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1. Introduction 

Montserrat is a highly biodiverse, volcanic and mountainous island within the UK 

Caribbean Overseas Territories. The islands’ ecosystems provide multiple benefits such 

as the provision of fresh water, maintaining soil fertility and a variety of food resources, 

as well as being an important source of income through the exploitation of its unique 

biodiversity to promote tourism.  

This project sits within the first phase of producing a baseline Natural Capital Account 

for Montserrat, and has three objectives:  

 Use Earth Observation (EO) to enhance and update an existing Montserrat 

terrestrial map following the Living Maps for biodiversity and natural capital 

approach developed by Natural England.  

 Use the updated habitat data to produce a suite of spatial metrics to inform a 

parallel project undertaking a baseline economic valuation of natural capital 

on Montserrat, carried out by Eftec Ltd.  

 Provide recommendations for a monitoring and reporting system for Montserrat 

based on Sentinel-1 and Sentinel-2 data. 

This report describes how the habitat map was produced, how it was used to produce 

spatial metrics on agricultural sub-categories, forest canopy density, forest clearing 

activity, coastal sediment plumes and soil erosion risk, and makes recommendations 

on future EO-based monitoring on the island. 

2. Habitat Map Production 

For this project Environment Systems Ltd was tasked to produce a terrestrial habitat 

map for Montserrat through use of the Living Maps classification script developed by 

Natural England (Natural England, 2017). No supporting documentation was 

available to support the implementation of the classification script, therefore the 

methodology and interpretation of results cannot be described in full, but are 

presented below in as much detail as possible given the information available at the 

time of writing.  

2.1. Earth observation data  

A range of image types was available to the project, ranging from high to medium 

resolution. The focus of the project was to develop a habitat classification based on 

Sentinel-1 and Sentinel-2 imagery. A dense image time-series was collected for both 

sensors covering the period January to December 2017; this time-series comprised 35 

Sentinel-1 images and 14 Sentinel-2 images. In addition, three pre-processed Pléiades 

images were also available, as was a WorldDEMTM terrain model (12m resolution). The 

full list of input satellite images used by the project can be found in Appendix A, along 

with a description of the image processing steps undertaken.  

For the Sentinel-1 image time-series a temporal statistics dataset was created 

comprising mean, maximum, minimum and standard deviation values for each pixel 

across the time-series. A temporal statistics dataset was also created for the  

Sentinel-2 imagery. In addition, a range of indices were calculated for each individual 

Sentinel-2 image (Table 1). 
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Table 1: List of Sentinel-2 indices used by the habitat classification 

Index 

name 

Abbreviation 

BAI Burn Area Index 

GDVI Generalised Difference Vegetation Index 

MCARI Modified Chlorophyll Absorption in Reflectance Index 

MNDWI Modified Normalised Difference Water Index 

MSAVI Modified soil adjusted vegetation index 

MTICI MERIS Terrestrial Chlorophyll Index (Sentinel-2 used) 

NBR Normalised Burn Ratio 

NDRE1 Normalised Difference Red Edge 

NDRE2 Normalised Difference Red Edge 2 (using 705 nm and 740 nm) 

NDRE3 Normalised Difference Red Edge 3 (using 705 nm and 783 nm) 

NDVI Normalised Difference Vegetation Index 

NRI Nitrogen Reflectance Index 

OSAVI Optimised soil adjusted vegetation index 

PSRI Plant Senescence reflectance index 

TCARI Transformed chlorophyll absorption and reflectance index 

2.2. Field survey 

During December 2017 and January 2018 field work was undertaken by an 

experienced ecologist form Montserrat National Trust. In total 215 points were 

collected. Habitat class names and descriptions followed the definitions detailed in 

Young (2008), excluding certain habitats that were absent from the island 

(Mangrove), and those which ground survey found to be highly modified/transitional. 

Transitional habitats were not targeted as they could be classified as more than one 

broad habitat class; this was found to be the case for Riparian habitat, which was 

highly variable and transitional on the ground, and not definable as a distinct habitat 

type. The habitat descriptions are summarised in Table 2. 

Additional information regarding vegetation canopy composition, the presence of 

notable or invasive species, and ecosystem service provision was also collected. A 

further 601 data points were digitised by manual image interpretation by the field 

ecologist (for vegetation classes) and experienced image interpreters (for 

urban/marine water/ash classes), giving a total number of 816 points (Figure 1). The 

total number of points collected per habitat is detailed in Table 3.  
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Table 2: Habitat descriptions used during field survey, taken from Young (2008) 

Habitat Description 

Dry Scrub A combination of the sub-classes ‘Dry scrub’ and ‘Dry Scrub 

(Cacti Dominated)’. Shrubby vegetation 0.5-2.5m tall in 

lower elevations with low rainfall Typical taxa: Comocladia 

dodonaea, Agavaceae, Croton spp., Galactia spp., 

Acacia spp., Malpighia linearis, Stigmaphyllon spp., 

Tetramicra canaliculata, Melochia spp., Jacquinia 

armillaris, Corchorus aestuans, Cactaceae, Oncidium 

urophyllum. 

Dry Thicket Large shrub/small tree dominated vegetation 2.5-5m tall in 

lower elevations with low rainfall Typical taxa: Cordia spp., 

Bourreria succulenta, Oplonia microphylla, Cassine 

xylocarpa, Piscidia carthagenensis, Pithecellobium unguis-

cati, Pisonia spp., Coccoloba spp., Verbenaceae. 

Mesic Forest Medium/Large tree dominated vegetation >5m tall in mid 

elevations with medium rainfall. Typical taxa: Begonia 

obliqua, Araceae, Lauraceae, Inga laurina, Eugenia spp., 

Piper spp. 

Wet Forest A combination of the sub-classes ‘Wet Forest’, ‘Wet Forest 

(lower)’ and ‘Wet Forest (upper)’: Medium/Large tree 

dominated vegetation >5m tall in high elevations with high 

rainfall. Typical taxa: Elaeocarpaceae, Phyllanthus spp., 

Podocarpus coriaceus, Asplundia spp., Orchidaceae, 

Marcgravia umbellate, Arecaceae, Sloanea spp. 

Elfin Woodland Shrubby vegetation 0.5-2.5m tall in high elevations with high 

rainfall and greater abundance of the following taxa: 

Wercklea tulipiflora. 

