but not necessarily linear or quadratic) form for hs. cannot be obtained 
directly by using a smoother like S-PLUS's ‘s’ or ‘lo’ functions, because our data are 
recorded in continuous time rather than at discrete points. However, we can mimic 
the effect of such a smoother by using pseudosplines (Hastie, 1996). A pseudospline 
replaces the single term ))(( τxhs  with a set of terms 

))((,)),(()),(( 21 τττ xhxhxh psss   [3] where the ish are called ‘eigenfunctions’. The 
first eigenfunction sh1 is a linear function of its argument, sh2 is roughly quadratic, and 
higher-order eigenfunctions are progressively more wiggly. To get round the problem 
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of overfitting, the coefficients associated with higher-order eigenfunctions receive a 
quadratic penalty in the likelihood, which becomes 
 

 { } ∑∑ ∑∫ ∑ −+−=Λ
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2
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T

s ss xxh βλτβττβ  [4] 

 
where the penalty λs is zero if the sth term is associated with a linear or discrete term, 
and positive if the sth term is associated with a high-order pseudospline 
eigenfunction. 
 
In a generalized additive model, it is possible to mimic the effect of a smoother like 
‘lo’ by choosing (i) appropriate shapes for higher-order eigenfunctions and (ii) an 
appropriate set of matching penalties. The more terms are included in the 
pseudospline (the higher p is in equation [3]), the more accurate the approximation. 
In practice purposes, p=7 is often fine for one-dimensional smoothers. By setting up 
artificial datasets with large numbers of equally-spaced observations, and noting how 
smoothers behave when applied to these datasets, we can derive appropriate 
eigenfunctions and penalties for the continuous time case. 
 
Since there is no really compelling reason to use one type of smoother over another 
(e.g. ‘s’ vs. ‘lo’), it doesn't matter too much exactly what ‘eigenfunctions’ one uses, as 
long as they satisfy the properties of smoothness, roughly constant height peaks and 
troughs, and increasing wiggliness with higher order. As the order increases, the 
eigenvalue should fall from one towards zero along some kind of sigmoidal curve. 
More-or-less any ‘pseudosmoother’ constructed along these lines will have 
reasonable properties in terms of visual fit and predictive power. In fact, one of the 
appealing features of pseudosplines is the ability to design one's own smoother to 
give whatever behaviour is desired. For example, it is reasonable to assume a priori 
that different cetacean species will each have a preferred range of temperatures, and 
that density will drop off at both higher and lower temperatures. If we want to use a 
smooth term for water temperature in modelling sighting rate, we would be quite 
prepared to believe a dome-shaped response. It therefore makes sense not to 
penalize the second-order quadratic-looking eigenfunction at all, and only to penalize 
third and higher-order eigenfunctions. 
 
A particularly useful type of pseudosmoother is the cyclic smoother. Platform-of-
opportunity data including the JCD are compiled on a year-round basis, and there 
can be marked seasonal changes in sighting rate. It makes sense to include a 
smooth term for time-of-year, but standard smoothers do not enforce continuity 
across 1st January. An inelegant solution is to use two smoothers, one for cost and 
one for sint, but this causes difficulties in subsequent interpretation. A better solution 
is simply to build a cyclic smoother, in which the eigenfunctions are 1, cost, sint, 
cos2t, sin2t, etc., with eigenvalues something like 

},)7.01(,)7.01(,)9.01(,)9.01(,1,1,1{ 1111 −−−− ++++ λλλλ . Simulated data can be 
used to see if this is giving sensible behaviour. 
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A1.3 Shrinkage 
 
The penalized-likelihood framework of [4] makes for very easy incorporation of 
shrunken factors. This is useful when dealing with discrete covariates that have a 
large number of levels, with relatively few observations at each value: for example, 
the observer's name. Different observers can have very different sighting rates, and it 
is important to allow for this if possible; but if we allow a separate independently-
estimated sighting rate for each observer, we will grossly overfit the entire dataset, 
and there may be serious confounding with other covariate effects. Particular 
problems occur when there are combinations of levels with no sightings at all. 
 
A simple and effective solution is to include the discrete covariate as a set of dummy 
0-1 variables, one for each level, but to add a penalty term ∑ 2' βλ summed over the 
coefficients β of the levels. This tends to ‘pull in’ all the estimated effects towards 
their common mean. Statistically, it corresponds to placing a (fixed) prior distribution 
on the variable ‘observer effect’. 
 
A1.4 Fitting the model 
 
Fitting the model amounts to maximizing equation [4] over the vector β. The form of 
[4] makes it simple to calculate first and second derivatives: 
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Note that the second derivative is independent of the sightings. 
 
These equations form the basis for a Newton-Raphson or quasi-Newton iteration. For 
starting values, we can simply take )/ln(1 TN=β , 10 >∀= iiβ  where 1)(~

1 ≡τx  (the 
‘grand mean’). The main issue is how to tackle the integration over pseudotime. This 
basically has to be done numerically, though there is no need to call in a full-blown 
numerical integration routine to get adequate accuracy. Simple schemes based on 
weighted sums are quite satisfactory and much quicker. 
 
