JNCC/Cefas Partnership Report Series Report No. 2Í # Wight Barfleur Reef and Bassurelle Sandbank SAC Management Survey Whomersley, P. Ù^] c^{ à^! 2019 © JNCC, Cefas 2019 ISSN 2051-6711 # Wight Barfleur Reef and Bassurelle Sandbank – SAC Management Survey **Paul Whomersley** September 2019 © JNCC, Cefas, 2019 ISSN 2051-6711 #### For further information, please contact: Joint Nature Conservation Committee Monkstone House City Road Peterborough PE1 1JY http://jncc.gov.uk #### This report should be cited as: Whomersley, P. (2019). Wight Barfleur Reef and Bassurelle Sandbank – SAC Management Survey. JNCC/Cefas Partnership Report No. 25. JNCC, Peterborough, ISSN 2051-6711. This report is compliant with the JNCC **Evidence Quality Assurance Policy** https://jncc.gov.uk/about-jncc/corporate-information/evidence-quality-assurance/. # **Table of contents** | 1 | Вас | kgro | und and Introduction | 1 | |---|------|-------|--|----| | | 1.1 | Surv | /ey Project Team | 1 | | | 1.2 | Site | Description: Wight Barfleur Reef cSAC | 1 | | | 1.3 | Site | Description Bassurelle Sandbank cSAC | 2 | | | 1.4 | Exis | ting data and information utilised to inform survey planning | 3 | | | 1.4. | 1 | Wight Barfleur Reef | 3 | | | 1.4. | 2 | Bassurelle Sandbank | 4 | | 2 | Sur | vey C | Design and Methods | 4 | | | 2.1 | Wig | ht Barfleur Reef cSAC | 4 | | | 2.1. | 1 | Survey aims | 4 | | | 2.1. | 2 | Survey plan | 4 | | | 2.2 | Bas | surelle Sandbank cSAC | 4 | | | 2.2. | 1 | Survey aims | 4 | | | 2.2. | 2 | Survey plan | 5 | | | 2.3 | San | nple collection and processing methods | 5 | | | 2.3. | 1 | Sediment and biological samples | 5 | | | 2.3. | 2 | Epibenthic samples | 6 | | | 2.3. | 3 | Underwater video and photographic imaging techniques | 6 | | | 2.3. | 4 | Camera sledge | 6 | | | 2.3. | 5 | Drop video camera | 7 | | | 2.4 | Geo | physical data acquisition | 8 | | | 2.4. | 1 | Side-scan sonar | 8 | | | 2.4. | 2 | Multi-beam echosounder | 8 | | 3 | Sur | vey N | Varrative | 8 | | | 3.1 | Wig | ht Barfleur Reef cSAC | 8 | | | 3.2 | Bas | surelle Sandbank cSAC | 10 | | 4 | Pre | imin | ary Results | 11 | | | 4.1 | Wig | ht Barfleur Reef | 11 | | | 4.1. | 1 | The collection of sponge and cobble community specimens | 11 | | | 4.1. | 2 | Benthic grab survey | 11 | | | 4.1. | 3 | Drop Camera survey seabed Imagery | 14 | | | 4.1. | 4 | Acoustic Survey | 14 | | | 4.2 | Bas | surelle Sandbank | 29 | | | 4.2. | 1 | Benthic grab survey (HamCam) | 29 | | | 4.2. | 2 | Benthic grab survey | 40 | | | 4.2. | 3 | Camera sledge survey | 53 | | 5 | Ant | hrop | ogenic Impacts | 57 | | | 5 1 | Fish | ing activity | 57 | | 6.1 | Wight Barfleur Reef | 58 | |-----------|--|----| | 6.2 | Bassurelle Sandbank | 58 | | 7 Anr | nexes | 59 | | 7.1 | RV Cefas Endeavour | 59 | | 7.2 | Camera Sledge | 60 | | 7.3 | Positioning Software-Tower | 60 | | 7.4 | Multi-beam Bathymetry | 60 | | 7.5 | Metadata | 61 | | 7.5. | 1 Benthic grab metadata | 62 | | 7.5. | 2 Underwater video metadata | 65 | | | | | | Figur | 'es | | | 94. | | | | Figure 1. | . Map showing location of different rock types within SAC boundary and observed records | of | | Ū | reef and example images from video tows conducted within each area | | | | Data used for habitat characterisation (sediment type and biological community) within the | | | • | lle Bank site boundary. | | | | . 0.1m² Hamon grab with video camera fitted and the 0.25m² Hamon grab which was used | | | • | obbles | | | Figure 4. | 2m Jennings beam trawl used to collect epibenthic specimens | 6 | | Figure 5 | Camera sledge with video and still imaging system | 7 | | Figure 6. | Drop camera frame fitted with video and still imaging system | 7 | | Figure 7. | Completed survey at Wight Barfleur cSAC | 10 | | Figure 8 | Completed survey at Bassurelle Sandbank cSAC. | 11 | | Figure 9 | An example of trawl marks observed on the side scan record at Bassurelle Sandbank | 58 | Annex one habitat58 6 # 1 Background and Introduction ## 1.1 Survey Project Team The surveys at Wight Barfleur Reef and Bassurelle Sandbank candidate Special Area(s) of Conservation (cSAC) were carried out onboard the Research Vessel Cefas Endeavour (Cruise code CEND0313) between the 18th March and the 1st April 2013. The survey team for the duration of the fieldwork included Cefas marine scientists and surveyors, marine monitoring specialists from the JNCC and a marine surveyor from EGS (see below). Cefas-Marine Ecologist Cefas-Marine Ecologist Cefas-Marine Surveyor Cefas Sedimentologist Cefas-Planktologist Cefas-Marine Surveyor Cefas-Marine Policy Cefas-Fisheries Scientist Cefas-Marine Policy Cefas-Planktologist Cefas Marine Engineer Cefas-Marine Scientist JNCC-Marine Monitoring JNCC-Marine Monitoring JNCC-Marine Surveyor #### 1.2 Site Description: Wight Barfleur Reef cSAC Link to candidate Special Area of Conservation (cSAC) Selection Assessment Document: http://jncc.defra.gov.uk/pdf/WightBarfleur SelectionAssessmentDocument V5 0.pdf Further info: https://sac.jncc.gov.uk/site/UK0030380 Wight-Barfleur Reef (Figure 1) is an area of bedrock and stony reef located in the central English Channel, between St Catherine's point on the Isle of Wight and Barfleur Point on the Cotentin Peninsula in northern France. The cSAC is approximately 65km long (east to west) and up to 26km wide. The depth within the SAC ranges from 25m to 100m, with the deepest areas to the south, and within the palaeovalley which runs along the south-east part of the SAC. The large area of bedrock reef within the cSAC is characterised by a series of well-defined exposed bedrock ridges. The southern area of the site is composed of flat, smooth mudstone and sandstone, with overlying coarse sediment (gravels, cobbles and boulders) which in places forms stony reef. The south-eastern area of the site is characterised by a large palaeochannel known as the Northern Palaeovalley which forms a major channel running approximately north-east/south-west across the English Channel. Within the cSAC the palaeovalley remains largely unfilled by sediment due to the strong currents in the area, and is characterised by a gravel, cobble and boulder substrate which in places forms stony reef. **Figure 1.** Map showing location of different rock types within SAC boundary and observed records of Annex I reef and example images from video tows conducted within each area. ## 1.3 Site Description Bassurelle Sandbank cSAC Link to cSAC Selection Assessment Document: http://jncc.defra.gov.uk/pdf/BassurelleSandbank SACSAD 4.0.pdf Further info: https://sac.jncc.gov.uk/site/UK0030368 The Bassurelle Bank (Figure 2) is a linear sandbank in the Dover Strait which straddles the boundary between UK and French waters. It is an example of an open shelf ridge sandbank thought to be formed by tidal currents. The part of the sandbank within UK waters is approximately 2.5km at its widest point and has a maximum height of approximately 15m. It extends approximately 15km in a northeast-southwest direction to the UK-France median line, and then continues for some distance into French waters. The sandbank is mainly composed of very well sorted sand with some gravelly sand, with occasional shell patches. The surface tidal currents along the bank are weak to moderately strong (peak spring surface current velocity of 0.7m/s). Sand waves and mega-ripples are abundant on parts of the bank and are up to 2.5m in height. Biological communities present are typical of sandy sediments and are therefore dominated by polychaete worms such as the tube-worm *Lagis koreni* and the bristleworm *Spiophanes bombyx*. **Figure 2.** Data used for habitat characterisation (sediment type and biological community) within the Bassurelle Bank site boundary. # 1.4 Existing data and information utilised to inform survey planning #### 1.4.1 Wight Barfleur Reef The United Kingdom Hydrography Office (UKHO) Digital Survey Bathymetry data was available for an extensive part of the central English Channel. This data clearly identified bedform features, and was used, in combination with rock samples and seismic data, to delineate areas of different rock type. Information from a Defra funded project, "Broadscale mapping of hard substrates in the central English Channel," led by CEFAS with JNCC as project partners was also utilised in the planning of this survey. This project included two multi-disciplinary surveys of the central English Channel which were conducted in summer 2006, both on the RV Cefas Endeavour. During these two surveys, multi-beam and sidescan data was acquired along a series of survey corridors (spaced 4-5km apart) to gain a broad overview of the area. In addition, more detailed surveys (100% side-scan and/or 100% multi-beam coverage) were carried out over four discrete areas which targeted specific features of interest. Biological data in the form of video tows, grab samples and beam trawls were also obtained from specific features of interest. These data were analysed and integrated into the current survey design. #### 1.4.2 Bassurelle Sandbank Several recent benthic grab stations included as part of a joint Cefas/JNCC fishing pressure study were assessed and taken into account during the planning of this survey. Some acoustic corridor data were also available and utilised in the planning phases of this survey. # 2 Survey Design and Methods #### 2.1 Wight Barfleur Reef cSAC #### 2.1.1 Survey aims The aim of this survey was to collect additional seabed data to assist with the development of management advice in relation to Wight Barfleur Reef cSAC. The main priority of
the survey at Wight Barfleur Reef cSAC was to better delineate the extent of Annex I reef (both bedrock and stony), i.e. transitional boundaries between coarse/mixed sediments to the northern and western areas of the cSAC, especially in areas where fishing activity had been identified within and around the site. In addition, further evidence (side-scan and multi-beam acoustic data, underwater video footage and still images and benthic grab data) was required from within the paleovalley situated in the southern section of the cSAC to enable the distribution of sedimentary and reef habitats to be understood. #### 2.1.2 Survey plan A 5km spaced survey grid was placed over the site and orientated in line with existing acoustic and ground truthing data collected within the Wight Barfleur Reef cSAC (Figure 3). It was proposed to carry out underwater video tows using a drop camera frame and to deploy a 0.1m^2 Hamon grab to collect benthic sediments (ground types permitting) at each ground truthing station. It was planned to collect opportunistic multi-beam acoustic data during transits between ground truthing stations. Five acoustic survey boxes were planned and placed in areas of interest within the Wight Barfleur Reef cSAC. It was proposed to acquire 100% Side-scan and 50% Multi-beam coverage at each of the survey boxes. Additional ground truthing stations would then be planned based on the acoustic data collected. The deployment of the 0.25m² Hamon grab and/or the rock dredge would be considered to acquire qualitative samples of cobble communities and sponge specimens. This would again be dependent on ground types observed during underwater video deployments. #### 2.2 Bassurelle Sandbank cSAC #### 2.2.1 Survey aims The main aim of the survey was to collect additional information (acoustic data, underwater video footage and still images and benthic grab data) from the site to increase current knowledge of the distribution and heterogeneity of benthic habitats and communities present across the sandbank to assist the development of future management advice/plans. #### 2.2.2 Survey plan The Bassurelle site was split into two boxes, Box A and Box B (Figure 4). It was proposed to collect acoustic data (side-scan and multi-beam) across each of the two survey boxes. A ground truthing programme based on a 1km grid using a HamCam (0.1m² Hamon grab fitted with an underwater video camera) and a camera sledge would then be carried out. Underwater camera stations were stratified by depth and selected to ensure that there was adequate distribution of camera stations across both survey boxes. The deployment of the Jennings 2-meter scientific beam trawl was completed in addition to collect qualitative information on epi-faunal communities present within the site. #### 2.3 Sample collection and processing methods #### 2.3.1 Sediment and biological samples Sedimentary habitats were groundtruthed using a Hamon grab (0.25m²) and mini Hamon grab (0.1m²). The larger of the two Hamon grabs was primarily used (Wight Barfleur cSAC only) to collect cobble and sponge samples. The mini Hamon grab was used to collect benthic sediments for particle size and faunal analysis (Figure 5). On recovery of the $0.25m^2$ Hamon grab any sponges present were removed from the cobbles and preserved in IMS solution. The remaining cobbles were preserved using 4% buffered formaldehyde solution for transport back to the laboratory. On recovery of the 0.1m² mini Hamon grab, the grab sample was decanted into a suitable container. A representative sub-sample of sediment (approx. 0.5 litres) was taken for Particle Size Analysis (PSA). The whole sample was photographed and the volume measured and recorded. The faunal sample was then washed over a 1mm sieve and the >1mm fraction transferred into a sample container. Photographs were taken of the sediment fraction retained on both the 1mm and 5mm sieves. The sample was fixed and preserved using a 4% buffered formalin solution for transport back to the laboratory. **Figure 3.** 0.1m² Hamon grab with video camera fitted and the 0.25m² Hamon grab which was used to collect cobbles. #### 2.3.2 Epibenthic samples Epibenthic species found on sedimentary habitats were sampled using the Jennings 2-metre beam trawl. The trawl was towed at ~1.5 knots for five minutes. The sample was washed over a 5mm sieve before all species were identified, enumerated and weighed (Figure 6). Figure 4. 