

TheBigPicture@jncc.gov.uk

Benthic imagery enumeration approaches

Dr Henk van Rein

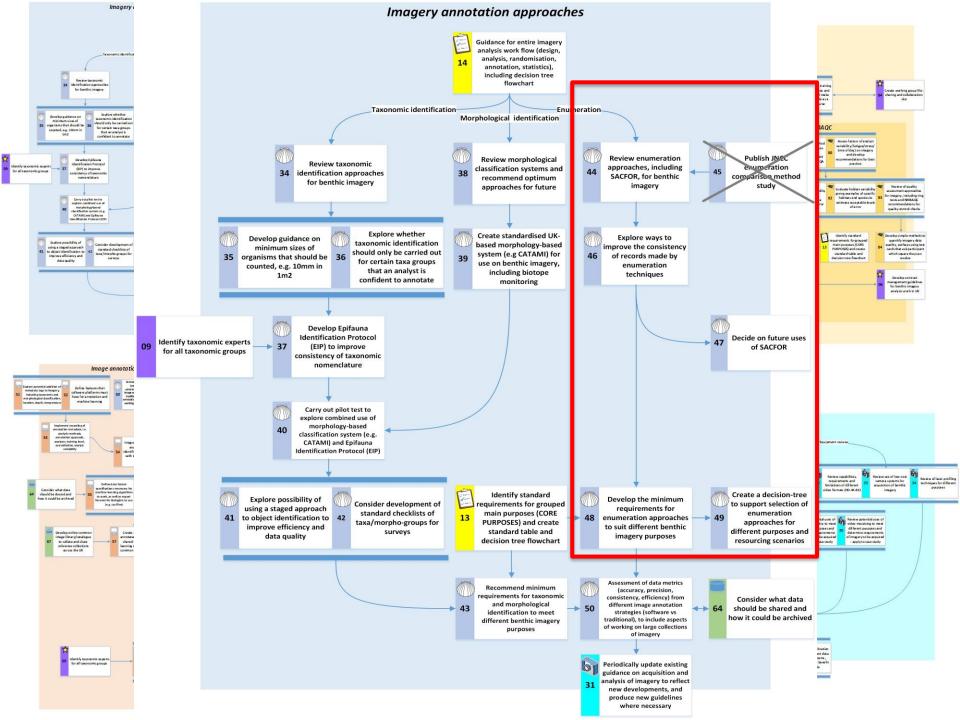
Marine Monitoring and Evidence Manager/ Marine Natural Capital Evidence Specialist

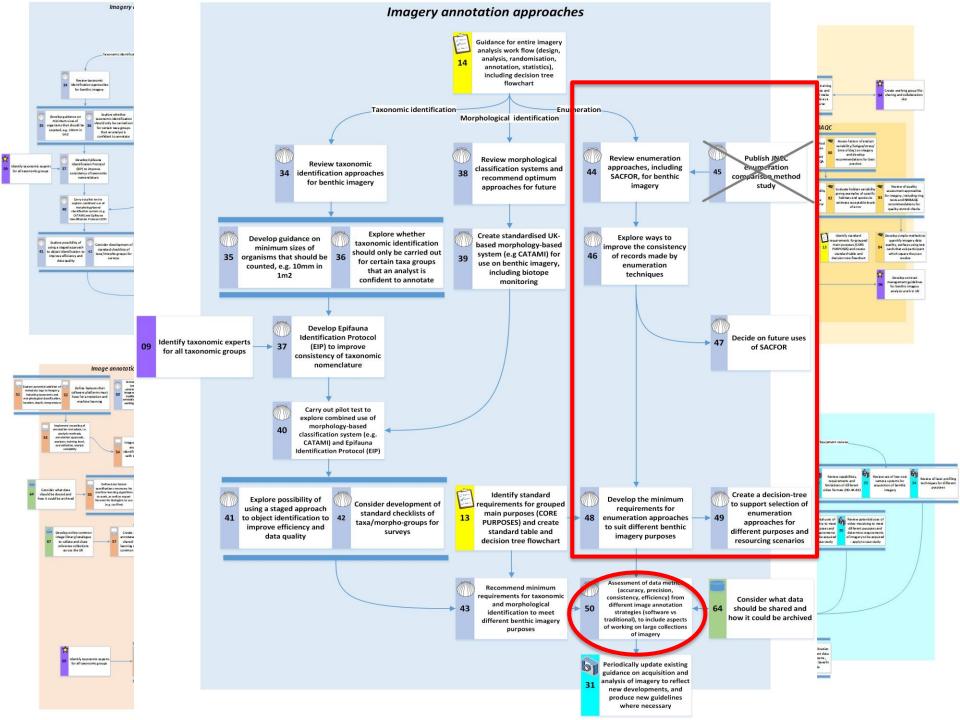
Joint Nature Conservation Committee Contact: Henk.vanrein@jncc.gov.uk