Anthropogenic Landscape modified and maintained through human 

activity. 

Cultivated Area Land currently under cultivation. Typical taxa: Cocos 

nucifera, Mangifera indica, Carica papaya, Manihot 

esculenta, Psidium spp., Poaceae. 

Ash/Mud Land covered with volcanic ash or mud. Typical taxa: 

Poaceae, Cyperaceae. 
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Figure 1: Training points for the classification collected through field survey work and visual 

interpretation. 



8 

 

Whilst efforts were made to capture representative samples of all habitats across the 

entire island of Montserrat, it was geographically not possible to access all areas of 

the island due to steep terrain and general inaccessibility of the south of the island. All 

training data points in the south of the island were captured by image interpretation, 

not field survey. As a result of these restrictions some habitat classes are under 

represented in the training dataset; notably Elfin woodland (21 data points) and Wet 

forest (24 data points), therefore there may be more uncertainty in the classification 

accuracy of these classes.  

A further stage of field validation was carried out in early March 2018. This was 

specifically targeting habitat polygons displaying unusual characteristics (see Section 

5.3).  

Table 3: Field survey/habitat classification training points 

Habitat No. of points by 

field survey 

No. of points by 

image 

interpretation 

Total number of 

points 

Ash/mud 0 120 120 

Beach 0 36 36 

Disturbed 

ground/Agriculture 

0 29 29 

Dry forest 31 22 53 

Dry scrub 67 59 126 

Dry thicket 50 31 81 

Elfin woodland 19 2 21 

Mesic forest 24 11 35 

Open water 

(marine) 

0 145 145 

Urban 0 146 146 

Wet forest 24 0 24 

 

2.3. Additional datasets 

Slope, aspect and curvature datasets were derived from the WorldDEMTM image. In 

addition, island-wide 2m resolution raster proximity datasets were created, showing 

proximity to known agricultural areas, buildings, roads, rivers, trails and the coastline. 

The proximity datasets were based on vector data supplied by the Government of 

Montserrat. 
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3. Terrestrial Classification Method 

3.1. Image segmentation 

A detailed image segmentation was carried out in eCognition 9.0 to define the 

boundaries between different vegetation and land cover types on Montserrat. Due 

to the coarser resolution of the Sentinel-2 imagery and very high prevalence of cloud 

cover, the segmentation was based on Pléiades imagery. A single cloud-free image 

for the island was not available, so a composite of three Pleiades images was used 

for the segmentation resulting in only a small area of cloud cover above the peak of 

the volcano (Figure 2). An example of the resulting segmentation is shown in Figure 3. 

 
Figure 2: Composite of three Pléiades images used for segmentation 
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Figure 3: Example of image segmentation used by the Living Map habitat classification 

3.2. Living Map process 

The Living Map habitat classification process is a Random Forest-based classifier 

implemented in R, developed by Natural England (Kilcoyne et al., 2017). It takes the 

locations of the training data (from field survey and image interpretation) and 

analyses the attributes of the entire image stack on the basis of zonal statistics, using 

the image segmentation to define zone boundaries. On this basis the characteristics 

of each habitat/land cover class present in the training data are defined. The process 

then assigns a habitat/land cover class to every image segment based on the 

similarity of the image stack zonal statistics to the class characteristics.  

As inputs, the Living Map script reads in all rasters (images, image segmentation, 

indices and proximity layers) and the vector point dataset containing training data. 

The process removes data gaps (such as those resulting from cloud cover) by imputing 

values into the zones with missing values; it analyzes the values across the image stack 

where there are no data gaps, and models what the values should be within the gaps 

themselves.  

The code requires the user to specify a maximum number of training points per class, 

with the default set at 30. However, this was seen as an unnecessary constraint to the 

classification, and the value was increased to allow all training points to be used. 

Training points obtained from field survey were given a higher weighting than points 

obtained by image interpretation. Following classification, the script creates a 

confusion matrix to generate an accuracy assessment for each class, but no 

documentation was available to explain how the point data set was apportioned 

between training and validation.  

The resulting classification was manually supplemented through the fusion of existing 

vector datasets for buildings and roads, in order to better-define these features. The 

output class ‘Disturbed ground’ was also split into ‘Cultivated area’ and ‘Disturbed 

ground/cultivated area’ through fusion of known agricultural areas.  

During the course of the analysis a number of features within the existing code were 

identified which will make the code more suitable to running in the tropical 
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environment found in the Caribbean. The recommended updates which improve 

operating efficiency and accessibility, are summarised in Appendix A along with 

recommendations for future development of the script. 

4. Terrestrial Classification Result 

4.1. Habitat map of Montserrat 

The complete terrestrial habitat classification is shown in Figure 5. There are five fields 

in the habitat dataset: “A_pred” describes the random forest primary prediction with 

“A_prob” illustrating the corresponding probability. “B_pred” describes the random 

forest secondary prediction with “B_prob” illustrating the secondary probability. 

“Class” describes the habitat after thematic layers have been introduced. 

 

The attribute table of the habitat map contains four fields, intended to serve as a 

record of future map version updates. Following field and or image interpretation 

the column ‘CLASS’ should be updated along with the columns ‘DATE_UPDAT’, 

‘VERSION’, ‘UPDATE_BY’ and ‘METHOD’ (e.g., aerial photographic interpretation 

(API) or field survey (FS)).  See Figure 4 below. The field name ‘ORIG_CLASS’ contains 

the original habitat classification from the Living Map analysis, and should not be 

overwritten. 

 

 

ORIG_CLASS CLASS DATE_UPDAT VERSION UPDATE_BY METHOD 

Bare ground Bare ground 
 

0 
  

Bare ground Dry scrub 28/03/2018 1 SP API 

Bare ground Dry scrub 28/03/2018 1 SP API 

Bare ground Dry scrub 28/03/2018 1 SP FS 

Bare ground Dry scrub 28/03/2018 1 SP FS 

Bare ground Dry scrub 28/03/2018 1 SP FS 

Bare ground Dry scrub 28/03/2018 1 SP FS 

Bare ground Dry scrub 28/03/2018 1 SP API 

Bare ground Dry scrub 28/03/2018 1 SP FS 

Bare ground Bare ground 
 

0 
  

Bare ground Bare ground 
 

0 
  

Bare ground Bare ground 
 

0 
  

Figure 4: Example of manually updated habitat data 

 

The habitat descriptions are shown in Table 2, Section 2.2. If further habitat classes 

are needed following field investigation then they can be added in the CLASS field, 

and the habitat description table should also be updated. 



