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Summary 

The background to this work as described in the JNCC specification document is as follows: 

“The Joint Nature Conservation Committee (JNCC) and Marine Scotland Science (MSS) 

completed a survey in November 2015 to collect evidence to characterise and develop the first 

point in a marine monitoring time-series for the East of Gannet and Montrose (EGM) Nature 

Conservation Marine Protected Area (NCMPA). One of the objectives of the survey was: to 

“Describe the extent and distribution, structure and functions, and supporting processes of offshore 

deep-sea muds within EGM”. Sediment sampling was undertaken and particle size analysis (PSA) 

conducted for these samples to determine sediment and, by extension, habitat designation. Three 

sedimentary benthic habitats were identified from PSA of 155 large (0.25 m2) Hamon grabs across 

the site: A5.2 Sublittoral sand, A5.3 Sublittoral mud and A5.4 Sublittoral mixed sediment. The 

report found that the sedimentary habitats of the site were fairly distinctive and differed from 

previous survey data acquired from the site, therefore JNCC requires new sedimentary habitat 

information to update the habitat mapping for the site.” 

The required new sedimentary habitat information consists of series of 100m resolution raster 

layers covering the site and containing: 

(i) predictions of proportions of sand, gravel and mud 

(ii) estimates of the uncertainty of each of the layers in (i) consisting of upper and lower limits 

and width of the confidence interval 

(iii) a classification layer indicating membership of one of the four EUNIS level 3 sediment 

texture classes: Mud, Sand, Coarse Sediment and Mixed Sediment 

(iv) a layer describing the proportion of model runs which indicate membership of the most 

probable class in (iii) 

The EUNIS level 3 sediment class definitions (Long, 2006) are: 

Mud and sandy mud: Ratio of sand to mud less than 4:1 and less than 5% gravel. 

Sand and muddy sand: Ratio of sand to mud greater than 4:1 and less than 5% gravel. 

Mixed sediment: Between 5 and 80% gravel and ratio of sand to mud less than 9:1. 

Coarse sediment: sediment distributions satisfying none of the above. 

These classes are illustrated on the ternary diagram shown in Figure 1. 

This report describes the production of the habitat information by BGS. 
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Figure 1 Classification of sediment classes reproduced from Long (2006). 

 

1 Introduction 

The methodology to be used is based on that introduced by Lark et al. (2012) and modified by 

Lark et al. (2015). A detailed account of the methodology is provided in these papers and this 

report should be read in conjunction with them to give a complete explanation of the approach. 

This report provides additional information where required. 

2 Methodology 

2.1 DATA 

The data used are 155 particle size analyses from the 2015 survey of the EGM NCMPA conducted 

by the JNCC and MSS. The locations of the analysed samples are relatively evenly dispersed 

across the NCMPA (Figure 2). Each Hamon grab sample had a support of 0.25 m2 and the data 

considered were percent by mass of gravel (particles diameter > 2mm), mud (particles diameter < 

0.063 mm) and sand (particles 2mm > diameter > 0.063 mm). No continuous bathymetry or 

backscatter information were available to inform the modelling work. 

2.2 STATISTICAL METHODOLGY 

The JNCC required interpolated maps of the proportion of each of the three particle size classes 

and associated measures of uncertainty. Geostatistical methods such as kriging are required to 

quantify uncertainty in spatial variables such as these. The standard geostatistical approach first 

quantifies the degree of spatial correlation in measurements of the property of interest by means 
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of a variogram. Then the best linear unbiased or kriging predictor is used to determine the expected 

value of that measurement at sites where it has not been measured and to quantify the uncertainty 

in these predictions. The kriged prediction at a site is a weighted sum of nearby measurements. 

The weights decrease with increasing distance between the measurement and prediction site. The 

rate of the decrease in weights is determined from the variogram. 