JNCC

Cover		Counts				
Growth form			Size of individuals/colonies			
Crust/meadow	Massive/Turf	Density	<1cm	1-3 cm	3-15 cm	>15 cm
S	-	>10,000 / m ²	S	-	-	-
A	S	1000-9999 / m ²	А	S	-	-
С	A	100-999 / m ²	С	А	S	-
F	С	10-99 / m ²	F	С	А	S
0	F	1-9 / m ²	0	F	С	A
R	0	1-9 / 10m ²	R	0	F	С
-	R	1-9 / 100 m ²	-	R	0	F
-	-	1-9 / 1000 m ²	-	-	R	0
-	-	<1 / 1000 m ²	-	-	-	R
	Growth Crust/meadow S A C C F O	Growth formCrust/meadowMassive/TurfS-ASASCAFCOFRO	Growth form Massive/Turf Density Crust/meadow Massive/Turf Density S - >10,000 / m² A S 1000-9999 / m² A S 1000-9999 / m² C A 100-999 / m² F C 10-999 / m² O F 1-9 / n² R O 1-9 / m² - R 1-9 / 100 m² - - 1-9 / 1000 m²	Growth form Size Crust/meadow Massive/Turf Density <1cm S - >10,000 / m² S A S 1000-9999 / m² A C A 1000-9999 / m² C F C 100-999 / m² C F C 100-999 / m² C O F 100-999 / m² C R O 10-99 / m² C N T P C R O 1-9 / m² O R O 1-9 / 100 m² R - R 1-9 / 1000 m² -	Growth form Size of indiv Crust/meadow Massive/Turf Density <1cm 1-3 cm S - >10,000 / m² S - A S 1000-9999 / m² A S C A 1000-9999 / m² A S C A 1000-9999 / m² C A F C 100-999 / m² C A F C 100-999 / m² F C O A 100-999 / m² F C R O 10-99 / m² F C O F 1-9 / m² O F R O 1-9 / n0m² R O F R 1-9 / 100 m² R R F T 1-9 / 1000 m² T R	Operation of the system Growth form Massive/Turf Density <1cm 1-3 cm 3-15 cm Crust/meadow Massive/Turf Density $<1cm$ 1-3 cm 3-15 cm S $>10,000/m^2$ S $ -$ A S $1000-9999/m^2$ A S $-$ C A S $1000-9999/m^2$ A S $-$ C A S $100-999/m^2$ C A S F C A S $-$ A S $-$ O F C A S $-$ A S F C A 100-99/m² F C A O F 1-9/m² O F C A O F 1-9/100m² R O F O F 1-9/1000m² - R O

The Marine Nature Conservation Review SACFOR scale for the estimation of littoral and sublittoral cover and abundance (1990 onwards). SACFOR codes are: S = Superabundant, A = Abundant, C = Common, F = Frequent, O = Occasional, and R = Rare


Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O., Reker, J.B. 2004. The Marine Habitat Classification for Britain and Ireland (version 04.05). Joint Nature Conservation Committee, Peterborough, 49pp.



Purpose	Feature verification	Habitat mapping	Habitat/Species monitoring
Summary	Imagery collected for use in verification of feature existance in particular area. Targets biological and abiotic features. Data standards and metadata rich. Limited acquisition standards, as only few replicates required to verify feature.	Imagery collected for use in habitat mapping. Targets biological and abiotic features. Data standards and metadata rich. Limited acquisition standards.	Imagery collected for use in habitat characterisation particularly assessment of trends & assessment of impacts. Targets biological and abiotic features. Uses quantitative approaches in analysis. Data standards and metadata rich. Limited acquisition standards.
Includes	- Ground truthing anecdotal information or data from multiple sources - Support marine licensing	 Mapping conservation features Mapping of seabed, habitats and species Ground truthing anecdotal information or data for inshore developments Support marine licensing 	 Detection of trends in conservation features (community extent, distribution, composition) Assessing the effectiveness of management practices Environmental Impact Assessment (including assessment of fishing impacts, offshore industrial impacts, impact assessment in MPAs) Ground truthing anecdotal information or data for inshore developments Support marine licensing

Previous work

ØJNCC

JNCC Report No. 641

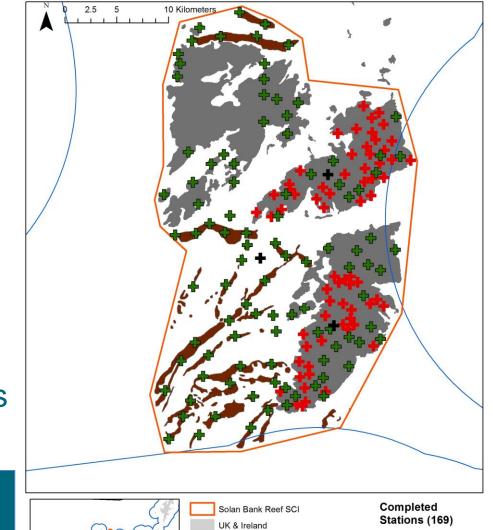
Optimisation of Benthic Image Analysis Approaches

Moore, J., van Rein, H., Benson, A., Sotheran, I., Mercer, T. & Ferguson, M.