12 

 

 
Figure 5: Habitat classification of Montserrat based on the field “Class”; Living Map method 
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4.2. Classification accuracy 

The Living Maps script automatically generates an accuracy assessment, the results 

of which are shown in Figure 6 and Figure 7. At the time of writing it was unclear how 

many data points had been used for training the habitat classification, and how many 

had been used for the accuracy assessment.  

The overall map accuracy is calculated as 73.44%. Disturbed ground and Dry scrub 

had the highest classification accuracies out of the vegetated classes, at 83.3% each 

(Table 4). Dry forest had the lowest accuracy, at 16.7%, even though a relatively high 

number of training points were available for this habitat type. Upon closer inspection 

of the additional field survey information recorded against these data points it can be 

seen that the vegetation in most of these locations displayed some evidence of 

disturbance and/or transitional characteristics. It is likely that this led to the low 

classification accuracy, as the training samples did not allow the classification script 

to define the characteristics of ‘pure’ dry forest areas.  

Figure 7 provides information on the ways in which classes have been misclassified. 

From this graph it can be seen in the Ash/mud class, two thirds of the samples (66.7%) 

were classified successfully, but that the remaining samples were misclassified as 

Urban. In the Beach class 83.3% of samples were classified successfully, with the 

remaining samples being misclassified as Open water. The information displayed in 

the graph is summarised in Table 3. With the exception of the Dry scrub/Urban 

confusion, the class confusions can be explained by gradations between one habitat 

type and another (e.g., in the case of Dry forest, Dry thicket Dry scrub) or similar 

reflectance characteristics of bare earth features (e.g., Ash/Urban). 

Table 4: Summary of classification accuracies and confusion between classes 

Class Classification accuracy Misclassified As 

Ash/mud 66.7% Urban 

Beach 83.3% Open water 

Disturbed ground 83.3% Dry forest 

Dry forest 16.7% Dry thicket, Mesic forest 

Dry scrub 83.3% Urban 

Dry thicket 66.7% Dry scrub 

Elfin woodland 80.0% Disturbed ground 

Mesic forest 66.7% Dry forest 

Open water 100% n/a 

Urban 83.3% Disturbed ground 

Wet forest 80.0% Elfin woodland 
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Figure 6: Breakdown of accuracy by class 
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Figure 7: Breakdown of classification errors by class 
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4.3. Production of a habitat map for economic valuation 

The habitat map was found to contain too much detail with respect to some classes 

for the purpose of economic valuation of natural capital. As a result an amended 

version of the habitat classification was produced, with certain classes merged 

together (Table 5). In addition, existing marine benthic habitat data from the Blue Halo 

project (Blue Halo, 2017) were incorporated to produce a seamless habitat map for 

the entire territory of Montserrat. This version of the habitat was produced as a 

standalone output for the purposes of the economic valuation, and was not used for 

calculation of spatial metrics. Figure 8 shows a hybrid version of the habitat map, 

presenting the detailed terrestrial habitat classes alongside the Blue Halo marine 

habitat classes. 

Table 5: List of habitat classes merged together for economic valuation 

Original habitat class Merged ‘SuperClass’ 

Elfin woodland Wet woodland 

Wet forest Wet woodland 

Mesic forest Wet woodland 

Dry forest Dry scrub 

Dry thicket Dry scrub 

Dry scrub Dry scrub 

Cultivated area Cultivated area 

Disturbed ground / cultivated area Cultivated area 

Urban Developed land 

Buildings Developed land 

Roads Developed land 
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Figure 8: Combined terrestrial (detailed classes) and marine habitat map of Montserrat. 
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5. Spatial Metrics 

Sentinel-2 and Pléiades imagery were analysed to produce spatial metrics to inform a 

baseline natural capital valuation. The spatial metrics were chosen based on an 

assessment of island priorities in terms of ecosystem service provision.  

Island priorities were first scoped with a range of stakeholders during a Territory to 

Territory Partnership workshop, held between 13th-17th November, 2017, through 

discussion of how each of the habitats of Montserrat provide key ecosystem services. 

These initial findings were then further explored by Eftec Ltd to identify a short-list of 

island priorities. These priorities were then assessed alongside the capabilities of EO 

analysis to identify key spatial metrics to be generated for the project. The chosen 

metrics were habitat extent, extent of different agricultural activities, forest canopy 

density, forest clearing activity, and coastal sediment plume mapping.  In addition an 

erosion risk layer calculated using Sensitive Catchment Integrated Modelling and 

Analysis Platform (SCIMAP), showing how risk areas on the land may be relating to the 

sea has been run for the island. This is described in Section 5.6 

The original, unmerged habitat classification was used for this analysis. This is because 

the habitat extents from the original habitat could easily be summed to produce the 

extents for ‘SuperClass’ habitat classes, and all of the other spatial metrics were 

required to be generated for the more detailed habitat classes. 

5.1. Habitat extent 

Table 6 provides a summary of habitat extent for the habitats of Montserrat both, using 

the detailed terrestrial habitat classes and Blue Halo benthic habitat classes. It shows 

total habitat extent across the island, and the area of habitat contained within the 

forest park protected area. Figure 9 shows the percentages of each habitat 

contained within the forest park boundary. It can be seen that more than 50% of the 

total island resource of Wet forest and Mesic forest are located within the park (78% 

and 56% respectively), and just under half of the islands’ Elfin woodland (49%). The 

majority of the Dry forest, Dry scrub and Dry thicket on the island lie outside the 

protected area (90%, 99% and 97%, respectively), as does 79% of the area of Rivers 

and ghauts.  

