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Summary 

 
This report describes the results from a semi-automated approach to the mapping of 
bedrock outcropping at the seabed, applied to Charting Progress 2 (CP2) regions 5 (Irish 
Sea), 6 (Minches and Western Scotland) and 7 (Scottish Continental Shelf). It represents the 
third phase of this work, following development and initial application of the approach in the 
Eastern Channel (CP2 region 3) and Western Channel and Celtic Sea (CP2 region 4) 
(Diesing et al 2015), Southern North Sea and Northern North Sea (Downie et al 2016). 
 
The method consisted of two elements, namely: 1) the automated spatial prediction of the 
presence and absence of rock at the seabed using a random forest ensemble model, and; 2) 
manual editing of the model outputs based on ancillary geological data and expert 
knowledge. 
 
The random forest prediction yielded satisfying results with an overall accuracy of 79% and a 
kappa of 0.49 based on a test set of samples not involved in model building. 
 
The combined approach represented a significant update to previous mapping of rock at the 
surface and rock with thin sediment in these regions. The model was highly successful in 
predicting rock at outcrop around the Outer Hebrides. Predictions in deeper water areas of 
the outer continental shelf and coastal regions were reviewed and edited using expert 
judgement, based on more localised, higher resolution data sources. 
 
The confidence in the developed rock layer was also assessed according to the method first 
used by Diesing et al (2015), based on the type (quality) of bathymetric data, probability of 
rock presence based on the random forest ensemble and agreement between predictions 
and observations in a spatially explicit way. 
 
The final output gives a significantly improved representation of the presence of bedrock at 
the seabed in CP2 regions 5, 6 and 7, and, in combination with the outputs of Diesing et al 
(2015) and Downie et al (2016), gives a complete representation for the UK continental 
shelf. 
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1 Background 
 
In preparation for the first stage of the Marine Conservation Zones (MCZ) project, the 
Department for Environment, Food and Rural Affairs (Defra) commissioned contract MB0103 
to produce a UK-wide data layer showing areas of rock and hard substrate at or near the 
seabed surface (Gafeira et al 2010). The British Geological Survey (BGS) carried out this 
work as a subcontractor of ABPmer. The outputs were: 
 

1. Rock and hard substrate polygon layer. 
2. Rock and cobbles point layer. 
3. Confidence layer. 
4. Layer showing areas in which multibeam bathymetry data has been collected. 

 
In 2011, BGS updated the polygon dataset and named it DigHardSubstrate250, which is 
provided alongside version 3 of DigSBS250. 
 
The Joint Nature Conservation Committee (JNCC) has a responsibility for reporting on the 
status of the UK’s reefs, which is a habitat defined under Annex I of the Habitats Directive4. 
Reefs are made up of three sub-types: bedrock, stony and biogenic. DigHardSubstrate250 is 
a useful product for JNCC in that it indicates the potential location and extent of bedrock 
reef. The layer would benefit from being updated as new data becomes available and 
methods for spatial prediction are developed. 
 
In 2015, JNCC partially funded BGS and Cefas to carry out a semi-automated mapping of 
rock at the seabed surface in Charting Progress 2 (CP2) regions 3 and 4 (adjusted for the 
new EEZ boundary). The aim was to demonstrate a method that maximises the benefits of 
both automated mapping approaches and in-depth geological knowledge which could 
subsequently be applied to other sea areas around the UK. The methods and results can be 
found in Diesing et al (2015). In 2016 the work was extended to include CP2 region 2 and an 
extended region 1 (Downie et al 2016). Outputs from phases one and two are illustrated in 
Figure 1. 

                                                
4 Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild 
fauna and flora. Official Journal of the European Communities No L 206/7. 
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Figure 1. Final rock prediction outputs from phase 1 (Diesing et al 2015) and phase 2 (Downie et al 
2016). The numbers indicate the CP2 regions. 
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2 Aims and Objectives 
 

2.1 Project Aims 
 
This report describes the third phase of this work, where the aim was to extend the coverage 
of the mapping completed by Diesing et al (2015) and Downie et al (2016) to produce a 
standard interpretation of rock distribution for Charting Progress 2 (CP2) regions 5, 6 and 7 
(Irish Sea, Minches and Western Scotland and Scottish Continental Shelf).  
 

2.2 Objectives 
 

1. Develop a vector-based geospatial data product showing the potential extent of rock 
at, or near, the sea floor for subtidal areas of regions 5-7 shown in Figure 2 at a 
spatial scale equivalent to 1:250,000. 
 

2. Identify sub-types as follows: rock at the surface, rock with thin sediment (up to 
0.5m), according to the following definitions: 
 

a. Rock at the surface: Rock present at outcrop. This suggests a habitat 
dominated by exposed bedrock. Whilst it is unlikely that large areas of 
exposed rock will exist with zero sediment present, this classification should 
capture areas of negligible or highly mobile, patchy sediments where the 
veneer is minimal. 

b. Rock with thin sediment: These are essentially subcrops of bedrock, i.e. 
areas where bedrock rises to the seabed surface, but remains largely covered 
by a thin veneer of sediment. This will be derived by subtracting areas 
predicted as ‘rock at the surface’ from previously mapped rock areas 
(DigHardSubstrate250). 