INCC

Aims

- 1. To explore the consequences of **multiple observers** using different **image annotation methods** on imagery collected from a temperate rocky reef community
- 2. To attempt a rank-based analysis of annotation results to consider the **optimum** method, in terms of several data metrics:
 - Power
 - Precision
 - Accuracy
 - Efficiency
 - Taxonomic richness
 - Consistency


Methods

Imagery processing:

- 4630 raw stills
- Filtered by:
 - Image quality
 - Field of view (None >1m2)
 - Abiotic substratum
- Finally, only 100 images selected at random for this study

High density, high diversity temperate circalittoral bedrock reef community

Goudge, H., Morris-Webb, E., Stamp, T., Perry, F., Deamer-John, A. & O'Connor, J. 2016. Analysis of seabed video and stills data collected by drop down camera on the Solan Bank Reef SCI (1714S) (2014). JNCC Report No. 582. JNCC, Peterborough.

Sampling) © JNCC 08/12/2015 UK Territorial Sea Limit. Contains UKHO data © Crown copyright. All rights reserved. World Vector Shoreline © US Defence Mapping Agency. Not to be used for navigation. Bathymetry derived from Civil Hydrography Programme data. All other data © JNCC

UK Territorial Waters (12nm)

Annex I Bedrock Reef Extent

Annex I Stony Reef Extent

Dropframe

(Targeted

Sampling)

Dropframe Camera/CTD (Random Stratified

Camera/CTD

Methods

Imagery annotation:

• Image analyst consultants

Senior analysts	Junior analysts		
x3	x 3		

• Annotation methods

Percentage cover	Abundance count
SACFOR scoring	Point intercept
Frequency of occurrence	Frequency of occurrence
(10x10 grid)	(5x5 grid)

Methods

Imagery annotation:

• Image analyst consultants

Senior analysts	Junior analysts
x 3	x3

- Annotation methods x 6
- Order of images and methods randomised
- Current UK annotation protocols (no standardised taxa list – pre-EIP)
- Annotation time recorded

Analysis and results

Limitations of method comparisons

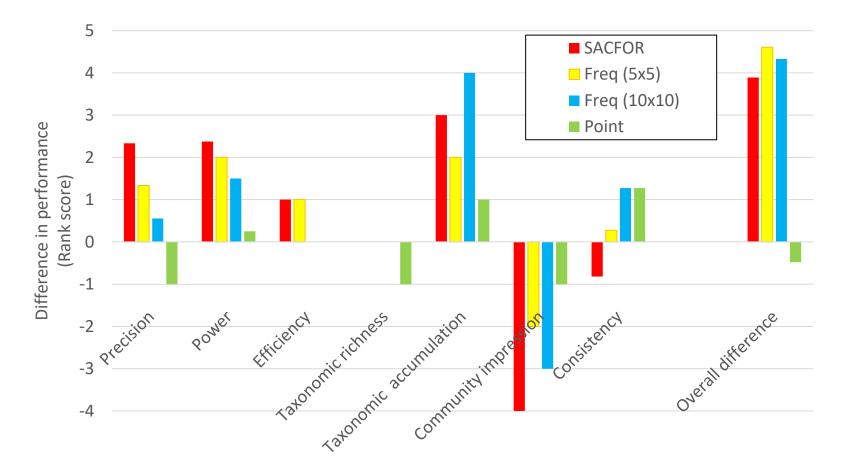
- 1. Data ranges
- 2. Taxonomic inconsistencies
- 3. Method truncation issues

Data ranges

- Percentage Cover: 0 to 98%
- Abundance Counts 0 to 344 individuals
- SACFOR: 0 to 6
- 5x5 Frequency 0 to 25 cells
- 10x10 Frequency 0 to 100 cells
- Point Intercept 0 to 90 points

Analysis and results

Analysis preparation (truncation)


- Many inconsistencies in taxonomic identification
- 'Truncation' of 417 taxa down to final 97 for analysis
 - Aggregation of same taxa to just one
 - Increasing and decreasing classification of taxa (i.e to species level)
 - Removal of spurious records

