Soil Moisture data use for environmental monitoring in Romania

Anişoara IRIMESCU National Meteorological Administration Remote Sensing & GIS Laboratory

Outline

Introduction

Meteo Romania's contribution the Copernicus Program

Soil Moisture data use for environmental monitoring in Romania

Future work

Introduction

- Romanian Meteorological Service: 1884 2020/ 136 years of existence.
- The Romanian National Meteorological Administration (Meteo Romania) is a legal entity of national, public interest whose main aim is to ensure the meteorological protection of life and property.
- Romania is a founding member of the International Meteorological Organization (IMO), and a signer in 1948 of the Convention for the settlement of the World Meteorological Organization (WMO).

- Co-operating state of the European Centre for Medium-Range Weather Forecasts (ECMWF).
- Member of the Consortium for Small-scale Modeling (COSMO) and of the Regional Cooperation for Limited Area modeling in Central Europe (RC LACE/ALADIN) Consortium.
- Since 2011, Meteo Romania represents Romania to the Copernicus User Forum Committee.
- EUMETSAT full member (2010).
- Actively participates in the implementation of the National Strategy for Sustainable Development

The main activities

Operational activity

- Weather forecasting
 - Nowcasting
 - Short-range forecasting
 - Medium-range forecasting
 - Long-range forecasting
- Observation system
 - Surface observation (SYNOP, agro, climate etc.)
 - Upper-air sounding
 - Doppler radar network
 - Lightning detection network
 - Satellite data
- Telecommunication
- Remote Sensing and GIS

Research activity

- Numerical modelling
 - ALADIN, HRM, LM and MM5
 - RegCM climatological model
- Climate variability and climate change
 - Regional climatic scenarios
 - Trends in the climatic pattern in Romania over 1961-2015 period
 - Climatic predictability
- Physics of the atmosphere and air pollution
- Remote Sensing and GIS

Meteo Romania is supplying a wide range of operational meteorological services for the public and various users in agriculture, maritime and air navigation, defence, transport, energetics, tourism and environment.

The Remote Sensing & GIS Laboratory (since 1975)

- Operational and Research Activity
- Applications in monitoring of meteorological and hydrological hazard phenomena
- Applications in the environmental impacts studies
- Satellite-based products validation using in-situ measurements
- Satellite data integration in crops growth models etc.
- Research Directions
- Floods
- Droughts:
 - Vegetation monitoring
 - Soil moisture
- Snow cover and ice extend
- Land cover / land use changes etc.

Meteo Romania's contribution the Copernicus Program

Copernicus Program

- Since 2011, Meteo Romania represents Romania at European Commission in the Copernicus User Forum Committee.
- Meteo Romania plays an important role to deliver information which corresponds to user needs within the "Copernicus service component".
- In the framework of the Copernicus Programs, Meteo Romania is engaged in the development of all the Copernicus core services, which are also supported by R&D projects financed by the National Programs, in cooperation with the Romanian Space Agency and other research institutes.
- Projects developed, within the Meteo Romania, according to COPERNICUS program:
 - EC, Copernicus User Uptake Project 275/G/GRO/COPE/17/10042;
 - EEA SnowBall project: the aim was to develop a prototype snow monitoring system that combines daily satellite data from Sentinel-1 and Sentinel-3 with insitu weather station observations and state-of-the-art snowpack and climate modelling;
 - National GEODIM project: the main goal was to create a national Copernicus downstream emergency response service based on satellite data and GIS technology;

Soil Moisture data use for environmental monitoring in Romania

Data

Satellite:

SAR:

- ✓ Sentinel-1, spatial resolution: 1 km, temporal coverage: 2015-present
- MetOp/Ascat, spatial resolution: 12.5 km, temporal coverage: 2007present

Ancillary data:

- In-situ measurements (air temperature, precipitations etc.)
- Agricultural areas based on 2018 Corine Land Cover dataset

Drought processing flowchart

Soil Water Index (SWI) with 12.5 km resolution

Depth:	20 cm
5 cm	40 cm
10 cm	60 cm
15 cm	100 cm

Soil Water Index from 21.06.2019, depth 0-5 cm

Soil Water Index from 21.06.2019, depth 0-40 cm

Soil Water Index from 21.06.2019, depth 0-100 cm

Soil Water Index Anomaly

- 12.5 km resolution, 10 days synthesis, based on SSM observations from MetOp-ASCAT (temporal coverage: 2007-present);