 
3. Keep a record of manual edits made to allow for efficient updates in future. 

 
4. Carry out a 3-step confidence assessment for each polygon and include scores in the 

output data product. 
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Figure 2. Bathymetry and CP2 regional sea boundaries. This study addresses regions 5, 6 and 7. 
Note that region 7 is adjusted to remove the area already included in the Downie et al (2016) study. 
General bathymetry from EMODnet Digital Terrain Model for European Seas (www.emodnet-
bathymetry.eu).  

http://www.emodnet-bathymetry.eu/
http://www.emodnet-bathymetry.eu/
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3 Materials and Methods 
 

3.1 Study Site 
 
The study site comprises CP2 regions 5 (Irish Sea), 6 (Minches and Western Scotland) and 
most of 7 (Scottish Continental Shelf), excluding the part covered by phase 2 (Figure 2).  
 

3.2 Data 
 
3.2.1 Substrate observations 
 
The input dataset contained 21,787 substrate observations within the study area (Figure 3). 
These were obtained from the Defra marine vector dataset (JNCC 2011). These data have 
been successfully used in previous studies involving the mapping of rocky substrates 
(Stephens et al 2014; Diesing et al 2015; Downie et al 2016). Of these data, 15,120 (69.4%) 
were recorded as indicating the unambiguous absence of rock. 5,525 (25.4%) were recorded 
as indicating the unambiguous presence of rock, i.e. rock and no other substrate type was 
recorded. In 889 (4.1%) cases rock occurred together with other substrate types. No 
information on substrate type was recorded in 253 (1.2%) cases. For further analysis, ‘no 
data’ and ambiguous records were removed. This decision was based on previous 
experience which indicated that excluding ambiguous samples would give the most accurate 
predictions (Diesing et al 2015). This meant that 20,645 observations were retained for 
further analysis (Figure 3). 
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Figure 3. Presence and absence of rock extracted from Defra Marine Vector data. Note that 
inconclusive cases (i.e. those observations that included both rock and sediment) were ignored. 
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3.2.2 Predictor features 
 
In order to predict rock presence at unobserved locations, the substrate observations had to 
be related to auxiliary variables (referred to as features) that have continuous coverage 
across the study area. These predictor features are comprised of a bathymetry digital 
elevation model (DEM), topographic characteristics derived from the bathymetry (such as 
slope and roughness), outputs from hydrodynamic modelling and polygon layers indicating 
properties of the seabed. Detailed descriptions of all features are given in Table 1. 
 
Table 1. Predictor features utilised in this study. 

Feature Description Unit Reference 

Bathymetry Bathymetry (water depth) projected to UTM 30 North 
at a resolution of 25m. 

m (Astrium 
Oceanwise 
2011) 
 

Roughness Derived from bathymetry; the difference between 
minimum and maximum of cell and its 8 neighbours. 

m (Wilson et al 
2007)  

Slope Derived from bathymetry, the maximum slope 
gradient. 

degree (Wilson et al 
2007) 

Aspect Derived from bathymetry, direction of steepest slope, 
expressed as Eastness (sine of aspect) and Northness 
(cosine of aspect). 
 

  (Wilson et al 
2007) 

Curvature Derived from bathymetry, rate of change of slope. 
Profile curvature is measured parallel to maximum 
slope; plan curvature is measured perpendicular to 
slope. 
 

 (Wilson et al 
2007) 

Bathymetric 
Position 
Index (BPI) 

Derived from bathymetry, vertical position of cell 
relative to neighbourhood (identifies topographic peaks 
and troughs). Radii of 3, 5, 10, 20, 30, 40 and 50 
pixels were used. 
 

m (Lundblad et al 
2006) 

BGS Hard 
Substrate 

DigHardSubstrate250 data product. Delineates areas 
of rock at outcrop, or overlain by thin (<0.5m) sediment 
based on bathymetric data, the BGS legacy sample 
database and expert interpretation. 
 

 (Gafeira et al 
2010) 

Indicators of 
Mobile 
Sediments 

Seabed morphologies characteristic of mobile 
sediments were delineated using hillshade, slope and 
rugosity data. 
 

 (Westhead et al 
2014) 

Quaternary 
Thickness 

Data layer detailing thickness of Quaternary cover on 
the UK Continental Shelf categorised into three 
classes: 0-5m; 5-50m; >50m. 
 

 (Westhead et al 
2014) 

Relative 
Resistance 

Representation of the relative resistivity of bedrock on 
the UK Continental Shelf based on age and lithology. 
Derived utilising BGS DigRock2505 following the 
method described by Clayton and Shamoon, (1998). 
 