Previously to this map it was thought that all the Elfin forest lay within the Centre Hills 

Protected Area. It has not been possible to reach the south of the island to check if 

Elfin forest has developed in this area since the volcano erupted. It is possible that Elfin 

forest is present or it may be that there is a specific very dense fern dominated habitat 

developing in this area which shares spectral characteristics with the Elfin forest. The 

exact classification of this area in the south of the island will require a field visit.
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Table 6: Summary of marine and terrestrial habitat extents 

Habitat Type Habitat  Total Extent 

(Ha) 

Extent within 

Forest Park (Ha) 

Marine Algal Reef (Hard Bottom) 4149.00 0 

Marine Algal Reef (Mixed Bottom) 1043.00 0 

Marine Artificial Reef 14.00 0 

Marine Colonised Volcanic Boulders 266.00 0 

Marine Coral Reef 872.00 0 

Marine Hard Bottom and Sand 1339.00 0 

Marine Sand 4589.00 0 

Marine Seagrass 446.00 0 

Terrestrial Ash / mud 2148.57 0 

Terrestrial Bare ground 436.05 0.13 

Terrestrial Beach 248.80 0 

Terrestrial Buildings 48.32 0.01 

Terrestrial Cultivated area 30.59 0.09 

Terrestrial Disturbed ground / Cultivated area 302.33 1.40 

Terrestrial Dry forest 1220.50 117.66 

Terrestrial Dry scrub 1995.32 18.13 

Terrestrial Dry thicket 1973.80 60.54 

Terrestrial Elfin woodland 122.07 59.22 

Terrestrial Mesic forest 1077.26 597.95 

Terrestrial Open water 849.32 0 

Terrestrial Rivers and ghauts 101.39 20.94 

Terrestrial Roads 45.82 0.19 

Terrestrial Urban 295.40 0.36 

Terrestrial Wet forest 333.80 259.78 
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Figure 9: Percentage of habitat area falling within the forest park boundary. 
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5.2. Agricultural sub-categories 

Analysis of the type of agricultural activities is a useful metric for understanding the 

relative importance of different agricultural sectors. It can be used to describe the 

level of food provision provided by the land, and how this impacts on other ecosystem 

services; for example agricultural areas can have both positive and negative impacts 

on the surrounding areas depending on the way in which they are managed, and 

habitat clearance to make way for new agricultural areas will result in a change in 

the balance of ecosystem services provided at the location in question.  

The habitat classes 'Cultivated areas' and 'Disturbed ground / Cultivated area’ were 

used for this analysis to identify areas of probable crop cultivation ('Agriculture'), areas 

of probable pastureland, and areas of trees (crop and non-crop).  

All areas classified as 'Cultivated areas' or 'Disturbed ground / Cultivated area’ were 

re-analysed in eCognition in order to create a classification of the three agricultural 

sub-categories using a rule-based approach. Figure 10 presents the resulting 

classification of agricultural sub-categories throughout Montserrat. 

Cultivated trees and shrubs (‘Trees’) were classified by their high productivity values in 

the annual mean NDVI Sentinel-2 composite. Areas of probable crop cultivation were 

identified using the PSRI index, which is sensitive to the onset of canopy senescence 

and plant fruit ripening; analysis of the homogeneity of this index over time provided 

the basis for distinguishing between cultivated and non-cultivated areas, with the 

more homogenous areas being classified as ‘Pastureland’ due to there being less 

evidence of planting-ripening-harvesting cycles. Classification training was 

undertaken using visual image analysis; no ground data were available, and so the 

accuracy of this classification cannot be assessed at present.  

The results of the analysis of the 'Disturbed ground /Cultivated area' contain greater 

uncertainty as the class is a mixture of disturbed ground, formal and informal 

agriculture, whereas the habitat class ‘Cultivated area’ has been mapped to greater 

level of confidence through inclusion of existing Government of Montserrat GI data 

(Section 4.2).  
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Figure 10: Classification of agricultural sub-categories from the 'Cultivated areas' and 

'Disturbed ground / Cultivated area’ habitat classes. 
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5.3. Forest canopy density 

Forest canopy density assessments can be used to infer information about habitat 

condition, and the associated level of ecosystem service provision. For example, 

dense forest canopies may provide a greater level of soil protection from erosion and 

higher water quality from reduced sediment load.  

Canopy density can be used to infer biodiversity value or general habitat condition 

for many habitats, and changes in the canopy characteristics can provide 

information on the likely direction of change over time e.g., increasing canopy density 

over time on disturbed ground that is becoming colonised by shrubs and trees, or 

decreasing canopy cover as a forest is thinned by logging. 

Analysis of forest canopy density followed the method of Banerjee et al. (2014) using 

the mosaic of Pléiades images from 2014, 2016 and 2017 to attain a near cloud-free 

dataset. Forest canopy density values were derived by calculation of Advanced 

Vegetation Index (AVI), Bare Soil Index (BSI) and Canopy Shadow Index (SI) of 

Pléiades imagery, which were then combined in a weighted model (3NRI + 2AVI + BSI) 

to represent canopy density.  

Ideally the resulting canopy density model would then be calibrated against ground-

based measurements. No such bespoke field data were available, although 

subjective qualitative estimates of the degree of canopy closure had been logged 

during the field campaign for producing the habitat classification. This field dataset 

was reviewed for its potential use as training data for the canopy density model but 

found to be unsuitable as there were insufficient points to be statistically robust. 

Calibration of this layer using field data, would require a targeted ground survey effort.   

Repeat analysis of canopy density using the same formula weighting will produce a 

similar range in image values and should allow broad comparisons over time, 

particularly by using zonal statistics. This will give a useful monitoring tool for the island 

even though the canopy density output is uncalibrated by ground collection. The full 

canopy density classification is shown in Figure 11. 

The image segmentation created during production of the habitat classification was 

used to derive zonal statistics for each forest habitat class, calculating mean, 

maximum and minimum canopy density values for each habitat type. Outlier 

polygons displaying unusual canopy characteristics were then identified by selecting 

all habitat polygons with mean canopy density outside two standard deviations of 

the class mean; these polygons were identified to highlight potential areas of unusual 

habitat, which may be in transition to another habitat class, or display other 

differences in habitat condition which become manifest in the canopy 

characteristics. The outlier polygons for each habitat class are shown in Figure 12.  

Further field validation reviled the main causes for this difference in canopy 

characteristics: 

 In the south of the island around the volcano the unusual characteristics of the 

forest types are caused by successional development of one habitat type to 

another following re-colonisation of land affected by ash downfall. 

 Around Centre Hills to the north, high up on the mountains, the areas with 

unusual canopy were found to be abandoned agricultural ventures such as 

banana plantations reverting back to forest. 
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 In the north of the island, the unusual characteristics were most likely caused 

by re-development, or new agricultural ventures. 
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Figure 11: Forest canopy density across Montserrat (derived from 2014, 2016 and 2017 

Pléiades image mosaic). 
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Figure 12: Habitat polygons displaying higher or lower canopy densities than average(+2SD: 

greater than two standard deviations from the mean; -2SD: less than two standard deviations 

from the mean). 
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5.4. Forest clearings 

An analysis of forest clearing activity provides an overview of urban and agricultural, 

agricultural expansion and forest management activities. 