ID	Method	Ophiuroidea	Ophiothrix fragilis	Ophiocomina nigra
A	SACFOR	6	5	5
А	Abundance	236	19	4
	Counts			
А	10x10	92	29	9
А	5x5	25	17	5
Α	Point intercept	15	1	
В	SACFOR	6		
В	Abundance	150		
	Counts			
В	10x10	95		
В	5x5		25	
В	Point intercept	8	19	1
С	SACFOR		6	5
С	Abundance		220	11
	Counts			
С	10x10		97	17
С	5x5		25	5
С	Point intercept		29	3

 Truncation difficulties with SACFOR and Frequency grid data

Analysis and results

Figure 13. Relative performance of data extraction methods, as indicated by rank scores relative to combined scores of Abundance Count (erect/solitary taxa) and Percentage Cover (ground cover taxa) for all key data sets of every data metric in this study.

Conclusions

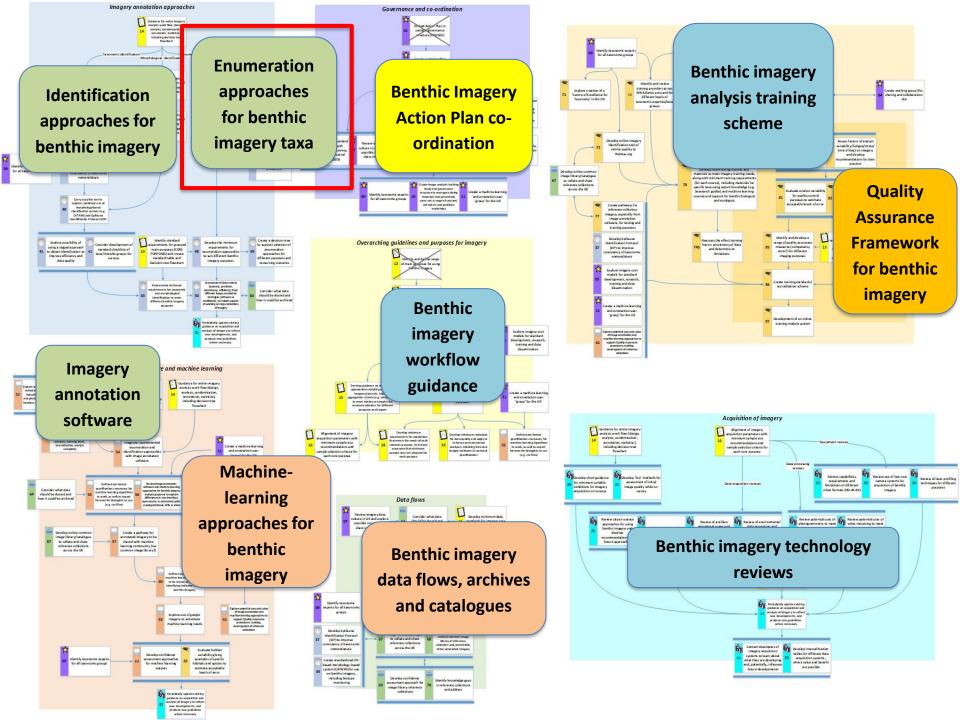
- Rank-scoring system suggests:
 - Frequency of occurrence with 5x5 grid is optimum method across all 7 metrics
 - Traditional annotation methods most accurate but poor levels of precision, power and consistency

Different people see the same things differently and that different methods create different impressions of the same community

Reflections

- Inconsistencies in taxonomic identification and enumeration (Senior and Junior analysts)
- Truncation issues
- 1. Use of appropriate classification systems, image annotation software and machine learning
 - Epifauna Identification Protocol
 - classification systems (SMarTaR-ID, CATAMI)
 - Annotation software (BIIGLE, Squiddle, VARS)
 - Machine-learning algorithms (physics-based vision; Deep Mind)

INCC


Reflections

- Methods that generate less data, reduce variability and enable higher levels of consistency
- 2. More precise targets/indicators needed
- 3. Appropriate sample sizes needed
- 4. Continued collaboration with marine imagery community

Enumeration approaches Project Working Group of the Big Picture Group

Future workflows

ØJNCC

Who's doing the counting?

Future challenges

- Different methods for different taxa?
- Different methods for different purposes?
- Future proofing todays methods for tomorrows usage?
- Algorithms do the counting and humans check results?
- Standardising frequency grids to 10x10cm cells?

JNCC

- Back compatibility of data?

Stay connected

- Henk.vanrein@jncc.gov.uk
- www.jncc.defra.gov.uk

www.linkedin.com/company/jncc

f

www.facebook.com/JNCCUK

twitter.com/JNCC_UK