 (Clayton & 
Shamoon 1998) 

Distance to 
Coast 

Euclidean distance to nearest coastline. m  

                                                
5 http://www.bgs.ac.uk/downloads/start.cfm?id=2892  

http://www.bgs.ac.uk/downloads/start.cfm?id=2892
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Current 
Velocity 

Mean M2 tidal current velocity averaged across water 
column calculated using a Telemac model with an 
unstructured grid of variable resolution. 
 

ms-1 Cefas in-house 
product. Not yet 
published. 

Peak Wave 
Orbital 
Velocity  

Peak wave orbital velocity at seabed. Surface wave 
parameters (wave height and period) were output from 
a POLCOM model for the years 2000 to 2008. The 
original resolution of the data is 12km. Bottom orbital 
velocities were calculated from these and the 1 arcsec 
Defra DEM. Maximum, mean and standard deviation 
of peak orbital velocity were calculated. 
 

ms-1 (Holt & James 
2001; Aldridge 
et al 2015; 
Bricheno et al 
2015) 

 

3.3 Methods 
 
3.3.1 Pre-processing of observations 
 
The first step was to extract the values of each predictor feature at the location of each 
substrate observation. Not all predictor features had the same spatial extent or resolution. 
This meant that for some predictor features there were gaps, mainly around the coast or far 
offshore, resulting in some observation locations having no data values (NA) for some or all 
features. Any observations that contained NA values for at least one predictor feature were 
discarded. Of the 20,645 observations (see Section 3.2.1: ‘Substrate observations’) 18,061 
intersected all predictor layers and were retained in the dataset. Of the 18,061 observations, 
5,330 (29.5%) observations indicated ‘presence’ (P) of bedrock and 12,731 (70.5%) were 
‘absence’ (A). 
 
The quality and reliability of the bathymetry data is not consistent across the study area. The 
dataset is a collation of available data, mostly collected since the 1980s using varying 
techniques to acquire and process the data. This means that, although the grid resolution is 
constant at 25m across the study area, the underlying data are of varying quality and this will 
also affect the topographic variables derived from the bathymetry. Table 2 shows the 
number of observations in each category of bathymetry quality.  
 
Table 2. Observations by bathymetry quality class. Ordered by reliability, increasing from left to right. 

Type Chart 
Singlebeam 
echosounder 

Multibeam 
echosounder 

Total 

Number of 
observations 

5,892 4,467 7,702 18,061 

Percent of 
observations 

33 % 25 % 43 %  

 
 
To test the model predictions, the data were split randomly into training (70% of 
observations) and test datasets (30%). The ratio of presence to absence records were kept 
equal in both the training and test datasets (Table 3). 
 
Table 3. Training and test datasets. 

 Training Test Total 

P 3,731 1,599 5,330 (29.5 %) 
A 8,912 3,819 12,731 (70.5 %) 
Total 12,643 5,418 18,061 (100 %) 
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3.3.2 Model training 
 
Probability of rock was modelled using a random forest (RF) model (Breiman 2001). RF has 
become one of the most widely used and successful statistical learning models for 
classification and regression, showing good performance in a large number of domains (Pal 
2005; Prasad et al 2006; Cutler et al 2007; Chan & Paelinckx 2008; Chapman et al 2010; 
Che Hasan et al 2012, 2014; Huang et al 2012, 2014; Oliveira et al 2012; Lucieer et al 2013; 
Stephens & Diesing 2014, 2015; Diesing et al 2014). RF is an ensemble technique, which 
aggregates the results of many classification trees, each built using a random subset of the 
training data and a trialling random subset of predictor variables at each node split. The 
result is a ‘forest’ of tree models, with the number of splits determined either by achieving 
pure end nodes (default) or a number of end nodes determined by the user. RF is a non-
parametric technique, i.e. no assumptions regarding the shape of distributions of the 
response or predictor variables are made (Cutler et al 2007). It can handle complex, non-
linear relationships between predictor and response variables. As well as using the test set 
to validate the model, RF implicitly generates a cross-validated measure of model accuracy. 
RF also provides a relative estimate of predictor feature importance. This is a measure of the 
variability explained by each feature, averaged across every tree in the RF. 
 
The model was built in the free statistical computing software R (R Development Core Team 
2011) using the ‘randomForest’ package (Liaw & Wiener 2002). In this case, the 'forest' 
included 2,500 classification trees. The number of observations in each random subset was 
set at 300 presences and absences each. Other settings were kept at their defaults. 
Predictions were made for the probability of encountering rock at each raster cell. Probability 
predictions by RF are derived based on the fraction of votes given for a specified class by 
the ensemble of trees. 
 
Prior to training the model, a feature selection step was implemented to test the statistical 
significance of the predictor features for the presence/absence prediction of rock. The Boruta 
algorithm (Kursa & Rudnicki 2010) is a feature selection wrapper (Guyon & Elisseeff 2003) 
based on the RF model. The algorithm uses the feature importance score generated by RF 
to test each of the predictor features against the effect of random noise. Only features with 
Boruta scores significantly higher than random were retained for use in the final model. A 
further feature selection step removed correlated variables from the set of predictors used in 
the final model. Out of any two variables with a correlation coefficient above 0.7, only the 
variable with the higher Boruta score was retained in the final set of predictors. 
 