In this study, predictions of three variables (% gravel, sand and mud) were required. These 

variables must be represented in single model to ensure that the predictions account for the 

correlation between each variable. The situation is further complicated by the particle size 

measurements being compositional variables (i.e. they must sum to 100% at each site). Thus, if 

the proportion of sand and gravel is known at a site then the proportion of mud can be inferred 

immediately. This compositional property can mean that standard exploratory analyses indicate 

erroneous negative correlations between the three variables. Pawlowsky-Glahn and Olea (2004) 

suggest that compositional co-kriging should be applied in this situation. In this approach, an 

additive log-ratio transformation is used to reduce the three variables to two. The transformed 

variables are the natural logarithm of the ratio of two of the components of the composition to the 

third. In this report we used the sand content (the most prevalent particle size class) as the 

denominator of the log-ratio so our two variables are 𝑧1and 𝑧2where: 

𝑧1 = ln (
% gravel

% sand
), 

𝑧2 = ln (
% mud

% sand
) .                                                             Eqn (1) 

These two variables are then represented in a linear model of coregionalization (LMCR). The 

LMCR includes a variogram for each of the two variables and a cross-variogram. Each variogram 

describes the expected squared difference between two measurements of the variable as a function 

of the distance between the measurements. The cross-variogram considers the covariance of the 

difference between two measurements of one variable and the difference between two 

measurements of the other variable made at the same pair of sites as the first. Again, this covariance 

is expressed as a function of the distance between the pair of measurement locations. The LMCR 

is then used within the co-kriging predictor to produce maps of each variable across the study area. 

The co-kriging prediction of a variable is a weighted sum of nearby measurements of each variable. 

The weights associated with each measurement are determined from the LMCR. The co-kriging 

approach can also be used to simulate multiple realizations of each variable across the study region. 

A set of simulated variables at each site can be back transformed to yield simulations of % gravel, 

% mud and % sand:  

% gravel =
100exp(𝑧1)

1 + exp(𝑧1) + exp(𝑧2)
,   

% mud =
100exp(𝑧2)

1 + exp(𝑧1) + exp(𝑧2)
,   

% sand =
100

1 + exp(𝑧1) + exp(𝑧2)
.                                             Eqn(2)   

If a sufficient number of simulated realisations are produced then these can be used to determine 

across the study region the expected proportion of each particle size class, the confidence limit on 

these proportions and the proportion of simulations for which each site lies in a specified EUNIS 

level 3 sediment texture class. 
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Figure 2 Spatial variation of measured percentages of gravel, sand and mud in Hamon grab 

samples. Note that different colour-scales are used in each plot. 

 

3 Results 

3.1 EXPLORATORY DATA ANALYSIS 

The measurements of % gravel, % mud and % sand are shown in Figure 2 and their histograms in 

Figure 3. The percentages of gravel are generally small with an average of 1.3% and only nine of 

the 155 measurements exceeding 5%. The median % gravel is 0.44% but 13 values larger than 4% 

are scattered across the study region. There is no clear spatial pattern to these larger values except 

in the far-west of the study region where there appears to be a region of consistently large values. 

Large-scale patterns of spatial variation are evident in the % sand and % mud measurements. These 

variables average 78.9 and 21.0% respectively. Two potential outliers are highlighted in Figure 2. 

One, marked ‘A’, can be considered a global outlier since its gravel % of 35% is substantially 

larger than the values observed in the remainder of the dataset. The next largest value is 10.4%. 

The other potential outlier, marked ‘B’, could be a local outlier. The observed vales of 0.1% gravel, 

91.8% sand and 8% mud are consistent with the wider dataset but not consistent with the 

measurements at neighbouring sites.      

 

Figure 3 Histograms of measured percentages of gravel, sand and mud in Hamon grab 

samples. 

   

3.2 GEOSTATISTICAL MODELLING 

The maps and histograms of the additive log transformed data values are shown in Figures 4 and 

5 respectively. The large-scale variation of the % mud to % sand ratio leads to a clear spatial 
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pattern in 𝑧2 whereas the spatial pattern in 𝑧1 is more irregular except for larger values in the west 

of the region which correspond to the relatively large gravel % in this area. The distributions of 

each variable are approximately symmetric and we consider them to be consistent with the 

Gaussian assumption of the LMCR. Transformed variable 𝑧1has a variance of 1.77 whereas 𝑧2 has 

a variance of 0.14.  

 

Figure 4 Spatial variation of additive log transformed variables. 