SWI Anomaly =
$$\frac{SWI - \overline{SWI}}{\sigma_{SWI}}$$

Where:

- SWI is the value of Soil Water Index for the decade t of the current year
- *SWI* is the multiannual mean of Soil Water Index (2007-2019)
- σ_{SWI} is the standard deviation of Soil Water Index (2007-2019)

Soil Water Index Anomaly from 12-21.06.2007, depth 0-5 cm

Soil Water Index Anomaly classification

1	≤-2			
Drier that normal	-21.5			
	-1.51			
Near normal	$1 - \pm 1$			
condition	-1 - +1			
	1 - 1.5			
Wetter than normal	1.5 - 2			
	≥ 2			
No data				

Soil Water Index Anomaly from 12-21.06.2007, depth 0-100 cm

SWI Anomaly analysis June 2012 and 2019 (0-5 cm depth)

Case study: Agriculture area in Baragan Plain SWI (0-5 cm)

Mann-Kendall test and the magnitude of the trend with the Sen's method in Baragan Plain (depth 5 cm)

Soil Water Index (SWI) from MetOp/Ascat, depth 0-5 cm, Baragan Plain (2007-2019)

	Synth <mark>esis (10</mark>							Year	<u></u>					
5 cm	da <mark>ys)</mark>	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
March	22.03-01.04	16.0	31.2	15.7	38.3	12.6	15.5	47.3	19.4	60.1	31.6	34.2	45.1	14.8
	02.04-11.04	8.2	29.4	10.6	25.7	30.9	21.0	36.1	38.0	39.1	34.5	31.6	26.5	9.2
April	12.04-21.04	6.1	22.8	8.2	25.0	18.6	18.9	16.6	38.8	26.9	39.2	47.3	19.8	31.3
	22.04-01.05	10.3	29.7	10.5	11.8	20.7	12.6	12.1	28.3	21.5	47.6	28.1	17.0	17.2
	02.05-11.05	6.6	20.2	9.5	27.4	33.2	25.1	21.9	39.9	17.3	50.8	26.8	30.1	19.5
May	12.05-21.05	18.8	28.4	18.7	41.0	24.4	50.5	45.0	47.5	27.7	52.9	38.3	38.1	26.2
	22.05-01.06	19.6	32.1	30.1	47.5	38.4	50.1	53.2	63.6	40.1	59.5	53.1	45.0	28.5
	02.06-11.06	15.2	32.9	23.8	43.3	54.4	43.2	55.3	62.0	44.4	60.9	66.8	40.4	49.8
June	12.06-21.06	7.5	31.2	27.3	55.8	53.7	44.5	46.6	61.0	52.0	50.0	66.2	42.0	56.9
	22.06-01.07	4.7	24.7	38.9	58.1	59.5	41.6	54.5	56.4	44.3	39.9	57.8	57.7	54.1
	02.07-11.07	5.6	24.2	44.3	61.4	46.2	38.1	49.0	49.2	41.4	35.2	48.8	57.5	40.0
July	12.07-21.07	3.3	23.1	31.7	54.2	49.3	31.7	44.9	48.8	37.2	35.8	50.9	56.6	42.1
	22.07-01.08	21.0	17.4	28.5	47.6	42.5	24.4	43.0	44.9	37.0	34.9	51.2	54.6	39.7
	02.08-11.08	24.2	9.0	16.1	39.6	48.7	31.7	29.6	37.3	35.2	39.0	41.5	39.8	40.8
August	12.08-21.08	16.3	3.3	8.7	27.2	33.5	16.2	25.5	34.2	51.2	38.4	34.9	31.1	25.4
	22.08-01.09	31.5	1.1	25.0	28.6	21.1	10.5	32.3	26.7	22.9	27.9	28.3	24.4	15.1
Contomb	02.09-11.09	26.9	17.8	28.7	20.5	15.7	7.2	41.2	18.3	36.1	18.8	20.7	23.1	10.1
er	12.09-21.09	17.5	22.7	13.0	20.4	12.6	37.6	26.9	30.7	36.5	46.0	22.0	22.2	7.0
Ci	22.09-01.10	14.4	18.8	25.5	32.2	14.8	21.8	37.8	34.5	48.2	35.0	25.0	17.1	11.2

***	if trend at $\alpha = 0.001$ level of significance;
**	if trend at $\alpha = 0.01$ level of significance;
*	if trend at $\alpha = 0.05$ level of significance;
+	if trend at $\alpha = 0.1$ level of significance