To evaluate the predictive performance of the model, four validation statistics were 
calculated, including the Area Under the Curve (AUC), Sensitivity6, Specificity7 and Kappa 
(Cohen 1960) statistics. The AUC statistic is a threshold-independent goodness measure 
between 0 and 1, where a value of 0.5 signifies a model that is no better than random, whilst 
a value of 1 corresponds to perfect discrimination. As a general guideline, AUC values over 
0.9 indicate excellent, 0.8 - 0.9 very good, 0.7 - 0.8 satisfactory and below 0.7 poor 
discriminative ability (Hosmer & Lemeshow 2000). The AUC statistic is, however, sensitive 
to the prevalence of rock presence observations in the test data (Lobo et al 2008) and it is 
good practice to combine it with other validation measures. Sensitivity, Specificity and Kappa 
are all calculated from dichotomised, presence/absence predictions. The threshold used to 
convert probabilities to presence and absence, and consequently to calculate Sensitivity, 
Specificity and Kappa, affects the overall accuracy and the likelihood of false negatives and 
false positives. The objectives of mapping will define which threshold is appropriate. Where 
the cost associated with false negatives (i.e. not predicting rock where it occurs) is high, a 

                                                
6 Sensitivity: the amount of true presence predictions as a proportion of the total number of presence 
observations. 
7 Specificity: the amount of true absence predictions as a proportion of the total number of absence observations. 
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threshold which places more weight on sensitivity would be more appropriate. Conversely, 
where false positives (i.e. predicting rock in places where it does not occur) have a high cost, 
the threshold should place more weight on specificity. Using equal sensitivity and specificity, 
i.e. the threshold where positive observations are just as likely to be wrong as negative 
observations, gives the most unbiased prediction, whilst optimising the sum of specificity and 
sensitivity gives the highest overall accuracy (Manel et al 2001). 
 
The output probability prediction was initially split into five classes to encompass the range 
of probabilities. Class boundaries were set as follows: 
 

1) High confidence in predicted absence of rock: threshold was set to yield 0.99 
sensitivity; almost all rock presence observations in the test dataset occur above this 
cut-off. 

2) Absences and presences with lower confidence: threshold was set to maximise the 
sum of sensitivity and specificity, with absences below and presences above 
threshold. 

3) Maintaining the prevalence of rock: threshold was set to maintain the fraction of rock 
presences observed in training data in the predictions across raster cells. 

4) High confidence in predicted presence of rock: threshold was set to yield 0.99 
specificity; almost all rock absences are below this cut-off. 

 
3.3.3 Knowledge-based enhancements 
 
The output of the RF predictions was reviewed manually by a mapping geologist, in order to 
assess its validity in terms of the established geology of the area and additional data not 
incorporated in the model. The first stage of the process involved conversion of the modelled 
output into a readily editable ESRI shape file. This procedure was first defined in Diesing et 
al (2015), and in accordance with the project requirement. The steps detailed below were 
followed: 
 

• Conversion of the RF output to 20m raster in order to perform generalisation. 
• Each cell was replaced with a majority of eight neighbouring cells. This 

essentially reduces smaller areas and increases a large (majority) area. 
• Boundary cleaning; smoothing of the boundaries between zones by buffering and 

debuffering. This results in smaller areas being engulfed into larger ones, 
according to boundary length. Large areas have a higher priority to expand into 
smaller ones. 

• Conversion of raster back to polygons. 
• Elimination of polygons smaller than 0.015625km2 (based on a minimum 

mappable unit feature with a diameter of 125m for 1:250K mapping). 
• Aggregate polygons with less than 125m distance between features, then 

removal of holes. 
 

Following the generalisation process, the modelled output was reviewed against available 
multibeam bathymetry data, published mapping and sample data, and polygons were 
deleted or re-attributed in accordance with the geological understanding of the region. Based 
on these data additional polygons were also added where appropriate. In addition, published 
seabed substrate maps previously published by BGS were incorporated where appropriate. 
 
A number of small, irregular polygons were removed on the basis that they represented 
artefacts from the bathymetric data. 
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3.3.4 Confidence assessment 
 
The confidence assessment method follows that used in Diesing et al (2015), which is based 
on the three-step confidence assessment framework of Lillis (2016). The assessment was 
performed on a per-polygon basis due to the possible heterogeneity of inputs into the model 
across the output area. The method requires the assessor to follow a flow diagram and 
score the polygon appropriately at each stage (Figure 4).  
 
 

 
 

Figure 4. Three-step confidence decision tree; the assessor starts at the top and follows the arrows. 
Stars/points are awarded according to the answers given and the final score is the sum of the 
stars/points.  