2m Jennings beam trawl used to collect epibenthic specimens. #### 2.3.3 Underwater video and photographic imaging techniques Set-up and operation followed the MESH 'Recommended Operating Guidelines (ROG) for underwater video and photographic imaging techniques'. Video was recorded simultaneously to a Sony GV-HD700 DV tape recorder and a computer hard drive. A video overlay was used to provide station metadata, time and GPS position (of the vessel) in the recorded video image. Camera deployment lasted a minimum of 10 minutes and were run at ~0.5 knots (~0.25ms₋₁) across a 200m 'bullring' centred on the sampling station or along a specific transect. Stills images were captured at regular one-minute intervals and opportunistically if specific features of interest were encountered. #### 2.3.4 Camera sledge Sedimentary habitats were assessed using a camera sledge. The camera sledge system comprised of a video camera capable of also capturing still images (Figure 7). Illumination was provided by underwater lights and a flash unit. The camera was fitted with a four-spot laser-scaling device to provide a reference scale in the video image. The sledge was controlled by a winch operator with sight of the video monitor and note made of the amount of tow cable deployed to allow a 'lay back' to be applied to estimate the distance of the sledge behind the vessel. USBL positioning was also used to accurately log the position of the camera sledge on the seabed during each deployment. Figure 5. Camera sledge with video and still imaging system. #### 2.3.5 Drop video camera Reef habitat and mixed sediments were assessed using a drop video camera with the same configuration as used on the sledge. The drop frame height was controlled via a winch operator in sight of the video feed and note made of the amount of tow cable deployed to allow a 'lay back' to be applied to estimate the distance the drop camera frame was away from the vessel. USBL positioning was used in addition to the starboard gantry offset to accurately log the position of the drop video camera during each deployment (Figure 8). Figure 6. Drop camera frame fitted with video and still imaging system. #### 2.4 Geophysical data acquisition #### 2.4.1 Side-scan sonar An Edgetech FS-4200 dual frequency (300/600kHz) side-scan sonar was used in combination with the Edgetech Discovery software for data recording. Data were recorded in XTF format and post-processed using the Triton Imaging software suite (Isis and TritonMap). #### 2.4.2 Multi-beam echosounder Data were collected using a Kongsberg EM2040 multi-beam echosounder. Bathymetry data were processed using Caris HIPS and backscatter data were produced with the QPS FMGT software package. # 3 Survey Narrative #### 3.1 Wight Barfleur Reef cSAC Survey work commenced at the Wight Barfleur Reef candidate Special Area of Conservation (cSAC) at 15:00 on 18/03/13 with a Sound velocity Profile (SVP) cast, after which a partial calibration on the multi-beam (MB) system was conducted. On completion of the calibration exercise a drop camera (DC) deployment was carried out at station HP03 (21:00, 18/03/13). Cefas Endeavour then transited east to Box_1 to conduct a 100% MB and side-scan sonar (SS) acoustic survey (22:30). On completion of the acoustic MB and SS survey (12:30, 19/03/13) 12 DC deployments (HP07, MP02, MP04, MP06, MP09, MP12, MP15, MP18, MP21, MP26, MP30) and one 0.1m²Hamon grab (HG) deployment was carried out. Preliminary assessment of the video tows during the deployments identified Annex 1 stony reef at nine of the stations (MP04, MP06, MP09, MP12, MP18, MP21, MP26, MP30 and MP33). Multi-beam data was collected opportunistically during transits between all ground truthing stations. In an attempt to prevent gaps in the acoustic record and to provide some acoustic data over the pending ground truthing station Cefas Endeavour travelled through the ground truth station before taking up a position suitable for DC or HG deployment. The onboard OLEX system was used to initially assess the acoustic data. If a feature of interest was noted in the vicinity of the planned station the station was either moved or a specific run-line was generated for the ship to follow. While the ground truthing survey was being carried out the acoustic data (MB and SS) collected from Box_1 was processed. The ground truthing survey continued across the site throughout 20/03/13 with a further 18 stations being surveyed of which seven were thought to be representative of Annex 1 stony reef (HP51, HP49, HP39, HP35, HP33, HP31 and HP04). Five 0.1m² Hamon grab samples were also collected from suitable ground types at stations HP45, HP43, HP39, HP37 and HP22 (23:40, 20/03/13). During this phase of the survey the camera system failed twice (15:30 and 21:00, 20/03/13) resulting in two Kongsberg OE14-408 camera and flash units being replaced with the older Kongsberg OE14-208 camera and flash unit. A further 10 drop camera stations were completed, two of which (MP05 and MP07) were noted as containing reef and stony reef respectively before a 100% SS and 50% MB survey of nested survey Box-2 began. Prior to the start of the survey an SVP cast was carried out (15:00, 21/03/13). On completion of the acoustic survey of nested survey Box_2 (23:15, 21/03/13) a further SVP cast was carried out before surveying of planned ground truthing stations resumed (23:45, 21/03/13). During the acoustic survey of nested survey Box_2 the weather began to deteriorate with strong east-northeast winds
and a worsening sea state. During the acoustic surveys of the nested survey boxes and transits between planned stations additional ground truthing stations were planned. These were based on acoustic data collected and processed during the current survey. The additional ground truthing stations were focussed on reef features, seabed bedforms and varying sediment signatures acquired through SS and MB backscatter data. Additional sample stations were also selected to acquire samples of sponges and encrusting species using the 0.25m² HG. Drop camera and 0.25m² HG deployments continued 08:10, 22/03/13 and included stations HP31a and HP28a where several sponge specimens where collected. At 09:30 a further SVP cast was carried out before carrying out a 100% SS and 50% MB survey at nested survey Box_3. This acoustic survey was hampered by strong winds and a worsening sea state which resulted in data only being collected in one direction. The acoustic survey of nested survey Box_3 was completed at 00:00, 22/03/13. Sea conditions were deemed to be too rough to recommence DC and HG deployments so Cefas Endeavour transited south to begin a 100% SS and 50% MB acoustic survey of nested survey Box_4. On arrival a SVP cast was carried out prior to starting the survey (06:42, 23/03/13). At 08:30 with Box_4 only 50% completed the weather had improved sufficiently to allow the resumption of the ground truthing programme. Fourteen drop cameras, three 0.1m² Hamon grabs and one 0.25m² Hamon grab, aimed at collecting further sponge and encrusting species specimens, were completed (23:00, 23/03/13). During the period of bad weather a Cefas scientist had become very unwell due to sea sickness. It was decided to return to Portland to allow the scientists to disembark the vessel. Before leaving the site two further DC and one 0.1m² HG deployment were carried out (02:00, 24/03/13). Cefas Endeavour docked in Portland at 07:00, 24/03/13 and remained alongside until 12:30 before transiting back to Wight Barfleur Reef cSAC. On arrival (15:20, 24/03/13) a SVP cast was carried out before the ground truthing programme resumed. Eight drop camera deployments were carried out at additional ground truthing stations which had been positioned on route to and within nested survey Box_3 using acoustic data collected earlier in the survey. Possible Annex 1 reef was noted at 4 of the stations (AddGT16Box3, AddGT17Box3, AddGT07 and AddGT06 (23:09, 24/03/13). The ground truthing programme continued until 16:30, 25/03/13 with a further fourteen drop camera deployments and two $0.25m^2$ HG deployments. An SVP cast was then carried out prior to completing the acoustic survey at nested survey Box_4. During the survey of nested survey Box_4 pair trawlers were observed fishing within the southern boundary of the Wight Barfleur Reef cSAC. On completion of the acoustic survey in nested survey Box_4 a further seven DC deployments were carried out before a further SVP cast was carried out prior to beginning a 100% SS and 50% MB acoustic survey at nested survey Box_5 (05:30, 27/03/13). On completion of the acoustic survey within nested survey Box_5 the remaining planned and additional ground truthing stations were surveyed using the DC. Before leaving the site a second partial MB calibration was carried out over a known wreck. This additional MB calibration was conducted because of the need to raise the scientific instrument blade up from 3.3 meters to 1 meter due to perceived water depth restrictions at Bassurelle Sandbank cSAC. Cefas Endeavour began transiting in an easterly direction to the Bassurelle Sandbank cSAC (20:30, 27/03/13). During the last three days of the survey at Wight Barfleur Reef very strong tides, in excess of three knots, began to hamper the ground truthing process. Figure 7. Completed survey at Wight Barfleur cSAC. #### 3.2 Bassurelle Sandbank cSAC Cefas Endeavour arrived at Bassurelle Sandbank cSAC at 03:30, 28/03/13. On arrival an SVP cast was carried out before a partial coverage SS and MB acoustic survey over Box A commenced (04:15, 28/03/13). During the acoustic survey additional ground truthing stations were planned over the shallower areas within survey Box_B. The ground truthing survey using the HamCam (HC) and camera sledge (CS) continued at this site and was completed 30/03/13. On completion of the ground truthing survey in Box_A Cefas Endeavour transited to Box_B to begin the ground truthing survey. The deployment of the HC and CS continued until high tide (13:00. 30/03/13) when it was deemed safe to commence the planned acoustic survey over the shallower parts of the site. On completion of the acoustic survey and the remaining ground truthing stations within Box_B Cefas Endeavour retuned to Box_A to carry out additional ground truthing stations and three 2 metre Jennings beam trawls (at existing survey stations EECMHM 2006). On completion of these stations Cefas Endeavour returned to Box_B to infill the existing acoustic survey to ensure there was adequate coverage over existing ground truthing stations. On completion of this task (01:00 01/04/13) Cefas Endeavour transited back to Lowestoft, docking at (13:00, 01/04/13). Figure 8. Completed survey at Bassurelle Sandbank cSAC. # 4 Preliminary Results #### 4.1 Wight Barfleur Reef #### 4.1.1 The collection of sponge and cobble community specimens Specimens of sponge and cobble encrusting communities were successfully collected from five stations within the Wight Barfleur Reef cSAC (ADDGT15, WBRFHP30, WBRFMP17, WBRFHP31 and ADDGT09. Seventeen Hamon grabs were collected and processed for sediment and infaunal communities (Table 1). #### 4.1.2 Benthic grab survey This section provides images related to the preliminary observations made during the processing of benthic grab samples acquired during the ground truthing survey. Information is given on each survey station, and images display the Particle Size Analysis (PSA) sample, 1mm and 5mm sieve samples. *Please Note: this table is not compliant with the WCAG 2.1 accessibility guidelines.* **Table 1.** Preliminary observations made during the processing of benthic grab samples acquired during the ground truthing survey. | Station code | Image 1 (PSA) | Image2 (1 mm) | Image3 (5 mm) | |-------------------------------|---------------|-----------------------|-----------------------| | WBRF_CEND0313_HP07_STN_06 _A1 | <u> </u> | | | | WBRF_CEND0313_MP09_STN_11 _A1 | | | | | WBRF_CEND0313_HP45_STN_33 _A1 | | | | | WBRF_CEND0313_HP43_STN_40 _A1 | III | No image
available | | | WBRF_CEND0313_HP39_STN_43 _A1 | | att. | No image
available | | WBRF_CEND0313_HP37_STN_46 _A1 | | | | | WBRF_CEND0313_HP22_STN_60 _A1 | | | | | WBRF_CEND0313_MP03_STN_78 _A1 | | | | | Station code | Image 1 (PSA) | Image2 (1 mm) | Image3 (5 mm) | |--------------------------------------|---------------|--|-----------------------| | WBRF_CEND0313_HP42_STN_98 _A1 | | The state of s | | | WBRF_CEND0313_HP48_STN_10
1_A1 | | | | | WBRF_CEND0313_HP31a_STN_1 19_A3 | | | | | WBRF_CEND0313_MP17_STN_13
9_A1 | | | | | WBRF_CEND0313_LP06_STN_142 _A1 | | | | | WBRF_CEND0313_MP19_STN_14
5_A2 | R.A. Comments | | | | WBRF_CEND0313_AddGT15_STN
_147_A1 | | | | | WBRF_CEND0313_MP22_STN_15
0_A1 | | | No image
available | | WBRF_CEND0313_HP30_STN_16
4_A2 | | | FIG. | #### 4.1.3 Drop Camera survey seabed Imagery In total 122 camera deployments were carried out. Preliminary assessment of the video footage and still images identified a range of habitats which include bedrock, rock, stony reef, and sand. Key species observed include encrusting sponges, erect bryozoans, anemones, hydroids and brittle star beds (Table 2). This section provides images representing the habitat types observed in still images during drop camera deployment. Information is given on each survey station, and the three associated images display the habitat types photographed. *Please Note:
this table is not compliant with the WCAG 2.1 accessibility guidelines.* Table 2. A representation of habitat types observed in still images during drop camera deployment. | Station code | Image 1 | Image 2 | Image 3 | |-------------------------------|---------|---------|---------| | WBRF_CEND0313_HP03_STN_03_A 2 | | | | | WBRF_CEND0313_MP02_STN_07_A 1 | | | | | WBRF_CEND0313_MP04_STN_08_A | | | | | WBRF_CEND0313_MP06_STN_09_A | | | | | WBRF_CEND0313_MP09_STN_10_A | | | | | WBRF_CEND0313_MP12_STN_12_A 1 | | | | | WBRF_CEND0313_MP15_STN_13_A 1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |-------------------------------|---------|---------|---------| | WBRF_CEND0313_MP18_STN_14_A 1 | | | | | WBRF_CEND0313_MP21_STN_15_A 1 | | | | | WBRF_CEND0313_MP26_STN_16_A | | | | | WBRF_CEND0313_MP30_STN_17_A 1 | | | | | WBRF_CEND0313_MP33_STN_18_A | | | | | WBRF_CEND0313_HP45_STN_20_A | | | | | WBRF_CEND0313_HP51_STN_35_A | n. | | | | WBRF_CEND0313_HP49_STN_37_A | | | | | WBRF_CEND0313_HP43_STN_39_A | | | | | Station code | Image 1 | Image 2 | Image 3 | |-------------------------------|---------|---------|---------| | WBRF_CEND0313_HP39_STN_42_A | | | | | WBRF_CEND0313_HP37_STN_45_A | | | | | WBRF_CEND0313_HP35_STN_48_A | | | | | WBRF_CEND0313_HP33_STN_50_A | | | | | WBRF_CEND0313_HP31_STN_53_A | | | | | WBRF_CEND0313_HP28_STN_55_A | | | | | WBRF_CEND0313_HP25_STN_57_A 1 | | | | | WBRF_CEND0313_HP22_STN_59_A 1 | | | | | WBRF_CEND0313_HP18_STN_62_A | | | | | Station code | Image 1 | Image 2 | Image 3 | |-------------------------------|---------|---------|---------| | WBRF_CEND0313_HP13_STN_64_A 2 | | | | | WBRF_CEND0313_HP09_STN_66_A | | | | | WBRF_CEND0313_HP05_STN_68_A | | | | | WBRF_CEND0313_HP01_STN_70_A 1 | | | | | WBRF_CEND0313_HP01_STN_70_A 2 | | | | | WBRF_CEND0313_MP01_STN_74_A 1 | | | | | WBRF_CEND0313_MP03_STN_77_A 1 | | | | | WBRF_CEND0313_MP05_STN_80_A 1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |---------------------------------|---------|---------|---------| | WBRF_CEND0313_MP07_STN_82_A 1 | | | | | WBRF_CEND0313_MP10STN_84_