Case study: Agriculture area in Baragan Plain, SWI (0-100 cm)

Mann-Kendall test and the magnitude of the trend with the Sen's method in Baragan Plain (depth 100 cm)

Soil Water Index (SWI) from MetOp/Ascat, depth 0-100 cm, in Baragan Plain (2007-2019)

100 cm	S <mark>ynthesis</mark>							Year						
100 cm	(10 days)	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
March	22. <mark>03-01.04</mark>	35.3	32.5	40.7	42.6	44.3	34.9	47.9	42.6	59.5	51.8	51.9	60.3	41.2
	02. <mark>04-11.04</mark>	30.3	32.1	37.3	41.7	42.6	33.1	46.8	42.2	57.1	49.8	49.4	56.6	37.4
April	12.0 <mark>4-</mark> 21.04	27.8	30.9	33.8	40.5	40.6	31.8	43.5	42.0	53.8	48.6	49.3	53.0	36.7
	22.04-01.05	25.2	30.8	31.6	37.2	38.5	30.5	40.2	40.3	50.0	48.3	46.8	49.0	34.9
	02.05-11.05	22.3	29.2	29.2	36.7	38.4	30.3	37.8	40.2	47.0	48.9	44.5	47.1	33.1
May	12.05-21.05	21.7	28.9	27.8	37.2	36.8	33.0	38.6	41.1	44.7	49.2	43.5	46.3	32.4
	22.05-01.06	21.5	29.5	28.2	38.9	36.9	35.5	40.4	43.5	44.0	50.4	44.6	46.1	31.9
	02.06-11.06	20.7	30.0	27.9	39.3	39.0	36.2	42.0	45.1	44.2	51.4	47.1	45.7	33.8
June	12.06-21.06	18.8	30.1	27.5	41.0	40.4	37.1	42.4	46.4	45.0	51.4	49.3	45.1	36.4
	22.06-01.07	17.0	29.5	28.8	43.2	42.3	37.9	43.6	47.4	44.9	50.2	50.1	46.5	38.4
	02.07-11.07	15.7	28.8	30.6	45.4	42.9	37.8	44.4	47.6	44.6	48.7	50.0	47.6	38.9
July	12.07-21.07	14.0	28.2	30.7	46.6	43.3	37.2	44.4	47.7	43.7	47.1	49.8	48.3	39.2
	22.07-01.08	14.4	27.0	30.6	46.8	43.4	35.7	44.3	47.5	42.7	46.2	50.3	49.2	39.3
	02.08-11.08	16.0	25.1	29.0	46.0	43.9	35.5	42.8	46.4	41.4	45.4	49.3	48.3	39.4
August	12.08-21.08	15.8	22.6	26.9	43.6	42.9	32.9	41.0	45.0	43.9	44.7	47.7	46.5	38.2
1.1.2	22.08-01.09	17.4	20.0	26.3	41.7	40.6	30.9	40.8	43.3	40.3	43.1	45.8	44.2	35.7
	02.09-11.09	18.4	19.3	27.2	39.6	37.9	28.4	40.6	41.6	39.5	40.8	43.1	42.2	32.8
September	12.09-21.09	18.3	20.2	25.6	37.1	35.7	29.4	39.8	40.8	38.8	41.4	41.0	40.2	30.4
	22.09-01.10	17.7	19.5	25.5	36.7	33.4	28.7	39.6	40.6	40.4	40.6	39.2	38.0	28.4

¢	if trend at $\alpha = 0.001$ level of significance;	
	if trend at $\alpha = 0.01$ level of significance;	
	if trend at $\alpha = 0.05$ level of significance;	
	if trend at $\alpha = 0.1$ level of significance	

Case study: Agriculture area in Baragan Plain SWI Anomaly (0-5 cm)

Soil Water Index Anomaly from MetOp/Ascat, depth 0-5 cm, Baragan Plain (2007-2019)