 
From this method, a maximum qualitative score of 4 can be achieved by a polygon (Table 4). 
The final score should not be taken as a quantitative probability of the habitat’s likelihood in 
extent or presence, the measurement is a qualitative score based on the data inputs and 
level of agreement between the predictive models. 
 
Application for polygons identified as rock at outcrop 
The remote sensing coverage confidence was assessed based on the type of acoustic data 
that were available: A score of two was given where multibeam echosounder data were 
present, a score of one for singlebeam echosounder data and a score of zero for all other 
data types. Beyond the multibeam data that were built into the compiled bathymetry grid 
used in the automated process, additional data from the Maritime and Coastguard Agency’s 
Civil Hydrography Programme and Defra’s Marine Conservation Zone mapping programme 
were also included as part of the knowledge-based review. As such, a value of two was 
scored for these areas. 
 
The distinctness of class boundaries criterion was scored in two stages: 
 

1. Initially the agreement of the RF ensemble outputs was used: A score of one was 
attained where the value was above an agreement threshold set to yield a sensitivity 
of 0.99 (indicating high probability of presence of rock) or where the value was below 
an agreement threshold set to yield a specificity of 0.99 (indicating high probability of 
absence of rock). Intermediate values were given a score of zero. 
 

2. Following the knowledge-based enhancements, where expert judgement led to 
modification or addition of a polygon, the initial score was overwritten with a score of 
one. This indicates higher confidence associated with validation of the presence of an 
area of rock outcrop by more detailed study or assessment by a geologist. 

Remote sensing 

coverage is good

Remote sensing 

coverage is moderate 
or poor

No non-satellite 

remote sensing

Polygon was 

sampled

Polygon was not 

sampled

Predicted classes are 

distinct: model 
agreement is high

Predicted classes are 

distinct: model 
agreement is low
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In the case of the amount of sampling criterion, a score of one was given if a polygon was 
sampled and the majority of samples agreed with the prediction. Both the sample database 
used in the automated process, as well as the BGS core database that was used as part of 
the knowledge-based review were included. A score of zero was attained if a polygon was 
not sampled or the majority of samples within the polygon disagree with the prediction. 
 
Application for polygons identified as rock with thin sediment 
 
The BGS DigHardSubstrate250 dataset includes an assessment of confidence based on 
data density. However, for production of the shapefile in this project a standard value of zero 
was applied for Remote Sensing Coverage as limited bathymetry data were available to 
produce this shapefile. A value of one for the Agreement confidence criteria was also applied 
to reflect the influence of human judgement.  
 
Table 4. All possible combinations of scores under the three-step scheme. Polygons with equal 
scores are therefore assumed to have roughly similar levels of confidence, regardless of the route 
through the decision tree. 

 
Score  Remote sensing 

coverage 
Distinctness of 
class boundaries  

Amount of 
sampling 

4    

3    
   
   

2    
   
   
   

1    
   
   

0    
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4 Results 
 

4.1 Random forest predictions 
 
The feature selection process indicated that all potential predictor variables contributed 
significantly to the presence/absence predictions except the Mobile Sediments layer. Mobile 
sediments performed less well than the random variables created by the Boruta and was 
removed at this stage of the variable selection. Eleven variables were deemed important by 
the Boruta. Subsequent removal of correlated variables reduced the number of variables to 
nine. The final selected variables were: Hard Substrate; Distance to coastline; BPI10; 
Bathymetry; Mean Peak Orbital Velocity; Current Velocity; Roughness; Relative Resistance 
and Quaternary Thickness. Table 5 gives the permutation importance scores for all tried 
variables and indicates the variables that were selected for the model based on the removal 
of correlated features. 
 
Table 5. Permutation importance scores for potential predictor variables derived from the Boruta 
algorithm. 

Predictor variable 
Boruta 

permutation 
importance 

Predictor 
Importance 

Selected 
Predictor 
variables 

Hard Substrate 78.51263 
Important 

Selected 

Distance to Coastline 32.78059 
Important 

Selected 

BPI10 31.7228 
Important 

Selected 

BPI20 30.68438 
Tentative 

 

Bathymetry (m) 30.49339 
Important 

Selected 

Curvature - Planar 30.47821 
Important 

 

BPI30 30.472 
Tentative 

 

BPI3 29.69261 
Tentative 

 

BPI5 29.39213 
Tentative 

 

Peak Orbital Velocity - mean 29.29792 
Important 

Selected 

Curvature 28.88138 
Tentative 

 

Current Velocity 28.66958 
Important 

Selected 

Peak Orbital Velocity – Standard 
deviation 28.24919 

Tentative 
 

Peak Orbital Velocity - Max 28.20342 
Tentative 

 

Curvature - Profile 26.90288 
Tentative 

 

BPI50 24.95622 
Tentative 

 

Roughness 24.14258 
Important 

Selected 

BPI40 23.3583 
Tentative 

 

Slope 23.02846 
Tentative 

 

Relative Resistance 19.24999 
Important 

Selected 

Aspect - Northness 13.95219 
Important 

 

Quaternary Thickness 13.00908 
Important 

Selected 

Aspect - Eastness 6.065795 
Tentative 

 

Mobile Sediments 1.571773 
Unimportant 

Removed 
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The threshold-independent AUC score for the model was 0.83, which indicates a well 
performing model. Accuracy statistics calculated using the four selected thresholds are given 
in Table 6. In the final output map, high sensitivity and high specificity thresholds of 0.99 
were used to indicate high confidence in absences and presences of rock.  
 