A1 | | | | | WBRF_CEND0313_MP13_STN_86_A 2 | | | | | WBRF_CEND0313_MP16_STN_88_A 1 | | | | | WBRF_CEND0313_MP23_STN_90_A | | | | | WBRF_CEND0313_MP28_STN_93_A | | | | | WBRF_CEND0313_MP31_STN_95_A 1 | C. | | | | WBRF_CEND0313_HP42_STN_97_A 1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |-----------------------------------|---------|---------|---------| | WBRF_CEND0313_HP48_STN_100_
A1 | | | | | WBRF_CEND0313_HP38_STN_106_
A1 | | | | | WBRF_CEND0313_GT01_STN_109_
A1 | | | | | WBRF_CEND0313_HP34_STN_111_
A1 | | | | | WBRF_CEND0313_GT02_STN_113_
A1 | | | | | WBRF_CEND0313_HP32_STN_116_
A1 | | | | | WBRF_CEND0313_ADDGT3_STN_1 18_A1 | | | | | WBRF_CEND0313_HP29_STN_121_
A1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--------------------------------------|---------|---------|---------| | WBRF_CEND0313_HP19_STN_130_
A1 | | | | | WBRF_CEND0313_MP08_STN_132_
A1 | | | | | WBRF_CEND0313_MP11_STN_134_
A1 | | | | | WBRF_CEND0313_MP14_STN_136_
A1 | | | | | WBRF_CEND0313_MP17_STN_138_
A1 | | | | | WBRF_CEND0313_LP06_STN_141_ | | | | | WBRF_CEND0313_MP19_STN_144_
A1 | | | | | WBRF_CEND0313_ADDGT15_STN_
146_A1 | | | | | WBRF_CEND0313_MP22_STN_149_
A1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--|---------|---------|---------| | WBRF_CEND0313_MP24_STN_152_
A1 | | | | | WBRF_CEND0313_MP27_STN_154_
A1 | | | | | WBRF_CEND0313_LP08_STN_155_
A1 | | | | | WBRF_CEND0313_MP29_STN_157_
A1 | | | | | WBRF_CEND0313_MP25_STN_159_
A1 | | | | | WBRF_CEND0313_MP20_STN_161_
A1 | A | | | | WBRF_CEND0313_HP30_STN_163_
A2 | | | | | WBRF_CEND0313_ADDGT16BOX3_
STN_166_A1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--|---------|---------|---------| | WBRF_CEND0313_ADDGT17BOX3_
STN_168_A1 | | | | | WBRF_CEND0313_ADDGT18BOX3_
STN_171_A1 | | | | | WBRF_CEND0313_ADDGT20BOX3_
STN_173_A1 | | | | | WBRF_CEND0313_ADDGT19BOX3_
STN_175_A1 | | | | | WBRF_CEND0313_ADDGT21BOX3_
STN_177_A1 | | | | | WBRF_CEND0313_ADDGT7_STN_1 79_A1 | | | | | WBRF_CEND0313_ADDGT6_STN_1
81_A1 | | | | | WBRF_CEND0313_ADDGT5_STN_1
84_A1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--------------------------------------|---------|---------|---------| | WBRF_CEND0313_ADDG4_STN_186 _A1 | | | | | WBRF_CEND0313_ADDGT9_STN_1
88_A1 | | | | | WBRF_CEND0313_ADDGT10_STN_
190_A1 | | | | | WBRF_CEND0313_ADDGT11_STN_
192_A2 | | | | | WBRF_CEND0313_ADDGT12_STN_ 193_A1 | | | | | WBRF_CEND0313_HP02_STN_195_
A1 | | | | | WBRF_CEND0313_HP06_STN_197_
A1 | | | | | WBRF_CEND0313_HP08_STN_199_
A1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--------------------------------------|---------|---------|---------| | WBRF_CEND0313_HP10_STN_201_
A1 | | | | | WBRF_CEND0313_HP12_STN_203_
A1 | | | | | WBRF_CEND0313_HP15_STN_206_
A1 | | | | | WBRF_CEND0313_HP17_STN_208_
A1 | | | | | WBRF_CEND0313_HP14_STN_210_
A1 | | | | | WBRF_CEND0313_ADDGT24_STN_
214_A1 | | | | | WBRF_CEND0313_ADDGT22_STN_
216_A1 | | | | | WBRF_CEND0313_ADDGT23_STN_
218_A1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--|---------|---------|---------| | WBRF_CEND0313_HP21_STN_220_
A1 | | | | | WBRF_CEND0313_HP21_STN_221_
A1 | | | | | WBRF_CEND0313_HP24_STN_223_
A1 | | | | | WBRF_CEND0313_HP27_STN_225_
A2 | | | | | WBRF_CEND0313_ADDGT27_STN_
230_A1 | | | | | WBRF_CEND0313_ADDGT28_STN_ 232_A1 | | | | | WBRF_CEND0313_ADDGT26_STN_ 234_A1 | | | | | WBRF_CEND0313_BOX4ADDGT30_
STN_236_A1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--|---------|---------|---------| | WBRF_CEND0313_BOX4ADDGT31_
STN_238_A1 | | | | | WBRF_CEND0313_BOX5ADDGT42_
STN_240_A1 | | | | | WBRF_CEND0313_BOX5ADDGT45_
STN_242_A1 | | | | | WBRF_CEND0313_BOX5ADDGT47_
STN_244_A1 | | | | | WBRF_CEND0313_BOX5ADDGT46_
STN_246_A1 | | | | | WBRF_CEND0313_BOX5ADDGT43_
STN_248_A1 | | | | | WBRF_CEND0313_ADDGT43_STN_
250_A1 | | | | | WBRF_CEND0313_ADDGT39_STN_
252_A2 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--|---------|---------|---------| | WBRF_CEND0313_BOXADDGT38_S TN_254_A1 | | | | | WBRF_CEND0313_BOX5ADDGT41_
STN_256_A1 | | | | | WBRF_CEND0313_BOX5ADDGT40_
STN_258_A1 | | | | | WBRF_CEND0313_BOX5ADDGT32_
STN_260_A1 | | | | | WBRF_CEND0313_BOX5ADDGT29_
STN_262_A1 | | | | | WBRF_CEND0313_ADDGT33A_STN
_264_A1 | | | | | WBRF_CEND0313_MP32_266_A1 | | | | | WBRF_CEND0313_HP41_268_A1 | | | | | Station code | Image 1 | Image 2 | Image 3 | |--|---------|---------|---------| | WBRF_CEND0313_HP44_270_A1 | | | | | WBRF_CEND0313_BOX2ADDGT51_
STN_272_A1 | | | | | WBRF_CEND0313_ADDGT49_STN_
274_A1 | | | | | WBRF_CEND0313_ADDGT48_STN_
276_A1 | | A | | | WBRF_CEND0313_ADDGT48_STN_
280_A2 | | | | | WBRF_CEND0313_ADDGT50_STN_
282_A1 | | | | | WBRF_CEND0313_ADDGT37_STN_
284_A1 | | | | | WBRF_CEND0313_ADDGT36_STN_
286_A1 | | | | ## 4.1.4 Acoustic Survey Multi-beam data were collected during transits between planned and adaptive ground truthing stations. Where transit lines duplicated existing acoustic data specific transit lines were produced to ensure additional acoustic data coverage was achieved. One hundred percent SS and 50% MB data coverage of five planned survey boxes was also acquired. Acoustic data was used to plan adaptive ground truthing stations around features of interest. The acoustic survey data highlighted many interesting features throughout the site. These included flat plateaus, reef ridges, sediment bedforms and reef/sediment boundaries. #### 4.2 Bassurelle Sandbank #### 4.2.1 Benthic grab survey (HamCam) One hundred and four HamCam deployments were carried out at Bassurelle Sandbank cSAC (Table 3 and 4). This section provides images representing screen grabs taken from the HamCam footage collected during the ground truthing survey carried out at Bassurelle Sandbank cSAC. Information is given on each survey station and an associated screen grab image. *Please Note: this table is not compliant with the WCAG 2.1 accessibility guidelines.* **Table 3.** Screen grabs taken from the HamCam footage collected during the ground truthing survey carried out at Bassurelle Sandbank cSAC. | Station code | HamCam screen | |--------------------------------------|---------------| | | grab | | BSSS_CEND0313_BSSS0
05_STN_292_A1 | | | BSSS_CEND0313_BSSS0
07_STN_293_A1 | | | BSSS_CEND0313_BSSS0
12_STN_294_A1 | | | BSSS_CEND0313_BSSS0
23_STN_296_A1 | | | BSSS_CEND0313_BSSS0
33_STN_297_A1 | | | Station code | HamCam screen | |--------------------------------------
--| | | grab | | BSSS_CEND0313_BSSS0
43_STN_299_A1 | | | BSSS_CEND0313_BSSS0
50_STN_300_A1 | | | BSSS_CEND0313_BSSS0
57_STN_302_A1 | | | BSSS_CEND0313_BSSS0
61_STN_303_A1 | | | BSSS_CEND0313_BSSS0
67_STN_304_A1 | | | BSSS_CEND0313_BSSS0
71_STN_305_A1 | | | BSSS_CEND0313_BSSS0
64_STN_307_A1 | and the state of t | | BSSS_CEND0313_BSSS0
58_STN_308_A1 | | | BSSS_CEND0313_BSSS0
53_STN_310_A1 | | | Station code | HamCam screen | |---------------------|--| | | grab | | BSSS_CEND0313_BSSS0 | 2 | | 48_STN_312_A1 | | | BSSS_CEND0313_BSSS0 | | | 44_STN_314_A1 | | | BSSS_CEND0313_BSSS0 | SOSTATION COSTANIE CONTEST OF SERVICES OF COSTANIES CO | | 38_STN_315_A1 | | | BSSS_CEND0313_BSSS0 | so facility was a subject on the articles of the subject su | | 34_STN_316_A1 | | | BSSS_CEND0313_BSSS0 | CONTRACTOR OF THE PROPERTY | | 28_STN_317_A1 | | | BSSS_CEND0313_BSSS0 | The state of s | | 24_STN_319_A1 | | | BSSS_CEND0313_BSSS0 | Marin Committee and the Committee of | | 29_STN_320_A1 | A | | BSSS_CEND0313_BSSS0 | | | 39_STN_322_A1 | | | BSSS_CEND0313_ADDG | SHOD
Supt | | T02_STN_324_A1 | | | Station code | HamCam screen | |---------------------|--| | | grab | | BSSS_CEND0313_BSSS0 | 2012 St. Complete Standard | | 54_STN_325_A1 | | | BSSS_CEND0313_ADDG | 508, 036 1 2 3 2 2 2 2 2 2 1 2 1 1 1 1 7 5 6 5 5 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 | | T07_STN_326_A1 | | | BSSS_CEND0313_ADDG | The state of s | | T06_STN_327_A1 | | | BSSS_CEND0313_BSSS0 | 001 - 1 Supplied to 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | 68_STN_328_A1 | | | BSSS_CEND0313_BSSS0 | • The particular of the second | | 74_STN_329_A1 | | | BSSS_CEND0313_ADDG | ant this majorithm is one to und | | T13_STN_330_A1 | | | BSSS_CEND0313_BSSS0 | #50000000 10 00 00 000 24748-00 0TC
#5000000000000000000000000000000000000 | | 72_STN_332_A1 | | | BSSS_CEND0313_ADDG | The second of th | | T011_STN_333_A1 | | | BSSS_CEND0313_ADDG | The second secon | | T012_STN_334_A1 | | | Station code | HamCam screen | |---------------------
--| | | grab | | BSSS_CEND0313_ADDG | SCS, up. 1 industrial size as urc | | T010_STN_335_A1 | | | BSSS_CEND0313_BSSS0 | | | 65_STN_337_A1 | | | BSSS_CEND0313_ADDG | gospological construction of the second t | | T009_STN_338_A1 | *** | | BSSS_CEND0313_ADDG | 101-094 (100-00-00-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | T008_STN_340_A1 | | | BSSS_CEND0313_BSSS0 | THE PROPERTY OF THE PARTY TH | | 59_STN_341_A1 | | | BSSS_CEND0313_ADDG | SCILONE CONTROL OF THE STATE | | T005_STN_342_A1 | | | BSSS_CEND0313_ADDG | 803 420 A 2 H A 2 | | T001_STN_344_A1 | | | BSSS_CEND0313_BSSS0 | The second of th | | 52_STN_345_A1 | | | BSSS_CEND0313_ADDG | 7 (200 (200 (200 (200 (200 (200 (200 (20 | | T003_STN_346_A1 | | | Station code | HamCam screen | |---------------------|--| | | grab | | BSSS_CEND0313_ADDG | Part Control | | T004_STN_347_A1 | | | BSSS_CEND0313_BSSS0 | The state of s | | 45_STN_348_A1 | | | BSSS_CEND0313_BSSS0 | | | 35_STN_349_A1 | | | BSSS_CEND_0313_BSSS | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | 025_STN_351_A1 | | | BSSS_CEND_0313_BSSS | SOUTH TOTAL OF COURTS AND | | 016_STN_352_A1 | | | BSSS_CEND_0313_BSSS | Participation of the Control | | 020_STN_353_A1 | | | BSSS_CEND_0313_BSSS | Sistematical Linear Control of | | 030_STN_354_A1 | 1 | | BSSS_CEND_0313_BSSS | AND AND THE REAL PROPERTY OF | | 026_STN_355_A1 | | | BSSS_CEND_0313_BSSS | The state of s | | 036_STN_357_A1 | | | Station code | HamCam screen | |---------------------|--| | | grab | | BSSS_CEND_0313_BSSS | The Court of the State S | | 040_STN_359_A1 | | | BSSS_CEND_0313_BSSS | A POR CONTROL OF THE STATE T | | 046_STN_360_A1 | | | BSSS_CEND_0313_BSSS | The Water And American | | 049_STN_361_A1 | | | BSSS_CEND_0313_BSSS | The state of the second state of the second state of the second s | | 055_STN_363_A1 | | | BSSS_CEND_0313_BSSS | FOR SECTION IN
CONTRACT CONTRACT OF CONTRACT OF CONTRACT | | 062_STN_364_A1 | | | BSSS_CEND_0313_BSSS | A STATE OF THE STA | | 069_STN_366_A1 | | | BSSS_CEND_0313_ADD | 900, (551), 1700, 171 2 (2015) 216
\$551, (2010) 22, 1004, 11, 30, 41 | | GT14_STN_367_A1 | | | BSSS_CEND_0313_BSSS | para production of the parameter | | 075_STN_368_A1 | | | BSSS_CEND_0313_BSSS | ents has been discussed in the second of | | 099_STN_375_A1 | 1 | | Station code | HamCam screen | |---------------------|--| | | grab | | BSSS_CEND_0313_BSSS | 5017,6600 N 00107,0700 £ 119642 NT
\$505 (600 NS) 5054092 STN 377-91 | | 092_STN_377_A1 | | | BSSS_CEND_0313_BSSS | 105 (10 to 10 1 | | 084_STN_379_A1 | | | BSSS_CEND_0313_BSSS | 5074-245 N (1512) Sector & Large-Sector UTC
8585 (LTD) 10 1 1850/01 271 200 244 | | 081_STN_380_A1 | | | BSSS_CEND_0313_BSSS | SOUND IN CONTRACTOR & LETTER 14 UTC
BEST TO THE BEST OF BEST BOLL 41 | | 078_STN_381_A1 | | | BSSS_CEND_0313_BSSS | Manager of the second s | | 080_STN_382_A1 | | | BSSS_CEND_0313_BSSS | 9078,091,11 0 700,1002 2 39148,10 PD
9753,000,713,2558,77,371,751,41 | | 077_STN_386_A1 | | | BSSS_CEND_0313_BSSS | FOR THE WORLD'S CHIEFE WIT | | 085_STN_388_A1 | | | BSSS_CEND_0313_BSSS | TOTAL TO CONTROL TO THE SECURCE OF THE SECURE | | 088_STN_389_A1 | | | BSSS_CEND_0313_BSSS | 6315, 4277) | | 093_STN_390_A1 | | | Station code | HamCam screen | |---------------------------------------|---| | | grab | | BSSS_CEND_0313_BSSS | 50%, 749 N 0001.564 E 2016 IF UTC
855, CEOUST 155,001.57,134, 41 | | 091_STN_392_A1 | | | BSSS_CEND_0313_BSSS
096_STN_393_A2 | O | | BSSS_CEND_0313_BSSS | 5077,1171 H 00105,1480 E 21105514 UTC
8150,000013,8883100,574,394,44 | | 100_STN_394_A1 | | | BSSS_CEND_0313_BSSS | Sorr, Typo N bollowards E payagest UTC
SISC COOCH, 1855 107 CT 1, 78 July | | 107_STN_395_A1 | | | BSSS_CEND_0313_BSSS | 5016, 1226 H 00304, 8047 E 20105 14 UTC
8585, COUT IL EUSSEL STIL 177-01 | | 110_STN_397_A1 | | | BSSS_CEND_0313_BSSS | 8035,4890 N OLD 7.174 E 22:13:22 UTC
8555,000 71:3,855334,471,389,41 | | 114_STN_398_A1 | | | BSSS_CEND_0313_BSSS | 601, 602 N. 00107 5070 E 2215016 UTC
\$555,750/32-1565547 371-400,41 | | 117_STN_400_A1 | | | BSSS_CEND_0313_BSSS | dotation one call a datase und | | 120_STN_402_A1 | 12.14.5 | | BSSS_CEND_0313_BSSS | der Latition rolling (Latin E. Co.) 2527 utg
Principles (M.), 555 state, etc., | | 115_STN_403_A | | | Station code | HamCam screen | |---------------------|--| | | grab | | BSSS_CEND_0313_BSSS | 3072,686 H 0019 (201) & 0.116-75 (III
6862,02-0312,6155,02,517,40,40,41 | | 112_STN_404_A1 | | | BSSS_CEND_0313_BSSS | TABLE WITE COURSE, BOLS IT COURSE WITE COURSE WITE COURSE TO SEE COURSE TO SEE COURSE WITE WITE COURSE WITE COURSE WITE COURSE | | 111_STN_406_A1 | | | BSSS_CEND_0313_BSSS | Supplies of the control contr | | 105_STN_407_A1 | | | BSSS_CEND_0313_BSSS | STATE OF THE | | 103_STN_408_A1 | | | BSSS_CEND_0313_BSSS | 5018, 0150 in 0000-0618 g. 01513-19 urc
8155, 000-0191 (855510), 57-049 (41 | | 101_STN_409_A1 | | | BSSS_CEND0313_BSSS1 | STELLEC, N. COLIS, AREA E. CUISEATO UTC
STELLECTURE ESTATE ALC. ALC. ALC. ALC. ALC. ALC. ALC. ALC. | | 08_STN_410_A1 | | | BSSS_CEND_0313_BSSS | m 14, 1 m 1 14, 001 s 4 m 15 t 011 s 7, 4 s 107 c
1 s 8 5 1 d 10 12 1 t 1 s 10 4, 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 104_STN_411_A1 | | | BSSS_CEND_0313_BSSS | THE PROPERTY OF STATE AND | | 097_STN_412_A1 | | | BSSS_CEND_0313_BSSS | SCHT, USE IN OUISE, SEE E CHESCHE UTC
E-GOR IN DOCKLESSES SHEET ET LAND.