	Sy <mark>nthesis</mark>	Year												
5 cm	(1 <mark>0 days)</mark>	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
March	22. <mark>03-</mark> 01.04	-0.9	0.1	-0.9	0.6	-1.1	-1.0	1.2	-0.7	2.1	0.2	0.3	1.1	-1.
	02.04-11.04	-1.7	0.3	-1.5	0.0	0.4	-0.5	0.9	1.1	1.2	0.8	0.5	0.0	-1.
April	12. <mark>04-21.04</mark>	-1.6	-0.2	-1.4	0.0	-0.5	-0.5	-0.7	1.2	0.2	1.3	2.0	-0.4	0.
	22.0 <mark>4-01.05</mark>	-1.0	0.9	-1.0	-0.9	0.0	-0.8	-0.8	0.8	0.1	2.6	0.7	-0.3	-0.
	02.05 <mark>-11.05</mark>	-1.6	-0.4	-1.4	0.2	0.7	0.0	-0.3	1.3	-0.7	2.2	0.1	0.4	-0.
May	12.05-21.05	-1.4	-0.6	-1.4	0.5	-1.0	1.3	0.9	1.1	-0.7	1.6	0.3	0.3	-0.
	22.05-01.06	-1.9	-0.9	-1.0	0.3	-0.4	0.6	0.8	1.6	-0.2	1.3	0.8	0.1	-1.
	02.06-11.06	-2.1	-0.9	-1.5	-0.2	0.6	-0.2	0.7	1.1	-0.1	. 1.1	. 1.5	-0.4	0.
June	12.06-21.06	-2.5	-1.0	-1.2	0.7	0.5	-0.1	0.1	1.0	0.4	0.3	1.3	-0.2	0.
	22.06-01.07	-2.6	-1.3	-0.4	0.8	0.9	-0.3	0.6	0.7	-0.1	-0.4	0.8	0.8	0.
	02.07-11.07	-2.6	-1.3	0.2	1.4	0.3	-0.3	0.5	0.6	0.0	-0.5	0.5	1.1	-0.
July	12.07-21.07	-2.5	-1.1	-0.5	1.1	0.7	-0.5	0.4	0.7	-0.1	0.2	0.8	1.2	0.
	22.07-01.08	-1.5	-1.8	-0.8	0.9	0.5	-1.2	0.5	0.7	0.0	-0.2	1.2	1.5	0.
	02.08-11.08	-0.9	-2.3	-1.6	0.6	1.4	-0.1	-0.3	0.4	0.2	0.5	0.8	0.6	0.
August	12.08-21.08	-0.8	-1.9	-1.4	0.0	0.6	-0.8	-0.1	0.6	2.0	0.9	0.7	0.4	-0.
	22.08-01.09	1.0	-2.5	0.3	0.7	-0.2	-1.4	1.1	0.5	0.0	0.6	0.7	0.2	-0.
	02.09-11.09	0.6	-0.5	0.7	-0.2	-0.7	-1.6	2.1	-0.4	1.6	-0.3	-0.1	0.1	-1.
September	12.09-21.09	-0.6	-0.1	-1.1	-0.4	-1.1	1.2	0.3	0.6	1.2	2.0	-0.2	-0.2	-1.
	22.09-01.10	-1.1	-0.7	0.0	0.6	-1.0	-0.4	1.1	0.8	2.1	0.9	-0.1	-0.8	-1.

Soil Water Index Anomaly classification

≤ -2	
Drier that normal -21 .	5 1
Near normal condition -1 - +1	-
Wetter than $1 - 1.5$ normal $2 \ge 2$	
No data	

Case study: Agriculture area in Baragan Plain SWI Anomaly (0-100 cm)

Soil Water Index Anomaly from MetOp/Ascat, depth 0-100 cm, Baragan Plain (2007-2019)