Setting a high sensitivity of 0.99 yielded a probability threshold of 0.13 (Table 6 and Figure 
5a). Almost all rock presences in the test dataset occur above this cut-off (Figure 5b). 
Likewise, setting specificity at 0.99 yielded a probability threshold of 0.86 (Table 6 and 
Figure 5a) and almost all rock absences are found below this cut-off (Figure 5b). The overall 
cut-off between rock presence/absence was set at the threshold which ensured that 
prevalence of rock in the predicted output remained the same as in the input data. The 
selected threshold avoids over-prediction, assuming the model input data is an unbiased 
estimate of the prevalence of rock in the area. It was also found to give the highest overall 
accuracy, at 79% of all observations in the test dataset correctly classified, as well as the 
highest Kappa value at 0.49. 
 
Table 6. Accuracy statistics for each threshold used to convert probability of presence to 
presence/absence classes. The threshold used in the final map is highlighted. PCC = Percent 
Correctly Classified. 

Threshold Method Threshold PCC Sensitivity Specificity Kappa 

Maximising confidence in 
predicted absence of rock, i.e. 

High Sensitivity 
0.13 44% 0.99 0.20 0.13 

Maximising overall accuracy, 
i.e. Maximum of Sensitivity + 

Specificity 
0.46 75% 0.79 0.73 0.46 

Maintaining the prevalence of 
rock, i.e. Predicted 

Prevalence= Observed 
Prevalence 

0.61 79% 0.64 0.85 0.49 

Maximising confidence in 
predicted presence of rock, i.e.  

High Specificity 
0.86 75% 0.16 0.99 0.20 
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Figure 5. a) Selected thresholds for converting probability of presence to presence and absence 
plotted against sensitivity and specificity and b) the frequency of observed presences and absences. 

 
The resulting spatial predictions of rock presence and absence with high and low confidence 
are shown in Figure 6. 
 

High sensitivity 

Sensitivity 

Specificity 

Sum of sensitivity and specificity 

Maximise the sum of sensitivity and specificity 

Predicted prevalence matches observed prevalence 

High specificity 

a) b) 

Presence 

Absence 
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Figure 6. Resulting predictions of rock presence/absence and associated confidence. The boundary 
between ‘Absence – High’ and ‘Absence – Low’ confidence occurs at a probability value of 0.13 (high 
sensitivity). The boundary between ‘Absence – Low’ and ‘Presence – Low’ occurs at a probability 
value of 0.61 (maintaining prevalence). The boundary between ‘Presence – High’ and ‘Presence – 
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Low’ confidence occurs at a probability value of 0.86 (high specificity). General bathymetry from 
EMODnet Digital Terrain Model for European Seas (www.emodnet-bathymetry.eu). 

 
Figure 7 shows partial dependence plots of the nine selected predictors: Rock outcropping at 
the seabed is more likely at distances to the coast >100km, positive BPI10, shallow water 
depths, increased peak orbital velocities and current velocities (>1.5ms-1), increased seabed 
roughness (>10m), high and low relative resistance of bedrock to erosion, and in areas 
where hard substrate is mapped at or near the seabed. 
 

 
Figure 7. Partial dependence plots showing the response to chosen predictor variables: Distance to 
the Coast, BPI10, Bathymetry (m), Average Peak Orbital Velocity, Current Velocity, Roughness, 
Relative Resistance, Hard Substrate and Quaternary Thickness. 

 

4.2 Knowledge-based enhancements 
 
The rock prediction dataset was reviewed against available multibeam bathymetry and 
sample data, as well as previously published maps (Table 7). This validation process was 
conducted in accordance with the geological understanding of each region. Where available, 
the high-resolution multibeam bathymetry data (2-12m resolution) were particularly useful for 
this exercise. The multibeam data employed (as they account for the largest datasets) were 
acquired by the MCA’s Civil Hydrography Programme (CHP). 
 

 

 

http://www.emodnet-bathymetry.eu/
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Table 7. Published data and mapping used to support expert interpretation. 

Feature Description Reference 

Bathymetry EMODnet – medium resolution 
bathymetry compilation (~150m 
resolution). 
 
High resolution (~2-12m resolution) 
swath bathymetry acquired by 
MCA’s Civil Hydrography 
Programme (CHP). 

EMODnet: www.emodnet-
bathymetry.eu  
 
MCA’s CHP: 
https://www.gov.uk/guidance/
the-civil-hydrography-
programme 
 

BGS Seabed 
Sediments 

DigSBS250 V3; 1:250 000 scale 
seabed sediments mapping for the 
UKCS. 
 