SECUTO | | 098_STN_414_A1 | | | Station code | HamCam screen | |--------------------------------------
--| | | grab | | BSSS_CEND0313_BSSS0
94_STN_415_A1 | SEPTIME STATE OF THE PARTY T | | BSSS_CEND0313_BSSS0
89_STN_416_A1 | | | BSSS_CEND0313_BSSS0
86_STN_417_A1 | ALTERNATION OF THE STREET | | BSSS_CEND0313_BSSS0
83_STN_418_A1 | | | BSSS_CEND0313_BSSS0
15_STN_430_A1 | | | BSSS_CEND0313_BSSS0
19_STN_431_A1 | | | BSSS_CEND0313_BSSS0
14_STN_432_A1 | | | BSSS_CEND0313_BSSS0
09_STN_433_A1 | | | Station code | HamCam screen | |--------------------------------------|---------------| | | grab | | BSSS_CEND0313_BSSS0
04_STN_434_A1 | | | BSSS_CEND0313_BSSS0
02_STN_436_A1 | | | BSSS_CEND0313_BSSS0
01_STN_437_A1 | | | BSSS_CEND0313_BSSS0
03_STN_438_A1 | | | BSSS_CEND0313_BSSS0
08_STN_439_A1 | | | BSSS_CEND0313_BSSS0
06_STN_440_A1 | | | BSSS_CEND0313_BSSS0
10_STN_441_A1 | | ### 4.2.2 Benthic grab survey This section provides images related to the preliminary observations made during the processing of benthic grab samples acquired during the ground truthing survey. Information is given on each survey station, and images display the Particle Size Analysis (PSA) sample, 1mm and 5mm sieve samples. *Please Note: this table is not compliant with the WCAG 2.1 accessibility guidelines.* **Table 4.** Preliminary observations made during the processing of benthic grab samples acquired during the ground truthing survey. | during the ground truthing survey. Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |--|------------|-------------------------|-----------------------| | | mg r (pou) | gz (1) | migo (o min) | | BSSS_CEND0313_BSSS005_ST
N_292_A1 | | | No image
available | | BSSS_CEND0313_BSSS007_ST
N_293_A1 | | | No image
available | | BSSS_CEND0313_BSSS012_ST
N_294_A1 | | No image
available | | | BSSS_CEND0313_BSSS023_ST
N_296_A1 | | | | | BSSS_CEND0313_BSSS033_ST
N_297_A1 | | | Sh. | | BSSS_CEND0313_BSSS043_ST
N_299_A1 | | | | | BSSS_CEND0313_BSSS050_ST
N_300_A1 | The same | 3 SOP 1
THAINWAT 107 | Table 1 | | BSSS_CEND0313_BSSS057_ST
N_302_A1 | | | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |--------------------------------------|-----------------------|--|---| | BSSS_CEND0313_BSSS061_ST
N_303_A1 | | The second secon | | | BSSS_CEND0313_BSSS067_ST
N_304_A1 | | To the state of th | | | BSSS_CEND0313_BSSS071_ST
N_305_A1 | | No image
available | Some state of the | | BSSS_CEND0313_BSSS064_ST
N_307_A1 | | Top a second sec | | | BSSS_CEND0313_BSSS058_ST
N_308_A1 | No image
available | No image
available | | | BSSS_CEND0313_BSSS053_ST
N_310_A1 | | | | | BSSS_CEND0313_BSSS051_ST
N_311_A1 | | | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |--------------------------------------|------------|-------------|-------------| | BSSS_CEND0313_BSSS048_ST
N_312_A1 | | | | | BSSS_CEND0313_BSSS044_ST
N_314_A1 | | | | | BSSS_CEND0313_BSSS038_ST
N_315_A1 | | | | | BSSS_CEND0313_BSSS034_ST
N_316_A1 | | | | | BSSS_CEND0313_BSSS028_ST
N_317_A1 | | 320 | | | BSSS_CEND0313_BSSS024_ST
N_319_A1 | | 32 | | | BSSS_CEND0313_BSSS029_ST
N_320_A1 | | | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |--------------------------------------|------------
--|-------------| | BSSS_CEND0313_BSSS039_ST
N_322_A1 | | | | | BSSS_CEND0313_ADDGT02_ST
N_324_A1 | | | | | BSSS_CEND0313_BSSS054_ST
N_325_A1 | | Survey Control of the | | | BSSS_CEND0313_ADDGT07_ST
N_326_A1 | | The part of pa | | | BSSS_CEND0313_ADDGT06_ST
N_327_A1 | | | | | BSSS_CEND0313_BSSS068_ST
N_328_A1 | | | | | BSSS_CEND0313_BSSS074_ST
N_329_A1 | | | | | BSSS_CEND0313_ADDGT13_ST
N_330_A1 | | | | | BSSS_CEND0313_BSSS072_ST
N_332_A1 | | TOTAL CONTRACTOR OF THE PARTY O | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |---------------------------------------|------------|--|--| | BSSS_CEND0313_ADDGT011_S
TN_333_A1 | | in the second se | | | BSSS_CEND0313_ADDGT012_S
TN_334_A1 | | 70 mm | | | BSSS_CEND0313_ADDGT010_S
TN_335_A1 | | | | | BSSS_CEND0313_BSSS065_ST
N_337_A1 | | | | | BSSS_CEND0313_ADDGT009_S
TN_338_A1 | | | n n | | BSSS_CEND0313_ADDGT008_S
TN_340_A1 | | | | | BSSS_CEND0313_BSSS059_ST
N_341_A1 | | The state of s | | | BSSS_CEND0313_ADDGT005_S
TN_342_A1 | | 10-2
19-2
19-2
19-2 | | | BSSS_CEND0313_ADDGT001_S
TN_344_A1 | | 344
*********************************** | ALL DE STATE OF THE TH | | Station code | Img1 (psa) | lmg2 (1 mm) | Img3 (5 mm) | |---------------------------------------|------------|--
--| | BSSS_CEND0313_BSSS052_ST
N_345_A1 | | WE THE STATE OF TH | 10 S (10 S)))))))))))))))))))))))))))))))))))) | | BSSS_CEND0313_ADDGT003_S
TN_346_A1 | 8. | | | | BSSS_CEND0313_ADDGT004_S
TN_347_A1 | | 107 | 723 | | BSSS_CEND0313_BSSS045_ST
N_348_A1 | | | <u>IK</u> | | BSSS_CEND0313_BSSS035_ST
N_349_A1 | | | | | BSSS_CEND_0313_BSSS025_S
TN_351_A1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | BSSS_CEND_0313_BSSS016_S
TN_352_A1 | | 153 | 10.
11. | | BSSS_CEND_0313_BSSS020_S
TN_353_A1 | TO. | 10
(13 | | | BSSS_CEND_0313_BSSS030_S
TN_354_A1 | 192 | THE STATE OF S | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |---------------------------------------|------------|--|--| | BSSS_CEND_0313_BSSS026_S
TN_355_A1 | | | | | BSSS_CEND_0313_BSSS036_S
TN_357_A1 | | 157 | 100 | | BSSS_CEND_0313_BSSS040_S
TN_359_A1 | | | | | BSSS_CEND_0313_BSSS046_S
TN_360_A1 | | THE STATE OF S | J. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | BSSS_CEND_0313_BSSS049_S
TN_361_A1 | | WT. | | | BSSS_CEND_0313_BSSS055_S
TN_363_A1 | | | | | BSSS_CEND_0313_BSSS062_S
TN_364_A1 | | 36.41
 | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |---------------------------------------|------------|--|-------------| | BSSS_CEND_0313_BSSS069_S
TN_366_A1 | 1 | | | | BSSS_CEND_0313_ADDGT14_S
TN_367_A1 | | 30 July 2017 | 2) (A) | | BSSS_CEND_0313_BSSS075_S
TN_368_A1 | | | | | BSSS_CEND_0313_BSSS099_S
TN_375_A1 | | | | | BSSS_CEND_0313_BSSS092_S
TN_377_A1 | | | | | BSSS_CEND_0313_BSSS084_S
TN_379_A1 | 7.8 | ma
man
man
man
man
man
man
man
man
man
m | | | BSSS_CEND_0313_BSSS081_S
TN_380_A1 | | | | | BSSS_CEND_0313_BSSS078_S
TN_381_A1 | | | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |---------------------------------------|------------|--|-------------| | BSSS_CEND_0313_BSSS080_S
TN_382_A1 | | | | | BSSS_CEND_0313_BSSS078_S
TN_381_A1 | | | | | BSSS_CEND_0313_BSSS080_S
TN_382_A1 | | | | | BSSS_CEND_0313_BSSS077_S
TN_386_A1 | | | | | BSSS_CEND_0313_BSSS085_S
TN_388_A1 | | | | | BSSS_CEND_0313_BSSS088_S
TN_389_A1 | | | | | BSSS_CEND_0313_BSSS093_S
TN_390_A1 | | 100
100
100
100
100
100
100
100
100
100 | | | BSSS_CEND_0313_BSSS091_S
TN_392_A1 | | | | | BSSS_CEND_0313_BSSS096_S
TN_393_A1 | | | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |---------------------------------------|--
--|-------------| | BSSS_CEND_0313_BSSS100_S
TN_394_A1 | The second secon | The state of s | | | BSSS_CEND_0313_BSSS107_S
TN_395_A1 | | | | | BSSS_CEND_0313_BSSS110_S
TN_397_A1 | | 112 | | | BSSS_CEND_0313_BSSS114_S
TN_398_A1 | | | 112 | | BSSS_CEND_0313_BSSS117_S
TN_400_A1 | | GOOD STATE OF THE PARTY | | | BSSS_CEND_0313_BSSS120_S
TN_402_A1 | N ASSAULT | ice
ice | ing. | | BSSS_CEND_0313_BSSS115_S
TN_403_A | | | | | BSSS_CEND_0313_BSSS112_S
TN_404_A1 | | | | | BSSS_CEND_0313_BSSS111_S
TN_406_A1 | | | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |---------------------------------------|------------|-------------|-------------| | BSSS_CEND_0313_BSSS105_S
TN_407_A1 | | | | | BSSS_CEND_0313_BSSS103_S
TN_408_A1 | | | | | BSSS_CEND_0313_BSSS101_S
TN_409_A1 | | | | | BSSS_CEND0313_BSSS108_ST
N_410_A1 | | | | | BSSS_CEND_0313_BSSS104_S
TN_411_A1 | | | | | BSSS_CEND_0313_BSSS097_S
TN_412_A1 | | | | | BSSS_CEND_0313_BSSS098_S
TN_414_A1 | | | | | BSSS_CEND0313_BSSS094_ST
N_415_A1 | | | | | BSSS_CEND0313_BSSS089_ST
N_416_A1 | | | | | Station code | Img1 (psa) | Img2 (1 mm) | Img3 (5 mm) | |--------------------------------------|------------|--|-----------------------| | BSSS_CEND0313_BSSS086_ST
N_417_A1 | Vita Vita | | | | BSSS_CEND0313_BSSS083_ST
N_418_A1 | 111 | | | | BSSS_CEND0313_BSSS015_ST
N_430_A1 | | | | | BSSS_CEND0313_BSSS019_ST
N_431_A1 | | The second secon | | | BSSS_CEND0313_BSSS014_ST
N_432_A1 | | THE THE PARTY OF T | | | BSSS_CEND0313_BSSS009_ST
N_433_A1 | | | | | BSSS_CEND0313_BSSS004_ST
N_434_A1 | | | No Image
available | | BSSS_CEND0313_BSSS002_ST
N_436_A1 | | | | | BSSS_CEND0313_BSSS001_ST
N_437_A1 | | | | ### 4.2.3 Camera sledge survey Thirty-two camera sledge deployments were carried out at Bassurelle Sandbank cSAC. Preliminary observations show a fairly homogenous sandy bed at all camera stations. This section provides images representing the habitat types observed in still images during camera sledge deployment. Information is given on each survey station, and the three associated images display the habitat types photographed. *Please Note: this table is not compliant with the WCAG 2.1 accessibility guidelines.* Table 5. A representation of habitat types observed in still images during camera sledge deployment. | Table 5. A representation of habitat ty | | | | |--|------|------|------| | Station code | lmg1 | lmg2 | lmg3 | | BSSS_CEND_0313_BSSS023_STN | | | | | _298_A1 BSSS_CEND_0313_BSSS050_STN | | | | | _301_A1 | | | | | BSSS_CEND_0313_BSSS071_STN
_306_A1 | | | | | BSSS_CEND_0313_BSSS058_STN
_309_A1 | | | | | BSSS_CEND_0313_BSSS044_STN
_313_A1 | | | | | BSSS_CEND_0313_BSSS024_STN
_318_A1 | | | | | BSSS_CEND_0313_BSSS039_STN
_321_A1 | | | | | Station code | lmg1 | lmg2 | lmg3 | |--|------|------|------| | BSSS_CEND_0313_ADDGT002_ST
N_323_A1 | | | | | BSSS_CEND_0313_BSSS072_STN
_331_A1 | | | | | BSSS_CEND_0313_ADDGT010_ST
N_336_A1 | | | | | BSSS_CEND_0313_ADDGT008_ST
N_339_A1 | | | | | BSSS_CEND_0313_ADDGT001_ST
N_343_A1 | | gr) | | | BSSS_CEND_0313_BSSS025_STN
_350_A1 | | | | | BSSS_CEND_0313_BSSS036_STN
_356_A1 | | | | | BSSS_CEND_0313_BSSS040_STN
_358_A1 | | | | | BSSS_CEND_0313_BSSS055_STN
_362_A1 | | | | | Station code | lmg1 | lmg2 | lmg3 | |---------------------------------------|------|------|------| | BSSS_CEND_0313_BSSS069_STN
_365_A1 | | | | | BSSS_CEND_0313_BSSS039_STN
_369_A1 | | | | | BSSS_CEND_0313_ADDGT02_ST
N_370_A1 | | | | | BSSS_CEND_0313_BSSS099_STN
_374_A1 | | | | | BSSS_CEND_0313_BSSS092_STN
_376_A1 | | | | | BSSS_CEND_0313_BSSS084_STN
_378_A1 | | | | | BSSS_CEND_0313_BSSS080_STN
_385_A1 | | | | | BSSS_CEND_0313_BSSS085_STN
_387_A1 | | | | # **5** Anthropogenic Impacts ## 5.1 Fishing activity Fishing activity was observed while surveying at both the Wight Barfleur Reef and Bassurelle Sandbank cSACs. Pair trawling (Figure 11) was the primary type of fishing observed at the Wight Barfleur Reef site. Fishing activity was primarily observed on the southern boundary of the site. Fishing activity was also observed at Bassurelle Sandbank. The primary type of fishing observed was also beam trawling. Evidence of fishing activity was also observed on the SS acoustic record (Figure 12). Figure 9. An example of trawl marks observed on the side scan record at Bassurelle Sandbank. ### 6 Annex one habitat ## 6.1 Wight Barfleur Reef Large areas of bedrock and stony reef were preliminarily identified at this site. These habitats exhibited a diverse range of encrusting/reef organisms which included sponges (encrusting and branching), hydroids, ascidians, anemones and tube worms. Large boulder fields were also observed near the southern boundary of the site. ### 6.2 Bassurelle Sandbank Preliminary observations from data collected at this site indicate a homogenous sandy habitat. As the site is designated as a sandbank further analysis of the bathymetric data will be needed to confirm the boundary of the Annex 1 feature. # 7 Annexes ## 7.1 RV Cefas Endeavour | Port of registry | Lowestoft | |----------------------|--| | Length OA | 73.00m (excluding stern roller) | | Length extreme | 73.916m | | Breadth (MLD) | 15.80m | | Depth (MLD) | 8.20m | | Design draft | 5.00m | | Deep draught | 5.50m | | LBP | 66.50m | | Gross tonnage | 2983 tonnes | | Net register tonnage | 894 tonnes | | Net lightship | 2436 tonnes | | Deadweight @ 5.00m | 784 tonnes | | Deadweight @ 5.50m | 1244 tonnes | | Displacement @ 5.00m | 3210 tonnes | | Displacement @ 5.50m | 3680 tonnes | | Builder | Ferguson Shipbuilders Limited, | | | Port Glasgow | | Commissioned | 2003 | | Communications | In port BT Tel.