We follow Lark et al. (2015) and estimate the parameters of the LMCR for these transformed 

variables by residual maximum likelihood (REML). The estimated variograms and cross-

variograms of the LMCR are shown in Figure 6. There is spatial correlation apparent in the 

variograms up to and beyond 30 km. The proportion of spatial correlation is much less for 𝑧1 than 

𝑧2 reflecting the smoother pattern of spatial variation in 𝑧2 (Figure 4). 

 

Figure 5 Histograms of additive log transformed variables. 

 

We validate the estimated model by leave-one-out cross validation. In this procedure, a single 

measurement is removed from the dataset and then the remaining measurements and the co-kriging 

predictor are used to predict the removed measurement and its uncertainty by co-kriging. The 

process is then repeated, removing each measurement in turn. If the estimated LMCR 

appropriately represents the measured data then one would expect the mean squared standardised 
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error to be 1.0 and the median squared standardised error to be 0.45. The standardised error is the 

difference between the predicted and measured values divided by the standard error of the 

prediction. When this procedure was applied to the data the mean standardised error was 1.00 and 

the median 0.39. Such values would be considered to be sufficiently close to the expected values. 

However, the two largest standardised errors were 14.6 and 32.9 which would be expected to occur 

with a probability of less than 1 in 10,000 and would be unlikely to occur in a dataset of 155 

measurements. Given that these two measurements were previously identified as being visually 

inconsistent with the other data (Figure 2) we remove them from the dataset and repeat the model 

estimation procedure. 

 

 

Figure 6 Variograms and cross-variograms for additive log transformed variables. REML 

estimated models for all data are shown in black and for data once outliers have been 

excluded in red. 

The estimated LMCR once these observations have been deleted is shown in Figure 6 (red). The 

same pattern of spatial correlation remains but the semi-variances are decreased. Upon leave-one-

out cross-validation the mean standardised prediction error is 0.99 and the median 0.43. The largest 

standardised prediction error has decreased to 9.74. Figure 7 shows the predicted percentages upon 

leave-one-out cross-validation plotted against the observed values. A strong correlation between 

predicted and observed values is evident for sand and mud. The small number of relatively large 

gravel values are not so well predicted. 
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Figure 7 Predicted percentages of gravel, sand and mud upon leave-one-out cross validation 

against measured percentages. 

The co-kriged maps of 𝑧1 and 𝑧2are shown in Figure 8. These follow the same pattern of underlying 

variation as the observations shown in Figure 4. However, as is common with kriged predictions, 

the variation is smoothed with, for example, the largest predictions of 𝑧1being -4 compared with 

observed values close to zero. The maps indicate the relatively large values of the % gravel to % 

sand ratio in the west of the region and of the % mud to % sand ratio in the south east of the region.  

 

Figure 8 Spatial predictions of additive log transformed variables. 

The LMCR was used to produce 1000 simulated realisations of the variation of 𝑧1 and 𝑧2 across 

the study area. Each realization was back transformed according to Equation 2 to produce 1000 

realizations of percentage gravel, sand and mud. The averages of these 1000 realisations, (i.e. the 

expected gravel, sand and mud percentages) are shown in Figure 9. The pattern of variation of 

these variables are consistent with the observations shown Figure 2. Figure 10 shows the 

proportion of the realisations that are members of each of the EUNIS level 3 sediment classes. 

None of the realisations include an example of the Coarse Sediment class. The probability of 

Mixed Sediment is small everywhere. It averages 0.03 across the study area with the largest values 

of 0.15 occurring in the extreme west of the region. The Mud and Sandy Mud class dominates the 

south and east of the NCMPA whereas the Sand and Muddy Sand class dominates the north and 
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west. Figure 11 compares the EUNIS class memberships of the observed samples to the most 

probable class according to the LMCR.  These are in reasonable agreement although the isolated 

examples of Coarse Sediment amongst the observations are not evident in the predicted map. The 

map of the proportion of realisations being within the most probable class (Figure 12) confirms 

that in the east and south of the region that membership of the Mud and Sandy Mud class is likely 

and membership of the Sand and Muddy Sand class is likely in the north and west of the region. 

There is large uncertainty in the class membership at the boundary between these areas.  