Cooper et al (2010a) 

BGS Seabed 
Sediments 

1:50 000 scale seabed sediments 
mapping for the UKCS8. 

British Geological Survey 

BGS Hard 
Substrate 

DigHardSubstrate250 data product. 
1:250 000 scale. Delineates areas of 
rock at outcrop, or overlain by thin 
(<0.5m) sediment based on 
bathymetric data, the BGS legacy 
sample database and expert 
interpretation. 
 

Gafeira et al (2010); Cooper 
et al (2010b) 

BGS Indicators of 
Mobile 
Sediments 

Seabed morphologies characteristic 
of mobile sediments were delineated 
using hillshade, slope and rugosity 
data. 1:250 000 scale. 
 

Westhead et al (2014) 

BGS Quaternary 
Thickness 

Data layer detailing thickness of 
Quaternary cover on the UK 
Continental Shelf categorised into 
three classes: 0-5m; 5-50m; >50m. 
 

Westhead et al (2014) 

BGS Quaternary 
Deposits 

1:1M scale mapping of the UKCS, 
compiled digitally from analysis of 
information displayed on BGS 
1:250,000 scale paper maps across 
the UKCS, supplemented by expert 
interpretation. 
 

Holmes et al (1993) 

BGS Bedrock 
Geology 

DiGROCK250 1:250k scale bedrock 
mapping of the UKCS. 
 

Westhead et al (2013) 

OSEA3 Hard 
substrates and 
non-rock hard 
substrates 

Hard substrates and indicators of 
non-rock hard substrates – Multiple 
maps and supporting datasets. 
 

Dove et al (in press) 

OSEA 3 Geology 
and Surficial 
Processes 

Characterization of coastal and 
seabed geology – Multiple maps and 
supporting datasets. 
 

Dove et al (in press) 

                                                
8 Available on www.maremap.ac.uk and the BGS GeoIndex Offshore 
(http://mapapps2.bgs.ac.uk/geoindex_offshore/home.html)  

http://www.emodnet-bathymetry.eu/
http://www.emodnet-bathymetry.eu/
https://www.gov.uk/guidance/the-civil-hydrography-programme
https://www.gov.uk/guidance/the-civil-hydrography-programme
https://www.gov.uk/guidance/the-civil-hydrography-programme
http://www.maremap.ac.uk/
http://mapapps2.bgs.ac.uk/geoindex_offshore/home.html
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ABPmer - 
Seabed 
Geological and 
Geomorphologial 
features 

Compilation of previously mapped 
geological and geomorphological 
features. 

ABPmer (2009) 

 

In this study area, the predicted rock polygons were validated or deleted following the 
integrated review. In addition, polygons were added based on new interpretation of the data, 
as well as from previously published mapping, as detailed in Table 7. The primary reasons 
for deleting polygons were as follows: 
 

• A number of small, irregular polygons were removed on the basis that they 
represented artefacts from the bathymetric data; 

• Elevated features incorrectly predicted as rock are in fact sedimentary bedforms. 
These features include mobile sediment bedforms (e.g. sediment waves and banks) 
and glacial bedforms (e.g. moraines). Although these moraines may be considered a 
hard substrate, they are not included in this assessment due to lack of ground 
truthing data. Where glacial landforms comprise moulded bedrock, these have been 
validated. 

 
As noted in other areas, the automated approach is less effective at discriminating rock 
pavements, relatively flat areas of bedrock present within the coastal zone. Updates to 
mapping in the coastal zones were therefore required, and largely carried out using higher 
resolution multibeam echosounder data. 
 
The model was particularly effective at discriminating areas of rock at the surface and rock 
with thin sediment within the rock platforms around the Outer Hebrides, where the outcrop is 
relatively rugged in character (Figure 8). Within the deep-water areas, located on the outer 
continental shelf and adjacent continental slopes, large areas were incorrectly predicted as 
rock and were subsequently deleted during the knowledge-based review. This was largely 
due to the low resolution of the available bathymetry data and the areas of rock were 
predominantly artefacts within the bathymetry dataset. 
 
As with the previous assessments (Diesing et al 2015; Downie et al 2016), the second 
category, ‘Rock with thin sediment’ was derived by subtracting the ‘Rock at outcrop’ and 
‘Rock with thin sediment’ polygons generated by the prediction (following expert 
assessment) from the BGS DigHardSubstrate250 mapping, and this was combined with the 
re-assessed rock polygons above to derived the final output layer (Figure 9). As there was a 
significant amount of high quality bathymetry available from the CHP MCA surveys within 
this area, it was also possible to modify these polygons and add additional features in some 
areas, in order to improve their accuracy (Figure 10). 
 
In addition to the rock outputs, a ‘changes’ shapefile was also generated in order to 
document the modifications to the modelled output. This will allow the same expert-driven 
modifications to be quickly applied to future reruns of the model. 
 