Cellphone Voice/Fax/Data | | | Radio TELEX Inmarsat C Fleet 77 (Inmarsat | | | F) and VSAT (eutelsat) internet access | | Endurance | 42 days | | Complement | En-suite accommodation for 16 crew and 19 | | | scientists with dedicated hospital facility | | Propulsion System | AC/DC Diesel Electric 3 x diesel electric AC | | | generators, individually raft mounted 2 x | | | tandem electric DC motors Single screw | | Power generation | 3240Kw | | Power propulsion | 2230Kw | | Thrusters | Bow thruster (flush mounted azimuthing) | | 72.1 · · · · · · · · | Stern thruster (tunnel) | | Trial speed | 14.4 knots | | Bollard pull | 29 tonnes | | Call sign | VQHF3 | | Official number | 906938 | | MMSI | 235005270 | | Lloyds/IMO number | 9251107 | |----------------------|---| | Side Gantry | 7.5 tonne articulated side A-frame | | Stern Gantry | 25 tonne stern A-frame | | Winches | 3 x cranes 35tM, heave compensated 2 x trawl winches 2 x drum winches, (1 double) Double barrel survey winch with motion compensation and slip rings Double barrel survey winch with slip rings Double barrel towing winch with slip rings Side-scan sonar winch with slip rings 3 x Gilson winches (one fitted to stern A-frame) | | Transducers/Sea tube | Drop keel to deploy transducers outside the hull boundary layer in addition to hull mounted transducers 1.2m diameter sea tube/moon-pool | | Acoustic equipment | Kongsberg Simrad: HiPAP 500 positioning sonar EK60, 38/120 kHz scientific sounder EA 600, 50/200 kHz scientific sounder Scanmar net mensuration system SH80 high frequency omni-directional sonar EM3002 swathe bathymetry sounder Hull mounted Scanmar fishing computer transducers | | Boats | 2 x 8m rigid work and rescue boats with
suite of navigational equipment deployed on
heave-compensated davits | | Laboratories | 8 networked laboratories designed for optimum flexibility of purpose 4 serviced deck locations for containerised laboratories | | Special features | Dynamic positioning system Intering anti-roll system Local Area Network with scientific data management system Ship-wide general information system CCTV | | Class | LRS 100A1+LMC UMS SCM CCS ICC IP
ES(2) DP(CM) ICE class 2 | ## 7.2 Camera Sledge Flash model: Kongsberg 11-242 Underwater lights – Cefas high power LED strip lights. Video and stills camera settings variable depending on underwater visibility and ambient light levels. ## 7.3 Positioning Software-Tower Vessel offsets are defined from the pitch roll centre of the vessel – the Common Reference Point (CRP) used by the Tower CEMAP software to calculate offsets. ## 7.4 Multi-beam Bathymetry Model: Kongsberg EM3002D Frequency: 300kHz; swathe width variable running in hi res equidistant mode Latency correction not determined – 1pps synchronised time system utilised on vessel. Model: Simrad EM2040 Frequency: 200/300/400kHz, swathe width variable dependant on water depth. ### 7.5 Metadata Station metadata for the Wight Barfleur Reef cSAC and Bassurelle Sandbank cSAC surveys on cruise CEND 03/13 is provided below. Station Num is a sequential event number for the cruise, so changes each time a new gear is used or a new location is sampled. Station Code is used to identify the location of the sampling station. SS = Side-scan Sonar, MB = Multi-beam, HC = HamCam, HG = Hamon grab, CS = Camera Sledge, DC = Drop Camera. ### 7.5.1 Benthic grab metadata Table 6. Benthic grab metadata. | Survey | Stn Code | Stn Num | Rep | Gear | Date | Lat | Long | Water depth | Sediment description | |------------------|----------|---------|-----|------|------------|---------|---------|-------------|---| | VBRF 2013 | HP07 | 6 | A1 | HG | 19/03/2013 | 50.3246 | -1.8915 | 62 | Very coarse clean shelly sand | | NBRF 2013 | HP09 | 11 | A1 | HG | 19/03/2013 | 50.3254 | -1.6105 | 59 | Course sand and gravel with cobbles. | | WBRF 2013 | HP45 | 33 | A1 | HG | 20/03/2013 | 50.3252 | -1.0468 | 66 | Slightly muddy course gravel. | | WBRF 2013 | HP43 | 40 | A1 | HG | 20/03/2013 | 50.3641 | -1.0818 | 58 | Course gravel | | WBRF 2013 | HP39 | 43 | A2 | HG | 20/03/2013 | 50.3635 | -1.1537 | 51 | Course gravel. | | WBRF 2013 | HP37 | 46 | A2 | HG | 20/03/2013 | 50.3643 | -1.2237 | 48 | Course gravel. | | WBRF 2013 | HP22 | 60 | A1 | HG | 20/03/2013 | 50.3644 | -1.6447 | 57 | Slightly muddy gravel with clasts. | | WBRF 2013 | MP03 | 78 | A1 | HG | 21/03/2013 | 50.2860 | -1.7855 | 65 | Shelly gravel | | WBRF 2013 | HP42 | 98 | A1 | HG | 20/03/2013 | 50.2863 | -1.0830 | 59 | Mixed-muddy sandy gravel with pebbles and shell | | WBRF 2013 | HP48 | 101 | A1 | HG | 21/03/2013 | 50.2860 | -1.0129 | 71 | Muddy sand & gravel | | WBRF 2013 | HP31A | 119 | A3 | HG | 22/03/2013 | 50.3648 | -1.4331 | 50 | Coarse sand and gravels with pebbles | | WBRF 2013 | MP17 | 139 | A1 | HG | 23/03/2013 | 50.1702 | -1.3995 | 77 | Sand with pebbles and cobbles | | WBRF 2013 | MP19 | 145 | A2 | HG | 23/03/2013 | 50.1701 | -1.3292 | 80 | Coarse sand and gravels with pebbles | | WBRF 2013 | HP30 | 164 | A2 | HG | 24/03/2013 | 50.2087 | -1.4350 | 60 | Conglomerate | | BSSS 2013 | BSSS005 | 292 | A1 | HC | 29/03/2013 | 50.5567 | 0.9013 | 42 | Coarse sand and shell | | BSSS 2013 | BSSS007 | 293 | A1 | HC | 29/03/2013 | 50.5505 | 0.9121 | 42 | Coarse sand and shell | | BSSS 2013 | BSSS012 | 294 | A1 | HC | 29/03/2013 | 50.5533 | 0.9245 | 40 | Coarse sand and shell | | BSSS 2013 | BSSS023 | 296 | A1 | HC | 29/03/2013 | 50.5504 | 0.9477 | 39 | Coarse sand and shell | | BSSS 2013 | BSSS033 | 297 | A1 | HC | 29/03/2013 | 50.5526 | 0.9620 | 40 | Coarse slightly gravelly and shell | | BSSS 2013 | BSSS043 | 299 | A1 | HC | 29/03/2013 | 50.5557 | 0.9751 | 37 | Coarse sand with shells | | BSSS 2013 | BSSS050 | 300 | A1 | HC | 29/03/2013 | 50.5581 | 0.9883 | 39 | Coarse sand with gravel | | BSSS 2013 | BSSS057 | 302 | A1 | HC | 29/03/2013 | 50.5608 | 1.0014 | 37 | Coarse sand and shell | | BSSS 2013 | BSSS061 | 303 | A1 | HC | 29/03/2013 | 50.5700 | 1.0053 | 37 | Muddy sand with shell | | BSSS 2013 | BSSS067 | 304 | A1 | HC | 29/03/2013 | 50.5723 | 1.0186 | 34 | Sand with shelly gravel | | BSSS 2013 | BSSS071 | 305 | A1 | HC | 29/03/2013 | 50.5815 | 1.0211 | 30 | Muddy sand | | BSSS 2013 | BSSS064 | 307 | A1 | HC | 29/03/2013 | 50.5778 | 1.0081 | 30 | Slightly muddy sand with shells | | BSSS 2013 | BSSS058 | 308 | A1 | HC | 29/03/2013 | 50.5760 | 0.9942 | 38 | Slightly muddy sand | | BSSS 2013 | BSSS053 | 310 | A1 | HC | 29/03/2013 | 50.5672 | 0.9922 | 37 | Slightly muddy sand with shell. | | BSSS 2013 | BSSS051 | 311 | A1 | HC | 29/03/2013 | 50.5732 | 0.9818 | 28 | Slightly muddy, shelly sand | | BSSS 2013 | BSSS048 | 312 | A1 | HC | 29/03/2013 | 50.5644 | 0.9792 | 35 | Coarse sand with shell | | BSSS 2013 | BSSS044 | 314 | A1 | HC | 29/03/2013 | 50.5706 | 0.9677 | 30 | Coarse sand with shell | | BSSS 2013 | BSSS038 | 315 | A1 | HC | 29/03/2013 | 50.5619 | 0.9652 | 41 | Slightly muddy sand with shell | | BSSS 2013 | BSSS034 | 316 | A1 | HC | 29/03/2013 | 50.5679 | 0.9548 | 44 | Coarse sand | | BSSS 2013 | BSSS028 | 317 | A1 | HC | 29/03/2013 | 50.5592 | 0.9518 | 42 | Coarse shelly sand | | BSSS 2013 | BSSS024 | 319 | A1 | HC | 29/03/2013 | 50.5652 | 0.9408 | 36 | Coarse shelly sand | | BSSS 2013 | BSSS029 | 320 | A1 | HC | 29/03/2013 | 50.5741 | 0.9441 | 31 | Clean shelly sand | | BSSS 2013 | BSSS039 | 322 | A1 | HC | 29/03/2013 | 50.5766 | 0.9574 | 28 | Coarse sand | | BSSS 2013 | ADDGT02 | 324 | A1 | HC | 29/03/2013 | 50.5796 | 0.9716 | 27 | Coarse sand | | Survey | Stn Code | Stn Num | Rep | Gear | Date | Lat | Long | Water depth | Sediment description | |-----------|----------|---------|-----|------|------------|---------|--------|-------------|---------------------------------| | BSSS 2013 | BSSS054 | 325 | A1 | HC | 29/03/2013 | 50.5822 | 0.9837 | 26 | Fine clean sand | | BSSS 2013 | ADDGT07 | 326 | A1 | HC | 29/03/2013 | 50.5838 | 0.9913 | 25 | Clean sand | | BSSS 2013 | ADDGT06 | 327 | A1 | HC | 29/03/2013 | 50.5850 | 0.9984 | 27 | Clean sand | | BSSS 2013 | BSSS068 | 328 | A1 | HC | 29/03/2013 | 50.5874 | 1.0108 | 31 | Clean sand | | BSSS 2013 | BSSS074 | 329 | A1 | HC | 29/03/2013 | 50.5901 | 1.0243 | 35 | Clean sand | | BSSS 2013 | ADDGT13 | 330 | A1 | HC | 29/03/2013 | 50.5935 | 1.0213 | 28 | Clean sand | | BSSS 2013 | BSSS072 | 332 | A1 | HC | 29/03/2013 | 50.5962 | 1.0148 | 26 | Clean fine sand | | BSSS 2013 | ADDGT11 | 333 | A1 | HC | 29/03/2013 | 50.5924 | 1.0126 | 23 | Clean fine sand | | BSSS 2013 | ADDGT12 | 334 | A1 | HC | 29/03/2013 | 50.5943 | 1.0084 | 25 | Clean fine sand | | BSSS 2013 | ADDGT10 | 335 | A1 | HC | 29/03/2013 | 50.5908 | 1.0064 | 23 | Clean sand | | BSSS 2013 | BSSS065 | 337 | A1 | HC | 29/03/2013 | 50.5931 | 1.0016 | 25 | Clean sand | | BSSS 2013 | ADDGT09 | 338 | A1 | HC | 29/03/2013 | 50.5888 | 0.9995 | 24 | Clean sand | | BSSS 2013 | ADDGT08 | 340 | A1 | HC | 29/03/2013 | 50.5882 | 0.9936 | 26 | Clean sand | | BSSS 2013 | BSSS059 | 341 | A1 | HC | 29/03/2013 | 50.5908 | 0.9878 | 28 | Clean sand | | BSSS 2013 | ADDGT05 | 342 | A1 | HC | 29/03/2013 | 50.5866 | 0.9864 | 22 | Clean sand | | BSSS 2013 | ADDGT01 | 344 | A1 | HC | 29/03/2013 | 50.5850 | 0.9798 | 22 | Clean sand | | BSSS 2013 | BSSS052 | 345 | A1 | HC | 29/03/2013 | 50.5880 | 0.9743 | 26 | Clean sand | | BSSS 2013 | ADDGT03 | 346 | A1 | HC | 29/03/2013 | 50.5835 | 0.9730 | 22 | Clean sand | | BSSS 2013 | ADDGT04 | 347 | A1 | HC | 29/03/2013 | 50.5820 | 0.9662 | 26 | Clean sand | | BSSS 2013 | BSSS045 | 348 | A1 | HC | 29/03/2013 | 50.5853 | 0.9610 | 32 | Clean shelly sand | | BSSS 2013 | BSSS035 | 349 | A1 | HC | 29/03/2013 | 50.5826 | 0.9473 |