	Synthesis							Year						
100 cm	(1 <mark>0 days)</mark>	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
March	22.0 <mark>3-</mark> 01.04	-1.1	1.5	-0.5	-0.3	-0.1	-1.2	0.3	-0.3	1.7	0.8	0.8	1.8	-0.5
	02.04-11.04	-1.5	-1.3	-0.6	-0.1	0.0	-1.1	0.5	-0.1	1.7	0.8	0.8	1.6	-0.6
April	12.0 <mark>4-21.04</mark>	-1.6	-1.2	-0.9	-0.1	0.0	-1.1	0.3	0.1	1.6	0.9	1.0) 1.5	-0.5
	22.04-01.05	-1.7	-1.0	-0.9	-0.2	0.0	-1.1	0.2	0.2	1.5	1.2	1.0) 1.3	-0.5
	02.05-11.05	-1.9	-1.0	-1.0	-0.1	0.1	-0.9	0.1	0.4	1.2	1.5	0.9	1.2	-0.5
May	12.05-21.05	-2.0	-1.0	-1.2	0.0	0.0	-0.5	0.2	0.5	1.0	1.6	0.8	1.2	-0.6
	22.05-01.06	-2.1	-1.0	-1.2	0.1	-0.1	-0.3	0.3	0.7	0.8	1.6	0.9	1.0	-0.7
	02.06-11.06	-2.1	-1.0	-1.3	0.1	0.0	-0.3	0.4	0.8	0.7	1.5	1.0	0.8	-0.6
June	12.06-21.06	-2.3	-1.0	-1.3	0.2	0.1	-0.2	0.3	0.8	0.6	1.4	1.1	. 0.6	-0.3
	22.06-01.07	-2.5	-1.1	-1.2	0.3	0.2	-0.2	0.4	0.8	0.5	1.1	1.1	. 0.7	-0.2
	02.07-11.07	-2.6	-1.2	-1.0	0.5	0.3	-0.3	0.4	0.8	0.5	0.9	1.0	0.8	-0.1
July	12.07-21.07	-2.6	-1.2	-0.9	0.7	0.3	-0.3	0.4	0.8	0.4	0.7	1.0	0.8	-0.1
	22.07-01.08	-2.5	-1.3	-0.9	0.7	0.4	-0.4	0.5	0.8	0.3	0.6	1.0	0.9	-0.1
	02.08-11.08	-2.4	-1.5	-1.0	0.7	0.5	-0.4	0.4	0.8	0.2	0.7	1.1	. 0.9	0.0
August	12.08-21.08	-2.3	-1.6	-1.1	0.6	0.5	-0.5	0.3	0.7	0.6	0.7	1.0	0.9	0.0
	22.08-01.09	-2.1	-1.8	-1.1	0.6	0.5	-0.6	0.5	0.8	0.5	0.8	1.0	0.9	0.0
	02.09-11.09	-2.0	-1.8	-0.9	0.6	0.4	-0.8	0.7	0.8	0.6	0.7	1.0	0.9	-0.2
September	12.09-21.09	-2.0	-1.7	-1.0	0.4	0.2	-0.6	0.8	0.9	0.6	5 1.0	0.9	0.8	-0.4
	22.09-01.10	-1.9	-1.7	-0.9	0.5	0.1	-0.5	0.8	1.0	0.9	1.0	0.8	8 0.6	-0.6

Soil Water Index Anomaly classification

Drier that normal	≤ -2 -21.5 -1.51
Near normal condition	-1 - +1
Wetter than normal	1 - 1.5 1.5 - 2 ≥ 2
No data	

Needs

transformation from SSM(t) to SSM(a)

- The relative surface soil moisture SSM(t) estimates range between 0% and 100% and are derived by linearly scaling the angle-normalized backscatter between the lowest/highest backscatter values at the individual location.
- These backscatter values correspond to the driest/wettest soil conditions. The difference between those values is called the soil moisture sensitivity.
- These parameters necessary for the production are obtained from the Sentinel-1 backscatter long-term time series of the individual location.
- The soil moisture in the SSM1km represents degree of saturation SSM(t), but can be translated from relative (%) to absolute volumetric units SSMa (m³/m³), using porosity information p (also in m³/m³):

SSMa(t)=p*(SSM(t))/100

• The SSM1km value range is from 0% to 100% relative soil moisture, which is encoded in the files as datatype "byte" with the integer values 0-200, using the scale factor of 0.5.

Transformation results

(RSMN) In-situ data 10 weather from station across Romania and SM from SWI 12km and SWI (derived 1km from Metop Ascat and Sentinel-1) for 28.02.2020

In-situ data (RSMN) from 1 weather station (Oradea) and SSM 1km (from Metop Ascat/Sentinel-1) for May 2020

Soil Moisture Virtual Workshop 14/15 July 2020

Future work

- Validation of SSM(t) to SSM(a) transformation based on multiple data and in-situ observations at different depths
- Transformation of SSM(t) to SSM(a) based on Cumulative Distribution Function (CDF)
- Correlation with vegetation indices in order to be used for drought monitoring;
- Correlation with precipitation data in order to be used for flood monitoring;
- > Copernicus data website for Romania.

Case study: Agriculture area in Baragan Plain Correlation between VHI and SWI/0-5 cm and SWI/0-100 cm

Comparative analysis between VHI, SWI-5 and SWI-100

Correlation between VHI and SWI/0-5 cm depth

Correlation between VHI and SWI/0-100 cm depth

Current situation - precipitation

Current situation - SWI

Thank you for kind attention!

Contact: Anișoara Irimescu anisoara.irimescu@meteoromania.ro