4.3 Confidence assessment 
 
The confidence assessment recorded results between zero and four (Figure 11). Polygons 
scoring zero values are largely in coastal areas and are therefore in areas not covered by 
remotely sensed data, with lower sample frequencies. Zero values were recorded for 
approximately 14% of the polygons. 
 
Polygons based on model predictions scored between zero and four depending on sample 
and multibeam bathymetry coverage. Fewer than 1% of the polygons received a confidence 
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score of four, with 45% achieving the intermediate values of two or three and the remaining 
40% recording values of one. 
 
This is partially accounted for by the large number of polygons derived from the BGS 
DigHardSubstrate250 layer and classified as ‘rock with thin sediment’, which received lower 
confidence scores as a value of zero was assigned to the remote sensing data that 
underpinned the original analysis (Gafeira et al 2010). 
 

4.4 Project outputs 
 
The outputs of this work are available under the Open Government Licence and are 
available to download in Shapefile format as an annex to this report: 
 
C20171116_RockMapping_IrishSeaWScotland (ZIP file, 43.1mb). 
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Figure 8. Example of the accurate prediction of ‘rock at the surface’ and ‘rock with thin sediment’ for 
an area west of the Outer Hebrides. General bathymetry from EMODnet Digital Terrain Model for 
European Seas (www.emodnet-bathymetry.eu). 

http://www.emodnet-bathymetry.eu/
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Figure 9. Distribution of rock at the seabed surface and rock covered with thin sediment (<0.5m) 
within the study area. General bathymetry from EMODnet Digital Terrain Model for European Seas 
(www.emodnet-bathymetry.eu). 

 

http://www.emodnet-bathymetry.eu/
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Figure 10. Example where additional ‘Rock at the surface’ features were added based on BGS sea-
bed sediment 1:50 000 mapping using CHP MCA multibeam echosounder data. Bathymetry from 
Marine and Coastguard Agency (MCA) multibeam echosounder data acquired as part of the MCA 
Civil Hydrography Programme © Crown Copyright 
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Figure 11. Confidence assessment of the updated map output. Values between zero and four where 
four indicates maximum confidence. 
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5 Discussion 
 
This study has derived a new data layer of rock in 5, 6 and 7 (Irish Sea, Minches and 
Western Scotland and Scottish Continental Shelf), representing the third phase of roll-out of 
the method developed by Diesing et al (2015). The derived data layer has a nominal scale of 
1:250,000 and as such gives a sufficiently detailed indication of the distribution of rock at or 
near the seabed at a regional scale. Whilst the data layer was derived by using the best-
available data sources and methods, it should be noted that the derived results are unlikely 
to be sufficient for detailed monitoring of change in reef extent, due to the inherent and 
unavoidable inaccuracies in data and methods. 
 
We have demonstrated how automated approaches to seabed mapping and in-depth 
geological knowledge can be combined to derive an improved representation of bedrock at 
and near the sea bed, this means that the applied method could be described as semi-
automated.  
 
With incomplete knowledge and data, the best option to derive meaningful predictions is a 
combined approach as demonstrated in this report. It is noteworthy that we have made an 
effort to include as much knowledge as possible at the automated prediction stage by 
including predictor variables that are known or expected to influence the presence of rock at 
the seabed. Likewise, it should be noted that tools like variable importance plots are useful in 
understanding which variables are suitable predictors. In this area BGS hard substrate and 
Distance to shore were among the three most important features, along with terrain features 
(e.g. BPI). This differs from previous regions, indicating heterogeneity between study areas. 
 
The insights gained from the variable importance plot and the manual reclassification of 
seemingly misclassified objects could be fed back to the automated classification stage and 
it could be expected that such an iterative process will improve automated prediction results 
and reduce the amount of expert intervention required. Future work could therefore focus on 
improving existing features and finding new one that lead to improved predictions. Such an 
iterative approach could be repeated until no further improvements in classification accuracy 
are achieved. Additionally, new or improved data become available over time (e.g. 
improvements to the Defra DEM reflecting new hydrographic survey data). It would therefore 
be desirable to regularly update the predictions in order to reflect improvements in data, 
methods and knowledge. The general method that was set up as part of the project lends 
itself to such a task as processes of automated prediction and knowledge-based 
enhancements have been formalised. 
 
The shapefiles produced by this approach represent a significant update to our previous 
understanding of the distribution of rock at, or near the seabed CP2 regions 5, 6 and 7 (Irish 
Sea, Minches and Western Scotland and Scottish Continental Shelf). Combined with the two 
previous study areas (Diesing et al 2015; Downie et al 2016), mapping produced using this 
semi-automated approach now covers the entire UKCS (Figure 12). This mapping can be 
used to inform a significant update to the BGS map series and also contribute to updates on 
a regional scale, for example, EUSeaMap and EMODnet outputs. 
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Figure 12. The combined outputs of this study, Diesing et al (2015) and Downie et al (2016). 
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