31 | Clean sand | | BSSS 2013 | BSSS025 | 351 | A1 | HC | 29/03/2013 | 50.5799 | 0.9339 | 38 | Shelly sand | | BSSS 2013 | BSSS016 | 352 | A1 | HC | 29/03/2013 | 50.5771 | 0.9204 | 38 | Clean shelly sand | | BSSS 2013 | BSSS020 | 353 | A1 | HC | 29/03/2013 | 50.5860 | 0.9235 | 40 | Clean shelly sand | | BSSS 2013 | BSSS030 | 354 | A1 | HC | 29/03/2013 | 50.5887 | 0.9370 | 40 | Clean shelly sand | | BSSS 2013 | BSSS026 | 355 | A1 | HC | 29/03/2013 | 50.5946 | 0.9266 | 41 | Clean shelly sand | | BSSS 2013 | BSSS036 | 357 | A1 | HC | 29/03/2013 | 50.5975 | 0.9400 | 48 | clean sand | | BSSS 2013 | BSSS040 | 359 | A1 | HC | 29/03/2013 | 50.5915 | 0.9503 | 51 | Slightly muddy shelly sand | | BSSS 2013 | BSSS046 | 360 | A1 | HC | 30/03/2013 | 50.5999 | 0.9536 | 48 | Slightly muddy sand with shells | | BSSS 2013 | BSSS049 | 361 | A1 | HC | 30/03/2013 | 50.5944 | 0.9636 | 42 | Fine muddy sand with shells. | | BSSS 2013 | BSSS055 | 363 | A1 | HC | 30/03/2013 | 50.5965 | 0.9766 | 47 | Slightly muddy sand with shell | | BSSS 2013 | BSSS062 | 364 | A1 | HC | 30/03/2013 | 50.5997 | 0.9900 | 47 | Slightly muddy sand with shell | | BSSS 2013 | BSSS069 | 366 | A1 | HC | 30/03/2013 | 50.6022 | 1.0034 | 43 | Clean sand with shell | | BSSS 2013 | ADDGT14 | 367 | A1 | HC | 30/03/2013 | 50.6009 | 1.0164 | 28 | Muddy sand with shell | | BSSS 2013 | BSSS075 | 368 | A1 | HC | 30/03/2013 | 50.6050 | 1.0176 | 36 | Clean sand | | BSSS 2013 | BSSS099 | 375 | A1 | HC | 30/03/2013 | 50.6393 | 1.0678 | 51 | Fine sediment, shells. | | BSSS 2013 | BSSS092 | 377 | A1 | HC | 30/03/2013 | 50.6279 | 1.0512 | 44 | Slightly muddy sand | | BSSS 2013 | BSSS084 | 379 | A1 | HC | 30/03/2013 | 50.6165 | 1.0344 | 37 | Clean sand | | BSSS 2013 | BSSS081 | 380 | A1 | HC | 30/03/2013 | 50.6080 | 1.0320 | 24 | Clean sand | | BSSS 2013 | BSSS078 | 381 | A1 | HC | 30/03/2013 | 50.5991 | 1.0285 | 29 | Clean sand | | BSSS 2013 | BSSS080 | 382 | A1 | HC | 30/03/2013 | 50.5935 | 1.0382 | 29 | Fine sand | | Survey | Stn Code | Stn Num | Rep | Gear | Date | Lat | Long | Water depth | Sediment description | |-----------|----------|---------|-----|------|------------|---------|--------|-------------|-----------------------------| | BSSS 2013 | BSSS077 | 386 | A1 | HC | 30/03/2013 | 50.5841 | 1.0350 | 29 | Silty sand | | BSSS 2013 | BSSS085 | 388 | A1 | HC | 30/03/2013 | 50.5959 | 1.0528 | 26 | Silty sand | | BSSS 2013 | BSSS088 | 389 | A1 | HC | 30/03/2013 | 50.6040 | 1.0556 | 20 | Silty sand | | BSSS 2013 | BSSS093 | 390 | A1 | HC | 30/03/2013 | 50.6071 | 1.0687 | 19 | Fine sand | | BSSS 2013 | BSSS091 | 392 | A1 | HC | 30/03/2013 | 50.6131 | 1.0586 | 21 | Fine silty sand | | BSSS 2013 | BSSS096 | 393 | A2 | HC | 30/03/2013 | 50.6159 | 1.0718 | 20 | Fine sand | | BSSS 2013 | BSSS100 | 394 | A1 | HC | 30/03/2013 | 50.6185 | 1.0859 | 18 | Fine silty sand | | BSSS 2013 | BSSS107 | 395 | A1 | HC | 30/03/2013 | 50.6299 | 1.1021 | 16 | Clean sand | | BSSS 2013 | BSSS110 | 397 | A1 | HC | 30/03/2013 | 50.6386 | 1.1052 | 17 | Clean sand | | BSSS 2013 | BSSS114 | 398 | A1 | HC | 30/03/2013 | 50.6414 | 1.1187 | 17 | Clean sand | | BSSS 2013 | BSSS117 | 400 | A1 | HC | 30/03/2013 | 50.6501 | 1.1219 | 30 | Clean sand | | BSSS 2013 | BSSS120 | 402 | A1 | HC | 30/03/2013 | 50.6619 | 1.1383 | 40 | Shelly sand | | BSSS 2013 | BSSS115 | 403 | A3 | HC | 30/03/2013 | 50.6564 | 1.1112 | 45 | Sand | | BSSS 2013 | BSSS112 | 404 | A1 | HC | 31/03/2013 | 50.6482 | 1.1086 | 36 | Slightly muddy sand | | BSSS 2013 | BSSS111 | 406 | A1 | HC | 31/03/2013 | 50.6530 | 1.0968 | 49 | Muddy shelly sand | | BSSS 2013 | BSSS105 | 407 | A1 | HC | 31/03/2013 | 50.6367 | 1.0916 | 20 | Fine sand | | BSSS 2013 | BSSS103 | 408 | A1 | HC | 31/03/2013 | 50.6279 | 1.0886 | 23 | Fine clean sand | | BSSS 2013 | BSSS101 | 409 | A1 | HC | 31/03/2013 | 50.6337 | 1.0781 | 22 | Clean sand | | BSSS 2013 | BSSS108 | 410 | A1 | HC | 31/03/2013 | 50.6447 | 1.0944 | 42 | Fine muddy sand | | BSSS 2013 | BSSS104 | 411 | A1 | HC | 31/03/2013 | 50.6418 | 1.0800 | 47 | Slightly muddy sand | | BSSS 2013 | BSSS097 | 412 | A1 | HC | 31/03/2013 | 50.6309 | 1.0641 | 23 | Fine sand | | BSSS 2013 | BSSS098 | 414 | A1 | HC | 31/03/2013 | 50.6244 | 1.0749 | 23 | Coarse sand with shell | | BSSS 2013 | BSSS094 | 415 | A1 | HC | 31/03/2013 | 50.6219 | 1.0615 | 23 | Fine sand. | | BSSS 2013 | BSSS089 | 416 | A1 | HC | 31/03/2013 | 50.6193 | 1.0480 | 25 | Fine clean sand with shells | | BSSS 2013 | BSSS086 | 417 | A1 | HC | 31/03/2013 | 50.6109 | 1.0452 | 23 | Slighty muddy sand. | | BSSS 2013 | BSSS083 | 418 | A1 | HC | 31/03/2013 | 50.6015 | 1.0415 | 28 | Slightly muddy sand. | | BSSS 2013 | BSSS015 | 430 | A1 | HC | 31/03/2013 | 50.5626 | 0.9279 | 35 | Coarse clean shelly sand | | BSSS 2013 | BSSS019 | 431 | A1 | HC | 31/03/2013 | 50.5566 | 0.9387 | 38 | Coarse sand | | BSSS 2013 | BSSS014 | 432 | A1 | HC | 31/03/2013 | 50.5473 | 0.9354 | 42 | Coarse sand with shell | | BSSS 2013 | BSSS009 | 433 | A1 | HC | 31/03/2013 | 50.5448 | 0.9221 | 41 | Coarse sand with shell | | BSSS 2013 | BSSS004 | 434 | A1 | HC | 31/03/2013 | 50.5422 | 0.9083 | 42 | Coarse sand | | BSSS 2013 | BSSS002 | 436 | A1 | HC | 31/03/2013 | 50.5478 | 0.8969 | 42 | Coarse sand | | BSSS 2013 | BSSS001 | 437 | A1 | HC | 31/03/2013 | 50.5541 | 0.8877 | 45 | Shelly coarse sand | | BSSS 2013 | BSSS003 | 438 | A1 | HC | 31/03/2013 | 50.5630 | 0.8906 | 47 | Sand with shells | | BSSS 2013 | BSSS008 | 439 | A1 | HC | 31/03/2013 | 50.5657 | 0.9042 | 44 | Coarse sand with shells | | BSSS 2013 | BSSS006 | 440 | A1 | HC | 31/03/2013 | 50.5718 | 0.8932 | 48 | Fine sand and shell | | BSSS 2013 | BSSS010 | 441 | A1 | HC | 31/03/2013 | 50.5746 | 0.9067 | 41 | Fine sand and shell | ### 7.5.2 Underwater video metadata **Table 7.** Underwater video metadata. | Survey | Stn Code | Stn Num | Gear | Date | SOL Lat | SOL Long | EOL Lat | EOL Long | Water depth | Duration | |-----------|----------|---------|------|------------|------------|-----------|------------|-----------|-------------|----------| | WBRF 2013 | WBRFHP03 | 3 | DC | 18/03/2013 | 50.3248245 | -1.962776 | 50.3230475 | -1.960015 | 56 | 0:10 | | WBRF 2013 | WBRFMP02 | 7 | DC | 19/03/2013 | 50.3248224 | -1.822599 | 50.324833 | -1.82022 | 68 | 0:11 | | WBRF 2013 | WBRFMP04 | 8 | DC | 19/03/2013 | 50.3248633 | -1.752317 | 50.3250826 | -1.750122 | 65 | 0:13 | | WBRF 2013 | WBRFMP06 | 9 | DC | 19/03/2013 | 50.3251123 | -1.679045 | 50.3252098 | -1.681273 | 57 | 0:10 | | WBRF 2013 | WBRFMP09 | 10 | DC | 19/03/2013 | 50.3244847 | -1.610772 | 50.3252858 | -1.610489 | 58 | 0:10 | | WBRF 2013 | WBRFMP12 | 12 | DC | 19/03/2013 | 50.3254092 | -1.540986 | 50.3254267 | -1.539665 | 54 | 0:10 | | WBRF 2013 | WBRFMP15 | 13 | DC | 19/03/2013 | 50.3247929 | -1.470228 | 50.3259416 | -1.468857 | 56 | 0:11 | | WBRF 2013 | WBRFMP18 | 14 | DC | 19/03/2013 | 50.3257553 | -1.400476 | 50.3256464 | -1.398258 | 54 | 0:10 | | WBRF 2013 | WBRFMP21 | 15 | DC | 19/03/2013 | 50.3252841 | -1.330135 | 50.3256876 | -1.327003 | 62 | 0:14 | | WBRF 2013 | WBRFMP26 | 16 | DC | 19/03/2013 | 50.3255507 | -1.259589 | 50.3261737 | -1.257711 | 61 | 0:10 | | WBRF 2013 | WBRFMP30 | 17 | DC | 19/03/2013 | 50.3256821 | -1.18893 | 50.3249906 | -1.187145 | 62 | 0:09 | | WBRF 2013 | WBRFMP33 | 18 | DC | 19/03/2013 | 50.3260414 | -1.118151 | 50.3247164 | -1.117365 | 69 | 0:10 | | WBRF 2013 | WBRFHP45 | 20 | DC | 20/03/2013 | 50.3244956 | -1.04843 | 50.3250239 | -1.047246 | 65 | 0:11 | | WBRF 2013 | WBRFHP51 | 35 | DC | 20/03/2013 | 50.3244404 | -0.97815 | 50.3248734 | -0.976904 | 65 | 0:10 | | WBRF 2013 | WBRFHP49 | 37 | DC | 20/03/2013 | 50.3634235 | -1.013334 | 50.3637255 | -1.011952 | 55 | 0:11 | | WBRF 2013 | WBRFHP43 | 39 | DC | 20/03/2013 | 50.3637158 | -1.083318 | 50.3640135 | -1.082121 | 58 | 0:10 | | WBRF 2013 | WBRFHP39 | 42 | DC | 20/03/2013 | 50.3633952 | -1.153839 | 50.3640145 | -1.153216 | 50 | 0:09 | | WBRF 2013 | WBRFHP37 | 45 | DC | 20/03/2013 | 50.364064 | -1.224557 | 50.3643559 | -1.223348 | 49 | 0:10 | | WBRF 2013 | WBRFHP35 | 48 | DC | 20/03/2013 | 50.3640982 | -1.292269 | 50.3645496 | -1.293699 | 49 | 0:10 | | WBRF 2013 | WBRFHP33 | 50 | DC | 20/03/2013 | 50.364669 | -1.362754 | 50.3642495 | -1.364024 | 49 | 0:10 | | WBRF 2013 | WBRFHP31 | 53 | DC | 20/03/2013 | 50.3648115 | -1.433033 | 50.3642933 | -1.434232 | 49 | 0:11 | | WBRF 2013 | WBRFHP28 | 55 | DC | 20/03/2013 | 50.3647813 | -1.505998 | 50.3644266 | -1.504882 | 48 | 0:09 | | WBRF 2013 | WBRFHP25 | 57 | DC | 20/03/2013 | 50.3650751 | -1.575657 | 50.3641741 | -1.57484 | 61 | 0:12 | | WBRF 2013 | WBRFHP22 | 59 | DC | 20/03/2013 | 50.363628 | -1.646408 | 50.3642291 | -1.64531 | 56 | 0:11 | | WBRF 2013 | WBRFHP18 | 62 | DC | 20/03/2013 | 50.3640188 | -1.717074 | 50.3640989 | -1.715697 | 52 | 0:10 | | WBRF 2013 | WBRFHP13 | 64 | DC | 20/03/2013 | 50.3635161 | -1.787332 | 50.3636962 | -1.785838 | 53 | 0:18 | | WBRF 2013 | WBRFHP09 | 66 | DC | 20/03/2013 | 50.3633072 | -1.858047 | 50.3632971 | -1.856713 | 49 | 0:10 | | WBRF 2013 | WBRFHP05 | 68 | DC | 20/03/2013 | 50.3625217 | -1.928315 | 50.3629402 | -1.92713 | 52 | 0:10 | | WBRF 2013 | WBRFHP01 | 70 | DC | 20/03/2013 | 50.2856752 | -1.995719 | 50.2845898 | -1.997687 | 58 | 0:20 | | WBRF 2013 | WBRFHP04 | 72 | DC | 20/03/2013 | 50.2844561 | -1.927962 | 50.284456 | -1.930556 | 58 | 0:20 | | WBRF 2013 | WBRFMP01 | 74 | DC | 20/03/2013 | 50.2850375 | -1.855339 | 50.2857758 | -1.855967 | 59 | 0:10 | | WBRF 2013 | WBRFMP03 | 77 | DC | 21/03/2013 | 50.2857385 | -1.786931 | 50.2860191 | -1.785527 | 65 | 0:11 | | WBRF 2013 | WBRFMP05 | 80 | DC | 21/03/2013 | 50.2862482 | -1.714266 | 50.286358 | -1.715666 | 59 | 0:10 | | WBRF 2013 | WBRFMP07 | 82 | DC | 21/03/2013 | 50.2862754 | -1.64386 | 50.2864924 | -1.645268 | 64 | 0:11 | | WBRF 2013 | WBRFMP10 | 84 | DC | 21/03/2013 | 50.286342 | -1.573266 | 50.28679 | -1.575253 | 58 | 0:15 | | WBRF 2013 | WBRFMP13 | 86 | DC | 21/03/2013 | 50.2865679 | -1.505842 | 50.2866333 | -1.504391 | 58 | 0:11 | | WBRF 2013 | WBRFMP16 | 88 |