For this metric, it was important to select data that would both visually and spectrally 

identify within-forest variations of canopy cover. Pléiades imagery was chosen for the 

initial analysis due to high frequency and extent of cloud-cover in the Sentinel-2 

imagery. However, in spite of careful image selection to minimize the impact of cloud 

cover, there was still a high level of cloud cover across forested regions in central 

Montserrat, meaning that these areas could not be analysed (Figure 13).  

Of the seven indices created using Pléiades (Table 1), the Nitrogen Reflectance Index 

(NRI) was selected as the basis of the analysis. This was based on the dynamic range 

of values between forest and non-forest cover and the visual assessment of its 

relatively low sensitivity of saturation over dense areas of productive vegetation. 

   
Figure 13: Comparison of Pléiades images showing extent of cloud cover (masked areas). 

Two NRI difference products were created by comparing the NRI values between 

2014/2016 and 2014/2017. A difference product between 2016/2017 would have 

been preferable, but, would not have provided much spatial information due to 

cloud cover extents. 

Mean zonal statistics were extracted from both NRI difference dataset using the VHR 

segmentation created for the baseline habitat classification. Only habitat polygons 

previously classified as a forest type were taken forward for further analysis (Dry forest, 

Dry scrub, Dry thicket, Elfin woodland, Mesic forest, Wet forest). Forest clearings were 

identified within these habitat areas based on visual determination of a NRI zonal 

statistic threshold. Separate thresholds were used for the 2014/2016 and 2014/2017 

difference products. The final forest clearing output was created by using the 

2014/2017 classification in all cloud-free areas, and filling in the cloudy areas with the 

forest clearing classification from 2014/2016. Figure 14 shows a close-up example of 

small areas of forest being cleared over time, and how this has been detected by the 

NRI-based forest clearing classification. The complete classification for the whole of 

Montserrat is shown in Figure 15.  
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The resulting classification identifies forest clearings in the lower-elevation areas of the 

island, with no clearings being found in the Centre Hills. However, the limitations of the 

input imagery must be recognised when interpreting this output, as the central region 

was totally covered by cloud in both the 2016 and 2017 Pléiades images, therefore it 

was not possible to identify change in these areas. 

  

  
Figure 14: Example of forest clearing classification alongside the Pléiades image time-series. 

Due to data restrictions and cloud cover, this technique focused on the very high 

resolution (VHR) image data (Pléiades), which provided a direct near-annual 

comparison. Cloud cover permitting, the same technique could be applied to 

Sentinel-2 imagery for both within-year and between-year analyses. 

Informal field validation of this data set in March 2018 revealed the following features: 

 In the south of the island unusually sparse vegetation could be due to goats 

grazing out the understory species, making more open habitat types. 

 In the west of the island sand mining activities are responsible for the clearance. 

 In the north of the island, clearings are generally the result of new housing or 

agricultural areas which are being developed to help maintain and enhance 

Montserrat’s economic future.  
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Figure 15: Forest clearings identified by analysis of 2014, 2016 and 2017 Pléiades imagery. 
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5.5. Suspended sediment analysis 

Sediment loads in the coastal marine zone show high temporal variability with respect 

to particle concentration and plume extent, and sediment plumes can be created 

or exacerbated by anthropogenic activities such as dredging or land clearance 

around drainage channels. Increased sediment load can have significant negative 

effects on water quality, affecting coral reef health by reducing their photosynthetic 

capability, through smothering, and reduced coral recruitment (Richmond, 1993), 

with the most sensitive species exhibiting mortality following high sedimentation events 

lasting less than 24 hours (Erftemeijer et al., 2012). An analysis was undertaken to define 

the extent of sediment plumes in the coastal waters surrounding Montserrat on 

different dates, to examine the feasibility for longer-term monitoring. 

Using the 2017 catalogue of Sentinel-2 imagery, each dataset was visually studied for 

cloud cover, sea conditions and suspected plume extents. Three images were 

selected for analysis of suspended sediment; April 2nd, August 25th and October 9th, 

2017. 

As light behaves differently in the marine environment, both on the water surface and 

within the water column, it is necessary to reduce the visual and spectral impact this 

has on the imagery. An example of this is sun glint, where a specular reflection of light 

from the sun is directed towards the sensor, reading as high digital values which can 

make it impossible to retrieve any meaningful information. To compensate for these 

affects, correction techniques following the method of Hedley et al., (2005) were 

applied to the selected data, in order to reduce the impact of sun glint on the image 

values. An example of this is shown in Figure 16.  

  
Figure 16: An example Sentinel-2 image of sunglint before (left) and after (right) applying the 

method of Hedley et al. (2005.) 

In order to model Total Suspended Solids (TSS) from an aquatic environment, the 

reflectance values of the data must be converted to remote sensing reflectance (Rrs) 

products (Pahlevan et al., 2017). This ideally requires measurements taken in the field 

which was not feasible, so the method as proposed by Watanabe et al. (2015) was 

used as an alternative, by which the image values were divided by pi (π). 

Suspended sediment algorithms were applied based on the findings of Ouillon et al. 

(2008) using Rrs at 443nm and 670nm. Ideally the suspended sediment outputs would 

be regressed against field values, but in the absence of field data the outputs were 

viewed as relative concentrations. Threshold values were assessed to extract TSS from 

oceanic water, and converted into a binary mask. Figure 17 shows the TSS 

classification for the three individual dates. These images show how suspended 
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sediment loads vary in intensity and distribution over time. These images were then 

summed to produce a single relative suspended sediment output (Figure 18), which 

shows the areas with the highest suspended sediment load over time. 
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Figure 17: The three individual suspended sediment outputs used to create the composite, from 02 April (left) 25 August (centre) and 09 October 

(right) 2017. White areas denote ‘no data’ zones due to cloud cover.
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Figure 18: Summed relative suspended sediment analysis over three dates: 02 April, 25 August 

and 09 October 2017. 
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5.6. Erosion risk analysis 

Erosion describes the process of terrestrial soil and sediment being removed from the 

land by erosive forces such as wind and rain, particularly rain causing overland flow. 