 

 

Figure 9 Spatial variation of predicted percentage gravel, sand and mud. Note that different 

colour-scales are used for each plot. Predictions are included in output file as columns 

Gmean, Smean and Mmean. 

4 Discussion 

The cross-validation results suggest that this geostatistical modelling exercise has led to an LMCR 

which is generally consistent with the observed data. Thus the model can be used to predict the 

sediment particle size distribution and to quantify its uncertainty. However, two points should be 

highlighted when interpreting the resultant maps. First, two outliers were removed from the 

observed data prior to producing the maps. Had these observations been included they would have 

led to large predictions of gravel or sand content in their immediate vicinity. Such predictions 

would appear to be inconsistent with the underlying variation of the sediment across the region. 

The maps should be interpreted as being indicative of this underlying variation but it should be 

remembered that at the spatial-scale of a grab sample it is possible for other texture classes to 

occur.  
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Figure 10 Proportion of simulated realizations that are members of each of the level 3 EUNIS 

sediment texture classes (Coarse Sediment, Mixed Sediment, Mud and Sandy Mud, Sand 

and Muddy Sand). Data are included output file as columns “Cp”, “MIp”, “MUp” and “Sp”. 

Second, gravel and hence the Mixed Sediment class does appear to be slightly under-represented 

in the model predictions. Five percent of the observed samples were Mixed Sediment whereas this 

class was not the most likely at any location (Figure 11). This is to be expected for a class that 

occurs sporadically across the region. Figure 10 indicates that this class is possible at any location 

but that the proportion of occurrences amongst the simulations rarely increases beyond 0.1. The 

average proportion of occurrences of 0.03 is rather less than the observed proportion of 0.05. We 

suspect that this discrepancy is largely because the model underestimates the degree to which 

gravel has elevated proportions in the extreme west of the region. The model assumes that the 

same model of spatial correlation applies across the region (i.e. the model is stationary). Generally, 

there is little spatial correlation amongst the gravel observations and the model reflects this. 

However, some spatial correlation appears to occur in the west where relatively large gravel values 

consistently occur. This is an indication of non-stationary variation. In this circumstance, 
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additional spatial information such as swath bathymetry or backscatter data might be useful in 

identifying the extent of this non-stationarity and modifying the model. 

 

Figure 11 Level 3 EUNIS sediment texture class membership for the observed samples (left) 

and most likely class according to the LMCR (right). Most likely class is included in output 

file as column “EUNISmax” 

5 Supplementary Material 

The outputs of this work are provided as a csv file “EGM_psd.csv”. This consists of predicted 

quantities at 183,876 locations on a grid of spacing 100m which covers the EGM NCMPA. The 

variables included in this file are: 

x: Eastings from rectilinear coordinates (UTM 31N [WGS84]) 

y: Northings from rectilinear coordinates (UTM 31N [WGS84]) 

Gmean: Expected proportion of gravel 

Smean: Expected proportion of sand 

Mmean: Expected proportion of mud 

G025: Lower limit of 95% confidence interval for gravel 

S025: Lower limit of 95% confidence interval for sand 

M025: Lower limit of 95% confidence interval for mud 

G975: Upper limit of 95% confidence interval for gravel 

S975: Upper limit of 95% confidence interval for sand 

M975: Upper limit of 95% confidence interval for mud 

Cp: Proportion of simulated realisations indicating Coarse Sediment 

MIp: Proportion of simulated realisations indicating Mixed Sediment 

MUp: Proportion of simulated realisations indicating Mud and Sandy Mud 

Sp: Proportion of simulated realisations indicating Sand and Muddy Sand 
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EUNISmax: most probable EUNIS class 

EUNISp: proportion of simulated realisations indicating most probable EUNIS class. 

 

Figure 12 Proportion of simulated realizations with membership of the most likely EUNIS 

sediment texture class shown in Figure 11. Included in output file as column “EUNISp”. 
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Figure 13 Lower (left) and upper (right) limits of the 95% confidence interval for predictions 

of gravel (top), sand (middle) and mud (bottom). Note that different colour-scales are applied 

for each variable. Data are included in the output file as “G025”, “S025”, “M025”, “G975”, 

“S975” and “M975”.  
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