DC | 21/03/2013 | 50.2864419 | -1.435303 | 50.2865365 | -1.434064 | 64 | 0:10 | | WBRF 2013 | WBRFMP23 | 90 | DC | 21/03/2013 | 50.2863444 | -1.294879 | 50.2867992 | -1.293241 | 67 | 0:15 | | Survey | Stn Code | Stn Num | Gear | Date | SOL Lat | SOL Long | EOL Lat | EOL Long | Water depth | Duration | |-----------|----------|---------|------|------------|------------|-----------|------------|-----------|-------------|----------| | WBRF 2013 | WBRFMP28 | 93 | DC | 21/03/2013 | 50.2865034 | -1.224587 | 50.286504 | -1.223266 | 64 | 0:10 | | WBRF 2013 | WBRFMP31 | 95 | DC | 21/03/2013 | 50.2868777 | -1.154215 | 50.2864587 | -1.152942 | 63 | 0:10 | | WBRF 2013 | WBRFHP42 | 97 | DC | 21/03/2013 | 50.2860425 | -1.081671 | 50.2862544 | -1.082894 | 60 | 0:10 | | WBRF 2013 | WBRFHP48 | 100 | DC | 21/03/2013 | 50.2858387 | -1.01129 | 50.2859974 | -1.01269 | 70 | 0:10 | | WBRF 2013 | WBRFHP38 | 106 | DC | 21/03/2013 | 50.4031858 | -1.18901 | 50.4030465 | -1.187719 | 41 | 0:10 | | WBRF 2013 | ADDGT01 | 109 | DC | 22/03/2013 | 50.3633375 | -1.260238 | 50.3644895 | -1.259167 | 51 | 0:17 | | WBRF 2013 | WBRFHP34 | 111 | DC | 22/03/2013 | 50.4036508 | -1.329777 | 50.4031697 | -1.328499 | 43 | 0:10 | | WBRF 2013 | ADDGT02 | 113 | DC | 22/03/2013 | 50.3670948 | -1.351912 | 50.370166 | -1.35087 | 51 | 0:38 | | WBRF 2013 | WBRFHP32 | 116 | DC | 22/03/2013 | 50.4023075 | -1.398214 | 50.4030823 | -1.398932 | 44 | 0:10 | | WBRF 2013 | ADDGT03 | 118 | DC | 22/03/2013 | 50.3641058 | -1.397258 | 50.3650705 | -1.394047 | 52 | 0:27 | | WBRF 2013 | WBRFHP29 | 121 | DC | 22/03/2013 | 50.4033225 | -1.470587 | 50.4031418 | -1.469167 | 44 | 0:11 | | WBRF 2013 | WBRFHP19 | 130 | DC | 23/03/2013 | 50.1700138 | -1.681156 | 50.1698235 | -1.679885 | 65 | 0:11 | | WBRF 2013 | WBRFMP08 | 132 | DC | 23/03/2013 | 50.1696716 | -1.610965 | 50.1700251 | -1.609611 | 68 | 0:11 | | WBRF 2013 | WBRFMP11 | 134 | DC | 23/03/2013 | 50.1695813 | -1.540825 | 50.1699217 | -1.539747 | 74 | 0:10 | | WBRF 2013 | WBRFMP14 | 136 | DC | 23/03/2013 | 50.169539 | -1.470363 | 50.17019 | -1.469291 | 83 | 0:11 | | WBRF 2013 | WBRFMP17 | 138 | DC | 23/03/2013 | 50.1699957 | -1.398087 | 50.1702366 | -1.399413 | 79 | 0:10 | | WBRF 2013 | WBRFLP06 | 141 | DC | 23/03/2013 | 50.2089289 | -1.362852 | 50.2089908 | -1.364246 | 61 | 0:11 | | WBRF 2013 | WBRFMP19 | 144 | DC | 23/03/2013 | 50.1702334 | -1.327864 | 50.1701429 | -1.329287 | 80 | 0:10 | | WBRF 2013 | ADDGT15 | 146 | DC | 23/03/2013 | 50.167896 | -1.329142 | 50.1681434 | -1.327764 | 77 | 0:11 | | WBRF 2013 | WBRFMP22 | 149 | DC | 23/03/2013 | 50.2096818 | -1.293089 | 50.2090283 | -1.293955 | 82 | 0:12 | | WBRF 2013 | WBRFMP24 | 152 | DC | 23/03/2013 | 50.1707306 | -1.258322 | 50.1699559 | -1.258975 | 77 | 0:10 | | WBRF 2013 | WBRFMP27 | 154 | DC | 23/03/2013 | 50.2092015 | -1.222325 | 50.2099251 | -1.221653 | 92 | 0:10 | | WBRF 2013 | WBRFLP08 | 155 | DC | 23/03/2013 | 50.2082 | -1.154513 | 50.2087471 | -1.153378 | 79 | 0:10 | | WBRF 2013 | WBRFMP29 | 157 | DC | 23/03/2013 | 50.2476676 | -1.189975 | 50.2476475 | -1.188466 | 62 | 0:10 | | WBRF 2013 | WBRFMP25 | 159 | DC | 23/03/2013 | 50.2478011 | -1.260039 | 50.2478184 | -1.257731 | 62 | 0:18 | | WBRF 2013 | WBRFMP20 | 161 | DC | 24/03/2013 | 50.2474268 | -1.330094 | 50.247868 | -1.328742 | 57 | 0:11 | | WBRF 2013 | WBRFHP30 | 163 | DC | 24/03/2013 | 50.2092728 | -1.43319 | 50.2086872 | -1.435111 | 60 | 0:30 | | WBRF 2013 | ADDGT16 | 166 | DC | 24/03/2013 | 50.394435 | -1.615986 | 50.3943363 | -1.614678 | 47 | 0:10 | | WBRF 2013 | ADDGT17 | 168 | DC | 24/03/2013 | 50.3863397 | -1.583555 | 50.3872859 | -1.581593 | 50 | 0:10 | | WBRF 2013 | ADDGT18 | 171 | DC | 24/03/2013 | 50.3899406 | -1.56571 | 50.3894901 | -1.564094 | 45 | 0:13 | | WBRF 2013 | ADDGT20 | 173 | DC | 24/03/2013 | 50.3774791 | -1.557177 | 50.3769696 | -1.558386 | 49 | 0:11 | | WBRF 2013 | ADDGT19 | 175 | DC | 24/03/2013 | 50.3745593 | -1.58098 | 50.374522 | -1.582629 | 48 | 0:11 | | WBRF 2013 | ADDGT21 | 177 | DC | 24/03/2013 | 50.3722596 | -1.622891 | 50.3719694 | -1.624314 | 57 | 0:10 | | WBRF 2013 | ADDGT07 | 179 | DC | 24/03/2013 | 50.3267188 | -1.636547 | 50.3260501 | -1.637589 | 61 | 0:11 | | WBRF 2013 | ADDGT06 | 181 | DC | 24/03/2013 | 50.3260916 | -1.698698 | 50.3258081 | -1.700172 | 55 | 0:12 | | WBRF 2013 | ADDGT05 | 184 | DC | 25/03/2013 | 50.3277252 | -1.794469 | 50.326285 | -1.795878 | 57 | 0:20 | | WBRF 2013 | ADDGT04 | 186 | DC | 25/03/2013 | 50.3276172 | -1.851164 | 50.326639 | -1.847786 | 61 | 0:28 | | WBRF 2013 | ADDGT09 | 188 | DC | 25/03/2013 | 50.2957946 | -1.884745 | 50.2974864 | -1.887643 | 58 | 0:30 | | WBRF 2013 | ADDGT10 | 190 | DC | 25/03/2013 | 50.287779 | -1.87922 | 50.2879022 | -1.877421 | 58 | 0:13 | | WBRF 2013 | ADDGT11 | 192 | DC | 25/03/2013 | 50.2789752 | -1.877727 | 50.2809466 | -1.875815 | 64 | 0:29 | | | | | | | | | | | | | | WBRF 2013 WBRFHP06 197 DC 25/03/2013 50.2477459 -1.890682 50.2468846 -1.890824 WBRF 2013 WBRFHP08 199 DC 25/03/2013 50.2091068 -1.854804 50.2086366 -1.855472 WBRF 2013 WBRFHP10 201 DC 25/03/2013 50.2471994 -1.819567 50.247025 -1.820891 WBRF 2013 WBRFHP12 203 DC 25/03/2013 50.2082521 -1.783749 50.2083555 -1.785296 WBRF 2013 WBRFHP15 206 DC 25/03/2013 50.2476918 -1.749138 50.2473836 -1.750346 WBRF 2013 WBRFHP17 208 DC 25/03/2013 50.2082812 -1.713577 50.2084704 -1.714908 WBRF 2013 WBRFHP14 210 DC 25/03/2013 50.190318 -1.751242 50.1696022 -1.749915 WBRF 2013 ADDGT24 214 DC 25/03/2013 50.1804318 -1.683138 50.1901218 -1.684295 WBRF 2013 | 61 0:12
59 0:16
61 0:06 | |---|-------------------------------| | WBRF 2013 WBRFHP08 199 DC 25/03/2013 50.2091068 -1.854804 50.2086366 -1.855472 WBRF 2013 WBRFHP10 201 DC 25/03/2013 50.2471994 -1.819567 50.247025 -1.820891 WBRF 2013 WBRFHP12 203 DC 25/03/2013 50.2082521 -1.783749 50.2083555 -1.785296 WBRF 2013 WBRFHP15 206 DC 25/03/2013 50.2476918 -1.749138 50.2473836 -1.750346 WBRF 2013 WBRFHP17 208 DC 25/03/2013 50.2082812 -1.713577 50.2084704 -1.714908 WBRF 2013 WBRFHP14 210 DC 25/03/2013 50.1693318 -1.751242 50.1696602 -1.749915 WBRF 2013 ADDGT24 214 DC 25/03/2013 50.1804925 -1.683138 50.1901218 -1.650422 WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1874384 -1.635089 50.1881514 -1.63432 WBRF 2013 | 61 0:06 | | WBRF 2013 WBRFHP10 201 DC 25/03/2013 50.2471994 -1.819567 50.247025 -1.820891 WBRF 2013 WBRFHP12 203 DC 25/03/2013 50.2082521 -1.783749 50.2083555 -1.785296 WBRF 2013 WBRFHP15 206 DC 25/03/2013 50.2476918 -1.749138 50.2473836 -1.750346 WBRF 2013 WBRFHP17 208 DC 25/03/2013 50.2082812 -1.713577 50.2084704 -1.714908 WBRF 2013 WBRFHP14 210 DC 25/03/2013 50.1693318 -1.751242 50.1696602 -1.749915 WBRF 2013 ADDGT24 214 DC 25/03/2013 50.1904925 -1.683138 50.1901218 -1.684295 WBRF 2013 ADDGT22 216 DC 25/03/2013 50.1830408 -1.648853 50.18287 -1.650422 WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1837517 -1.617864 50.1843941 -1.619682 WBRF 2013 | | | WBRF 2013 WBRFHP12 203 DC 25/03/2013 50.2082521 -1.783749 50.2083555 -1.785296 WBRF 2013 WBRFHP15 206 DC 25/03/2013 50.2476918 -1.749138 50.2473836 -1.750346 WBRF 2013 WBRFHP17 208 DC 25/03/2013 50.2082812 -1.713577 50.2084704 -1.714908 WBRF 2013 WBRFHP14 210 DC 25/03/2013 50.1693318 -1.751242 50.1696602 -1.749915 WBRF 2013 ADDGT24 214 DC 25/03/2013 50.1904925 -1.683138 50.1901218 -1.684295 WBRF 2013 ADDGT22 216 DC 25/03/2013 50.1830408 -1.648853 50.18287 -1.650422 WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1874384 -1.635089 50.1881514 -1.643432 WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2086514 -1.643823 50.208684 -1.64455 WBRF 2013 | | | WBRF 2013 WBRFHP15 206 DC 25/03/2013 50.2476918 -1.749138 50.2473836 -1.750346 WBRF 2013 WBRFHP17 208 DC 25/03/2013 50.2082812 -1.713577 50.2084704 -1.714908 WBRF 2013 WBRFHP14 210 DC 25/03/2013 50.1693318 -1.751242 50.1696602 -1.749915 WBRF 2013 ADDGT24 214 DC 25/03/2013 50.1904925 -1.683138 50.1901218 -1.684295 WBRF 2013 ADDGT22 216 DC 25/03/2013 50.1830408 -1.648853 50.18287 -1.650422 WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1874384 -1.635089 50.1881514 -1.634322 WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2096514 -1.643823 50.208684 -1.64455 WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 | 60 0:10 | | WBRF 2013 WBRFHP17 208 DC 25/03/2013 50.2082812 -1.713577 50.2084704 -1.714908 WBRF 2013 WBRFHP14 210 DC 25/03/2013 50.1693318 -1.751242 50.1696602 -1.749915 WBRF 2013 ADDGT24 214 DC 25/03/2013 50.1904925 -1.683138 50.1901218 -1.684295 WBRF 2013 ADDGT22 216 DC 25/03/2013 50.1830408 -1.648853 50.18287 -1.650422 WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1837517 -1.617864 50.1843941 -1.63432 WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2096514 -1.643823 50.208684 -1.64455 WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 WBRFHP27 225 DC 26/03/2013 50.2088964