Globally, erosion is a hazard because the loss of soil, an important natural resource 

that only renews over very long time scales, can negatively affect the capacity of the 

land to support agriculture. However, on tropical islands the effect goes farther, with 

water with heavy sediment loads entering the coastal zone (see Section 5.5), where 

the excess sediment can smother corals, thereby contributing to coral loss and, 

consequently, reduced protection of the land from storm surges and wave action. 

The main erosion prevention mechanism is vegetation. The more the ground is 

covered by a both temporally and spatially continuous cover of vegetation, the less 

likely erosion is to occur, as the soil is kept in place by the layer of vegetation on top 

of the soil, as well as by the roots underground. Additionally, the enhanced surface 

roughness provided by vegetation slows down the speed, and thereby erosive power, 

of overland flow, and interception of falling rain in the canopy reduces the initial 

impact of rain on the soil. 

Consequently, targeted planting at terrestrial locations at high erosion risk is a 

measure that can drastically reduce sedimentation within the rivers and ghauts, and 

ultimately the coastal zone. 

To identify locations at high erosion risk this project used SCIMAP, a fine sediment risk 

evaluation module created by Durham University (2016) for the open source GIS 

package SAGA. This module calculates erosion risk and several related factors based 

on information on elevation (DTM), rainfall (annual average in mm), and erodibility.  

For this project, the WorldDEMTM was used as an elevation model and erodibility was 

assigned based on land cover Table 7. The class ‘Dry forest’ was assigned the same 

erodibility score as ‘Mesic forest’ due to the low classification accuracy of the ‘Dry 

forest’ class, and understanding that the most common cause of confusion for this 

class was with ‘Mesic forest’. To inform upon the spatial pattern of precipitation, a JPG 

displaying average annual rainfall was digitised, taken from Hemmings et al. (2015). 

The full list of data inputs used by the model is shown in Table 8. 
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Table 7: Erodibility scores assigned to each habitat class 

Habitat type Erodibility score 

Urban 0.7 

Bare ground 0.9 

Disturbed ground / Cultivated area 0.7 

Beach 0.5 

Dry thicket 0.05 

Dry scrub 0.3 

Dry forest 0.03 

Cultivated area 0.7 

Mesic forest 0.03 

Ash / mud 1 

Wet forest 0.05 

Open water 0 

Elfin woodland 0.06 

Buildings 0 

Roads 0 

Rivers and ghauts 0 

An additional output produced, using the SCIMAP computer program, is hydrological 

connectivity, which expresses how well connected an area of land is to the wider 

hydrological environment. This score is one component for the final erosion risk score, 

as only areas at high risk of eroding that are also well connected pose a risk for 

sediment input into rivers and ghauts.  

The hydrological connectivity output can be taken as a useful standalone dataset, as 

it identifies many smaller hydrological flow paths which feed into the rivers and ghauts, 

or which flow directly into the sea. These smaller channels are shown in Figure 19 as 

an overlay to the erosion risk map. They could be a useful addition to existing spatial 

data for water courses, and assist in targeting sedimentation reduction measures such 

as planting vegetation, to help prevent sediment influx into drainage channels. The 

resulting erosion risk map for Montserrat is shown in Figure 19. 

Table 8. Summary of data usage and data gaps for erosion risk modelling 

Type of data Data used Data gaps 

Elevation WorldDEMTM Resolution of 12m, small scale features could 

be better identified at higher resolution 

Erodibility Land cover map Erodibility is also affected by soil type, so 

incorporating soil into the erodibility score 

could enhance modelling results. 

The habitat data used is modelled itself, so 

that any modelling inaccuracies will affect the 

erosion risk model 

Precipitation Digitisation of JPG 

image on annual 

average rainfall 

(Hemmings et al., 

2015) 

Montserrat is topographically diverse, and 

rainfall is not distributed evenly across the 

island. Particularly, areas with higher rainfall will 

be at higher erosion risk. Higher resolution 

rainfall data could improve the model. 
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Figure 19: Erosion risk identified by analysis of habitat, elevation, and rainfall data 
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6. EO-based Monitoring 

EO-data provides a means of collecting data over a large geographic area on a 

regular basis, in a repeatable fashion, meaning that EO-based analyses can play an 

important role in long-term monitoring of the environment in Montserrat.  

Due to continual changes in land use and ecological condition the habitat map 

should be reviewed periodically in order to ascertain its currency, and to establish 

whether an update is needed. Generally, a full update should be considered every 

three to five years. A complete update could be carried out using similar methods 

applied by the current project (machine learning algorithms such as random forest, 

or rule-based classification).  

6.1. Considerations for undertaking EO-based habitat map updates 

At the present time, implementation of the Living Maps script in the tropical 

environment assumes a good level of technical understanding of Earth observation 

image processing; this is also true for other classification methods, but potential users 

should be aware of the developmental status of the current version of the script, 

requiring a certain level of troubleshooting and sense-checking data inputs and 

outputs. 

The script is designed to be used for projects with a limited number of input images, 

such as those in the temperate environment with a single leaf-on and leaf-off image. 

In its current form, applying the script to a project with a high number of input images 

is extremely time-intensive. Time efficiencies can be made, but this requires 

knowledge and experience of programming in R.  

In the tropical environment multiple images may need to be used due to the high 

frequency and extent of loud cover. Further script development would help 

streamline the process for projects using many images. A user guide/supporting 

documentation would also significantly enhance the potential for wider uptake of the 

method. The method has the advantage once set up of being fast to process, and 

repeatable when new field data are collected. 

It should be noted that the success of the random forest algorithm is dependent on 

the quality of the input training data, which can come in the form of either field data 

or remote image interpretation (e.g., from aerial photographs). 

Any field campaign / training data collection for remote sensing purposes must be 

carefully planned to ensure that the data are fit for purpose. For example, the random 

forest method will only identify habitat classes that are present within the training 

dataset; therefore training data must be collected for all of the habitat/land cover 

classes to be classified. Some habitat types will not be discernable from the air, such 

as habitats found in very small patch sizes (e.g., small ponds), and those obscured by 

canopy cover.  