Once coefficients have been fitted, it is a simple matter to summarize covariate 
effects or make predictions of sighting rates under different conditions. Because the 
eigenfunctions of a covariate to be smoothed are defined throughout the continuous 
range of that covariate, there is no technical difficulty in interpolating at parts of the 
range where there happen to be no observations. The usual warnings apply, 
however, to extrapolation or to interpolation across large gaps in the range. 
 
A1.5 Assessing uncertainty: the problem of patchiness 
 
If sightings really did follow a Poisson process with the functional forms suggested, 
then uncertainty could be assessed via the parameter variance/covariance matrix 
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from fitting [4]. In practice, though, sightings tend to be more patchy than the Poisson 
form implies, even after fitting covariates. There are several reasons why this is only 
to be expected; the statistical upshot, though, is that we cannot trust likelihood-based 
approximations for variance and interval estimation.  
 
Fortunately, though, the point estimates can be shown to be reasonable even under 
conditions of patchiness. We can therefore try to develop a bootstrap to provide more 
robust assessment of uncertainty. The key is to ensure that the resamples mimic the 
pattern of patchiness seen in the real data. It can be shown that, in the Poisson 
process formulation, the rate gap between sightings 
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is exponentially distributed with mean 1. We can construct a ‘residual rate gap’ by 
taking 
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If sightings are patchy, the mean of iĜ  will still be 1 (by construction), but there will 
be more short gaps and more long gaps than expected for an exponential random 
variable. This suggests the form of the bootstrap: 

 
1) Calculate the empirical distribution of rate gaps. 
 
2) To generate a new sample, pick a rate gap *

)1(G at random, and set the first 
observation at the pseudotime *

)1(τ  that satisfies 
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3) Pick another rate gap *
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4) Repeat until the chosen rate gap ‘overflows’ the total elapsed rate in the fitted 
model, which will be equal to N by construction. 

 
This guarantees that the resamples will have at least the right ‘first-order’ patchiness. 
 
It is also possible that there is ‘higher-order patchiness’, that is, that a shorter-than-
expected gap tends to be followed by another shorter-than-expected gap. The 
methods described in Bravington (2000b) allow such autocorrelations in the gap 
sequence to be studied. We applied this approach to the JNCC data, and it revealed 
a considerable impact of patchiness on uncertainty in estimated parameters. 
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Although the technical description above provides details of the main part of the 
analysis, there are other issues that we also found needed to be considered in the 
application of this analytical approach to these platform of opportunity data.   
 
Appendix 2 
 
A2.1 Double platform estimation 
 
When the detection of animals on the transect line is not certain, one of the most 
successful ways of estimating detection probability, and hence abundance, is to use 
two teams of observers simultaneously surveying the same region independently of 
one another. Borchers et al (1998) call this type of survey a ‘mark-recapture line 
transect’ (MLRT) survey. It can be viewed as an experiment in which each animal in 
the survey area corresponded to a trial with four possible outcomes; detection by 
observer 1, detection by observer 2, detection by both observers and detection by 
neither observer. The last outcome is unobserved. A set of covariates, one of which 
would typically be the perpendicular distance of the animal from the transect, is 
associated with each trial.  
 
Let ),( qxpi  be the probability that an animal is detected by observer i (i =1, 2), at 

),( qx  where x is the perpendicular distance and q are the other covariates and let 
),(. qxp  be the probability that an animal is detected by at least one of the observers. 

When two observers are searching independently of one another and the probability 
of detecting an animal depends only on the ),( qx  associated with the animal, then 

),().,(),(),(),( 2121. qxpqxpqxpqxpqxp −+=  
 
Let β’ = (β1, β2) represent the parameters of the detection function, where βi’ = (βi0, 
.., 

iiRβ ) represent the Ri parameters for observer i.  
 
The MLRT survey method conducted in SCANS involved a form of double platform 
survey called ‘BT mode’ survey (after Buckland and Turnock 1992). In this survey 
mode, the role of observer 2 is to generate detections of animals before they have 
responded to the observers and in SCANS observer 2 (known as the tracker) was 
searching with binoculars, farther ahead of the ship than observer 1 (primary), who 
was searching with the naked eye. The estimation of the detection function for 
observer 1 is conditioned on these detections, which serve as a set of binary trials in 
which success corresponds to detection by observer 1, from which β1 is estimated. 
The ),( qxpi can be modelled as a logistic function of the covariates as shown below. 
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The perpendicular distances are those recorded by observer 2 since it is assumed 
that the animals will not have reacted to the ships presence at this stage. The set of 
S+ functions implemented in the package MRLT (Borchers and Burt 2001) was used 
to estimate β1.  
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