-1.502983 50.2089802 -1.504615 WBRF 2013 | 61 0:12 | | WBRF 2013 WBRFHP14 210 DC 25/03/2013 50.1693318 -1.751242 50.1696602 -1.749915 WBRF 2013 ADDGT24 214 DC 25/03/2013 50.1904925 -1.683138 50.1901218 -1.684295 WBRF 2013 ADDGT22 216 DC 25/03/2013 50.1830408 -1.648853 50.18287 -1.650422 WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1874384 -1.635089 50.1881514 -1.63432 WBRF 2013 ADDGT25 220 DC 26/03/2013 50.1837517 -1.617864 50.1843941 -1.619682 WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2096514 -1.643823 50.208684 -1.64455 WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 ADDGT27 225 DC 26/03/2013 50.2088964 -1.502983 50.2089802 -1.504615 WBRF 2013 <t< td=""><td>58 0:09</td></t<> | 58 0:09 | | WBRF 2013 ADDGT24 214 DC 25/03/2013 50.1904925 -1.683138 50.1901218 -1.684295 WBRF 2013 ADDGT22 216 DC 25/03/2013 50.1830408 -1.648853 50.18287 -1.650422 WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1874384 -1.635089 50.1881514 -1.63432 WBRF 2013 ADDGT25 220 DC 26/03/2013 50.1837517 -1.617864 50.1843941 -1.619682 WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2096514 -1.643823 50.208684 -1.64455 WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 WBRFHP27 225 DC 26/03/2013 50.2088964 -1.502983 50.2089802 -1.504615 WBRF 2013 ADDGT27 230 DC 26/03/2013 50.1669028 -1.509 50.1668277 -1.510515 | 62 0:10 | | WBRF 2013 ADDGT22 216 DC 25/03/2013 50.1830408 -1.648853 50.18287 -1.650422 WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1874384 -1.635089 50.1881514 -1.63432 WBRF 2013 ADDGT25 220 DC 26/03/2013 50.1837517 -1.617864 50.1843941 -1.619682 WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2096514 -1.643823 50.208684 -1.64455 WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 WBRFHP27 225 DC 26/03/2013 50.2088964 -1.502983 50.2089802 -1.504615 WBRF 2013 ADDGT27 230 DC 26/03/2013 50.1669028 -1.509 50.1668277 -1.510515 | 64 0:10 | | WBRF 2013 ADDGT23 218 DC 26/03/2013 50.1874384 -1.635089 50.1881514 -1.63432 WBRF 2013 ADDGT25 220 DC 26/03/2013 50.1837517 -1.617864 50.1843941 -1.619682 WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2096514 -1.643823 50.208684 -1.64455 WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 WBRFHP27 225 DC 26/03/2013 50.2088964 -1.502983 50.2089802 -1.504615 WBRF 2013 ADDGT27 230 DC 26/03/2013 50.1669028 -1.509 50.1668277 -1.510515 | 62 0:10 | | WBRF 2013 ADDGT25 220 DC 26/03/2013 50.1837517 -1.617864 50.1843941 -1.619682 WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2096514 -1.643823 50.208684 -1.64455 WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 WBRFHP27 225 DC 26/03/2013 50.2088964 -1.502983 50.2089802 -1.504615 WBRF 2013 ADDGT27 230 DC 26/03/2013 50.1669028 -1.509 50.1668277 -1.510515 | 65 0:12 | | WBRF 2013 WBRFHP21 221 DC 26/03/2013 50.2096514 -1.643823 50.208684 -1.64455 WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 WBRFHP27 225 DC 26/03/2013 50.2088964 -1.502983 50.2089802 -1.504615 WBRF 2013 ADDGT27 230 DC 26/03/2013 50.1669028 -1.509 50.1668277 -1.510515 | 68 0:10 | | WBRF 2013 WBRFHP24 223 DC 26/03/2013 50.2088453 -1.573387 50.2088464 -1.574726 WBRF 2013 WBRFHP27 225 DC 26/03/2013 50.2088964 -1.502983 50.2089802 -1.504615 WBRF 2013 ADDGT27 230 DC 26/03/2013 50.1669028 -1.509 50.1668277 -1.510515 | 63 0:15 | | WBRF 2013 WBRFHP27 225 DC 26/03/2013 50.2088964 -1.502983 50.2089802 -1.504615
WBRF 2013 ADDGT27 230 DC 26/03/2013 50.1669028 -1.509 50.1668277 -1.510515 | 60 0:11 | | WBRF 2013 ADDGT27 230 DC 26/03/2013 50.1669028 -1.509 50.1668277 -1.510515 | 61 0:11 | | | 60 0:13 | | WBRF 2013 ADDGT28 232 DC 26/03/2013 50.1806314 -1.515874 50.1797283 -1.51742 | 80 0:11 | | | 77 0:17 | | WBRF 2013 ADDGT26 234 DC 26/03/2013 50.1673195 -1.574731 50.1662344 -1.57561 | 69 0:14 | | WBRF 2013 ADDGT30 236 DC 26/03/2013 50.1780092 -1.61269 50.179291 -1.612516 | 67 0:15 | | WBRF 2013 ADDGT31 238 DC 26/03/2013 50.1750217 -1.670334 50.1749022 -1.670424 | 64 0:01 | | WBRF 2013 ADDGT42 240 DC 26/03/2013 50.1598067 -1.391966 50.1610069 -1.393236 | 78 0:15 | | WBRF 2013 ADDGT45 242 DC 26/03/2013 50.1631383 -1.435479 50.1621261 -1.436081 | 81 0:12 | | WBRF 2013 ADDGT44 244 DC 26/03/2013 50.1539094 -1.464425 50.1530513 -1.464504 | 71 0:10 | | WBRF 2013 ADDGT47 246 DC 26/03/2013 50.1660672 -1.455752 50.1669463 -1.455103 | 93 0:12 | | WBRF 2013 ADDGT46 248 DC 26/03/2013 50.1688181 -1.439054 50.1681128 -1.440237 | 86 0:16 | | WBRF 2013 ADDGT43 250 DC 27/03/2013 50.1590151 -1.463475 50.1588621 -1.465453 | 78 0:15 | | WBRF 2013 ADDGT39 252 DC 27/03/2013 50.1747186 -1.436903 50.1757876 -1.437682 | 84 0:13 | | WBRF 2013 ADDGT38 254 DC 27/03/2013 50.181171 -1.427648 50.1813758 -1.429498 | 79 0:12 | | WBRF 2013 ADDGT41 256 DC 27/03/2013 50.1780616 -1.421999 50.1791876 -1.420865 | 84 0:17 | | WBRF 2013 ADDGT40 258 DC 27/03/2013 50.1827152 -1.396724 50.184092 -1.340944 | 91 0:52 | | WBRF 2013 ADDGT32 260 DC 27/03/2013 50.184063 -1.34086 50.1819651 -1.339141 | 67 0:26 | | | 70 0:16 | | WBRF 2013 ADDGT33 264 DC 27/03/2013 50.2354084 -1.176644 50.2342533 -1.177553 | 65 0:14 | | WBRF 2013 WBRFMP32 266 DC 27/03/2013 50.2480967 -1.117078 50.247376 -1.118092 | 63 0:12 | | | 84 0:11 | | | 75 0:11 | | | 53 0:16 | | | 67 0:14 | | | | | | 50 0:14 | | WBRF 2013 ADDGT37 284 DC 27/03/2013 50.3706434 -1.042962 50.3716012 -1.042635 | 50 0:14
56 0:15 | | Survey | Stn Code | Stn Num | Gear | Date | SOL Lat | SOL Long | EOL Lat | EOL Long | Water depth | Duration | |-----------|-------------|---------|------|------------|-------------|------------|-------------|------------|-------------|----------| | WBRF 2013 | ADDGT36 | 286 | DC | 27/03/2013 | 50.3662449 | -1.119105 | 50.3670787 | -1.119376 | 53 | 0:10 | | BSSS 2013 | BSSSAddGT1 | 343 | CS | 29/03/2013 | 50.58379129 | 0.9782437 | 50.58451528 | 0.9791199 | 24 | 0:11 | | BSSS2013 | BSSSAddGT10 | 336 | CS | 29/03/2013 | 50.59051795 | 1.005149 | 50.59087604 | 1.0097144 | 24 | 0:10 | | BSSS 2013 | BSSSAddGT2 | 323 | CS | 29/03/2013 | 50.58025933 | 0.9735447 | 50.57975845 | 0.972089 | 37 | 0:11 | | BSSS 2013 | BSSSAddGT2 | 370 | CS | 30/03/2013 | 50.57953413 | 0.968912 | 50.57967886 | 0.9703278 | 24 | 0:09 | | BSSS 2013 | BSSSAddGT8 | 339 | CS | 29/03/2013 | 50.58740251 | 0.9911684 | 50.58773253 | 0.9927554 | 23 | 0:11 | | BSSS 2013 | BSSSS02 | 435 | CS | 31/03/2013 | 50.54841107 | 0.8990053 | 50.54802358 | 0.8976432 | 42 | 0:10 | | BSSS 2013 | BSSSS110 | 396 | CS | 30/03/2013 | 50.63881361 | 1.1050683 | 50.63973866 | 1.1055787 | 15 | 0:10 | | BSSS 2013 | BSSSS111 | 405 | CS | 31/03/2013 | 50.65426496 | 1.0992049 | 50.65351772 | 1.0979509 | 49 | 0:12 | | BSSS 2013 | BSSSS117 | 399 | CS | 30/03/2013 | 50.65003512 | 1.1221253 | 50.65099795 | 1.1220708 | 31 | 0:10 | | BSSS 2013 | BSSSS12 | 295 | CS | 29/03/2013 | 50.55400603 | 0.92738707 | 50.55379689 | 0.92596777 | 40 | 0:11 | | BSSS 2013 | BSSSS120 | 401 | CS | 30/03/2013 | 50.65609843 | 1.1238948 | 50.66241676 | 1.1378946 | 39 | 0:04 | | BSSS 2013 | BSSSS24 | 318 | CS | 29/03/2013 | 50.56531506 | 0.9427498 | 50.56502721 | 0.9404657 | 36 | 0:10 | | BSSS 2013 | BSSSS25 | 350 | CS | 29/03/2013 | 50.56420646 | 0.9498593 | 50.57943904 | 0.9336254 | 36 | 0:11 | | BSSS 2013 | BSSSS33 | 298 | CS | 29/03/2013 | 50.55245465 | 0.9595279 | 50.55256621 | 0.9601758 | 39 | 0:04 | | BSSS 2013 | BSSSS36 | 356 | CS | 29/03/2013 | 50.59804296 | 0.9416625 | 50.59757741 | 0.9405427 | 39 | 0:11 | | BSSS 2013 | BSSSS39 | 321 | CS | 29/03/2013 | 50.57682488 | 0.9599582 | 50.57631919 | 0.9569004 | 35 | 0:14 | | BSSS 2013 | BSSSS39 | 369 | CS | 30/03/2013 | 50.57889034 | 0.9448325 | 50.57686723 | 0.9571093 | 31 | 0:11 | | BSSS 2013 | BSSSS40 | 358 | CS | 29/03/2013 | 50.59147862 | 0.9507932 | 50.59094965 | 0.9496864 | 47 | 0:10 | | BSSS 2013 | BSSSS44 | 313 | CS | 29/03/2013 | 50.56959585 | 0.9714105 | 50.57015297 | 0.9691091 | 36 | 0:12 | | BSSS 2013 | BSSSS50 | 301 | CS | 29/03/2013 | 50.55781194 | 0.9867595 | 50.55813842 | 0.9880488 | 39 | 0:12 | | BSSS 2013 | BSSSS55 | 362 | CS | 30/03/2013 | 50.59753323 | 0.9790511 | 50.59706187 | 0.9779519 | 43 | 0:11 | | BSSS 2013 | BSSSS58 | 309 | CS | 29/03/2013 | 50.57450696 | 0.9906418 | 50.57527139 | 0.9926581 | 35 | 0:11 | | BSSS 2013 | BSSSS69 | 365 | CS | 30/03/2013 | 50.60291632 | 1.0052955 | 50.60230781 | 1.00421 | 43 | 0:10 | | BSSS 2013 | BSSSS71 | 306 | CS | 29/03/2013 | 50.57967085 | 1.0152256 | 50.58035801 | 1.0172378 | 33 | 0:10 | | BSSS 2013 | BSSSS72 | 331 | CS | 29/03/2013 | 50.59615054 | 1.01268442 | 50.59626793 | 1.01469497 | 27 | 0:11 | | BSSS 2013 | BSSSS80 | 385 | CS | 30/03/2013 | 50.59141904 | 1.03731503 | 50.59226166 | 1.037987 | 25 | 0:10 | | BSSS 2013 | BSSSS84 | 378 | CS | 30/03/2013 | 50.61687112 | 1.0366652 | 50.61664547 | 1.0354504 | 35 | 0:10 | | BSSS 2013 | BSSSS85 | 387 | CS | 30/03/2013 | 50.59462808 | 1.0511769 | 50.59537538 | 1.0520726 | 29 | 0:10 | | BSSS 2013 | BSSSS91 | 391 | CS | 30/03/2013 | 50.61252571 | 1.057203 | 50.61317279 | 1.0583247 | 21 | 0:11 | | BSSS 2013 | BSSSS92 | 376 | CS | 30/03/2013 | 50.62830372 | 1.0521772 | 50.62776371 | 1.0509869 | 43 | 0:10 | | BSSS 2013 | BSSSS98 | 413 | CS | 31/03/2013 | 50.62575854 | 1.07463501 | 50.62500143 | 1.0749661 | 23 | 0:11 | | BSSS 2013 | BSSSS99 | 374 | CS | 30/03/2013 | 50.63923262 | 1.0661786 | 50.63944146 | 1.0674926 | 51 | 0:10 | JNCC/Cefas Partnership Report Series. *Wight Barfleur Reef and Bassurelle Sandbank* – *SAC Management Survey*, **No. 25**. Whomersley, P. September 2019. ISSN 2051-6711