Training points must also be spread across the entire geographical area to be 

classified, incorporating samples from the full range of topographic scenarios in which 

a habitat can be found; if the training dataset only captures samples of a habitat in 

lowland, coastal areas, then the random forest may not allow the habitat to be 

classified in the mountains. The same is true for different aspect and slope 
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considerations; if a habitat has only been sampled on west-facing slopes (due to 

accessibility perhaps), then this is likely to bias the classification of this habitat towards 

western-facing slopes, and constraining it in other areas.  

Additionally when working with object-based classifications it is important that training 

points are captured for the vegetation type that is representative for the object. The 

image segmentation process carried out for this project aimed to create image 

objects which grouped similar vegetation/land cover types as far as possible, by 

analyzing the subtle differences in pixel colour across the different sensor bands. 

Inevitably, in some cases the objects contain a mixture of vegetation/land cover 

types, or the vegetation cover within different parts of a single object may change at 

different rates over time (e.g., one part of an object may become more scrubby while 

the rest of the object is grazed short); if such a polygon is encountered during field 

survey, the sample points should be located within areas of representative habitat, 

identifying habitat sub-classes if necessary.  

As an alternative to carrying out repeated EO-based analyses of the whole island, 

updates could be carried out on a rolling basis using a polygon-by-polygon approach 

based on new field surveys or other trusted sources of information. Using this method, 

the precise location of field work points is much more flexible, as polygons can be split 

if they are found to contain more than one habitat/land cover type.  

6.2. Targeted field survey 

In order to maximise resource use efficiency field surveys should be targeted to 

capture information on priority areas. These may be particular habitats of interest, 

such as the Dry forest class, which currently has a low level of classification accuracy, 

and could at present be considered for complete reclassification as Mesic forest or 

Dry scrub. Other ways of prioritizing field survey could focus on particular geographical 

locations, habitats that are currently less well represented by field survey (e.g., Elfin 

woodland, Wet woodland), or habitat polygons that display unusual characteristics 

as determined by zonal statistics.  

The method used to identify habitat canopy density outliers in this project is an 

example of a way in which potentially unusual habitats can be identified and 

prioritised for field survey. Outlier habitat areas may display certain attributes of 

condition that are in themselves worthy of monitoring (e.g., increasing or decreasing 

abundance of particular species), or the statistical outlier values could also indicate 

instances where the habitat polygon has been mis-classified. In both instances field 

survey is required to confirm the initial interpretation, but the use of zonal statistics 

provide a powerful tool to identify potential anomalies and make best use of limited 

resources. 

6.3. Indicators of condition 

The canopy density index is one habitat attribute that can be used to interpret 

condition by analyzing the zonal statistics. For most effective use of this algorithm field 

data should be collected to calibrate the algorithm. If this is not possible the absolute 

values of the algorithm can be used to compare between classes for the same image 

date, and as a rough comparison between dates. 

Alternatively, simple indices such as NDVI (or OSAVI in particularly densely vegetated 

areas) require no calibration and can provide much information on habitat condition 
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and the direction of change when monitored over time. Increases in productivity of 

natural habitat can indicate increased shrub/tree cover, while decreases could 

indicate land clearance, urban expansion or environmental impacts such as lag 

effects of drought and flooding. NDVI values range from -1 to 1, with lower values 

representing the least productive areas (bare ground and anthropogenic structures) 

and higher values representing very productive vegetation such as trees, shrubs and 

fertilised crops.  

A NDVI image can be produced from an analysis-ready optical EO image such as 

Sentinel-2 using the Raster calculator function in QGIS to isolate the red and NIR 

bands, and combine them following the NDVI formula (NIR-Red/NIR+Red). Once 

again, zonal statistics can be produced to identify average productivity values for 

different habitat types, and the outliers.  

The basic requirements for undertaking zonal statistics analysis are a zone dataset 

(e.g., detailed image segmentation, existing habitat map), an analysis-ready EO 

image, and access to a zonal statistics algorithm such as currently available as a core 

raster analysis tool within QGIS (version 2.18.2). 

6.4. Manually updating the habitat map 

When new information is available the relevant polygons on the existing habitat map 

can be edited to produce an updated version. An update procedure should be 

established prior to editing the habitat map, in order to maintain data quality and 

traceability. This procedure should contain provisions for storage location, a 

standardised file naming convention, version control, updating metadata, and 

maintaining topology.  

Should editors wish to change the boundaries of the existing polygons through 

merging, splitting and manual digitizing, they should be aware of the potential for 

creating topology errors such as hair-line gaps and overlaps between polygons, and 

be able to take steps to prevent/remediate these issues. Measures could include 

ensuring that node-snapping is enabled whilst editing, running topology checks on 

the edited dataset (e.g., “v.clean”, a GRASS tool available within QGIS). When 

comparing the habitat map against other datasets as the basis for carrying out 

updates, all datasets should be based on the same co-ordinate system, and 

transformed to a common co-ordinate system if necessary.  

Cloud cover provides challenges for some types of EO monitoring, and so greater use 

of Sentinel-1 could be explored, although image interpretation of this type of radar 

imagery can be less intuitive, and is less effective at identifying small-scale features.  

7. Conclusions 

The map and supporting spatial metrics created for Montserrat were well received as 

significant new data sets. EO was found to be particularly suitable for Montserrat due 

to the rugged inaccessible terrain, in part due to the active volcano, and the time 

efficiency of the techniques. In addition EO-based monitoring is becoming 

increasingly accessible due to the availability of high-temporal resolution imagery, 

and an expanding range of both licensed and open-source analysis tools.  
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The random forest classification method was used, with implementation via the Living 

Map script. Although initial set-up of the script was time-intensive, subsequent 

iterations of the habitat map were rapid, allowing new versions of the map to be 

quickly produced once additional training data became available.   

The use of zonal statistics for investigation of was used in this project provided some 

useful insights. Analysis of habitats with unusual characteristics provided additional 

data relating to agricultural activities (including abandonment and expansion), urban 

expansion, sand mining, and biodiversity resilience. This type of statistical analysis of 

habitat/land cover types provides a rapid method for identifying areas of potential 

change, and an indication of the type of change.  

8. Impact 

The habitat map, marine sediment map, erosion and spatial metrics maps were 

presented at a workshop on island during March 2018. The maps and data were seen 

as being significant for a number of projects and polices on the island including: 

 Understanding the biodiversity of the island. 

 Considering the ecological condition of habitats in the different parts of the 

island, to understand how well they are functioning and where positive action 

might be needed. 

 For planning to know what type of habitat is present on areas scheduled for 

development and to understand if there needs to be special condition put in 

place to protect habitats or prevent erosion. 

 Marine planners were interested in the main erosion channel into the sea to 

understand where positive action might be placed to help prevent or minimize 

this. 

 The maps including erosion risk could also be used as to help public and land 

managers understand the role and importance of the environment and the 

islands native vegetation. 

 The maps also feeding into the Natural Capital accounts developed for the 

island as a further part of this project. 

 The maps could be an important component in evaluating the regulating 

ecosystem services on the island in order to understand the opportunities to 

enhance them and possible risks. 
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Complete list of satellite images used to produce the terrestrial habitat classification. 

 

Pléiades 

11/04/2014 23/09/2016 04/03/2017   

 

Sentinel-1 

09/01/2017 14/01/2017 02/02/2017 07/02/2017 19/02/2017 

26/02/2017 03/03/2017 10/03/2017 15/03/2017 22/03/2017 

27/03/2017 03/04/2017 15/04/2017 27/04/2017 09/05/2017 

21/05/2017 02/06/2017 14/06/2017 26/06/2017 08/07/2017 

20/07/2017 01/08/2017 13/08/2017 25/08/2017 06/09/2017 

18/09/2017 23/09/2017 30/09/2017 12/10/2017 24/10/2017 

05/11/2017 17/11/2017 29/11/2017 11/12/2017 23/12/2017 

 

Sentinel-2 

12/01/2017 01/02/2017 13/03/2017 23/03/2017 02/04/2017 

22/04/2017 06/07/2017 11/07/2017 26/07/2017 15/08/2017 

04/09/2017 18/11/2017 18/12/2017 28/12/2017 
 

 

Pléiades imagery was processed and supplied by JNCC  

Sentinel-1 imagery was processed to ARDL1 using ESA SNAP v6.0, GDAL v2.2 and 

RSGISLib 3.3 libraries. Processing included slice assembly to 10m resolution, border and 

thermal noise removal, radiometric calibration, terrain correction, terrain flattening, 

speckle filter, clipping to region, projection to UTM 20 North. The band ratio for each 

image was calculated (VH/VV).  

Sentinel-2 imagery was processed using Sen2Cor 2.4, RSGISLib 3.3 and GDAL 2.2. This 

included atmospheric correction on a per-tile basis, based on ESA's Sentinel-2 tiling 

grid, clipping to region and cloud-masking. 20m bands were resampled to 10m 

resolution.  
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The random forest method provides a useful means for classifying vegetation type with good 
training data. Using R-code as implemented with ‘Living Maps’ is an accessible way of 
accessing the technique, however some issues were encountered with the existing version 
of the script and these are detailed in the table below. By addressing these points the 
accessibility and effectiveness of the ‘Living Map’ method will be enhanced.  

Issue Details 

Requirement 
to manually 
input a list of 
input imagery 

The script is not currently designed to efficiently handle large stacks of 
input imagery, such as is becoming increasingly available under the 
Sentinel program. It is time-intensive to include a large image stack in the 
current version of the code. 

For each image the user has to manually create a variable, in addition a 
variable for each band (e.g., Sentinel-2 has 10 bands after processing), 
and a variable for each index. When dealing with an image stack of 
several images this process is time intensive. Additional program 
development and automation would be extremely helpful to deal with this. 

Checks for 
cross-
correlation  

With increasing availability of high temporal resolution imagery comes the 
increased risk of introducing correlation biased variables into the analysis; 
this issue should be highlighted to users in any accompanying 
documentation. 

Correlation needs to be checked for and managed. If this is not 
undertaken Random forest is not appropriate analysis technique (Millard 
and Richardson, 2015). The script documentation and notation needs to 
be explicit about if and how cross correlation is considered. 

Code 
stipulates 
maximum 
number of 
training points 
per class =30 

The code currently specifies a maximum number of training points per 
class; the default being 30 points per class. This stipulation decreases the 
statistical robustness of the method substantially; as a rule of thumb it is 
generally accepted that for areas less than one million acres in size and 
fewer than 12 classes, remote sensing studies should aim to collect at 
least 50 samples for each map class (Conglaton, 1988).  

Although the maximum sample size is a user-modifiable parameter, the 
inclusion of an upper threshold encourages the user to unnecessarily 
constrain their dataset, disproportionately affecting users with less 
knowledge of statistical methods.  

Use of 
training points 
by code 

No supporting documentation was available to support the application of 
the Living Map code, and there is limited use of comments within the code 
itself. It was not clear whether the specified maximum number of points 
would all be used for training by the subsequent random forest analysis, 
or whether the random forest further splits this number to use a portion for 
training and a portion for validation. For example in the case of sample 
max = 30, not all 30 points would be used for training the classification. 

Requirement 
for pre-

Assumes a high level of technical expertise in earth observation image 
processing, and availability of image processing software. Prerequisite 
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processing 
and scaling 
imagery 

image processing/scaling requirements (including creation of the image 
object layer) should be made explicit in the supporting documentation.  

Graphical 
representation 
of accuracy 

The graphical outputs showing the causes of confusion between different 
habitat classes are difficult to interpret; the order in which the correct vs 
incorrect classes are presented is inconsistent, and it is difficult to 
distinguish between different classes in the current colour scheme. Some 
columns do not add up to 100%. 

 

Recommendations for modification of the script for improved efficiency and ease of 

use: 

 File paths in the code are currently hardcoded. These could be taken as 

parameters or all defined in one group at the start of the code for ease of 

reference and traceability. 

 Paths contain platform specific notations and separators. These could be 

constructed dynamically using the correct path separator for the operating 

system to keep it cross platform. 

 Some values which could be considered as configuration parameters are 

defined as they are used. For ease of reference and traceability all potential 

configuration parameters (e.g., nmax) could be collected at the top of the file 

to allow easier configuration and use. 

 A random selection of training points is currently selected using a static seed 

value. This means that each time the classification is run, the same training 

points will be selected. This feature may not be apparent to the user and should 

be explicitly explained in the code comments and documentation. 

 The line specifying a maximum number of training points per class should be 

removed to allow the code to function statistically as the user requires based 

on their knowledge of their environment and its variance. 

Full documentation should be supplied with the code, and commenting should be 

expanded within the code itself to ensure the ease of use. 
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