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Chapter 1 

Executive summary 

In this report we will analyse Red knot data from the United Kingdom and Oystercatcher 
data from South Africa and Namibia. Both data sets contain annual counts that are 
obtained from a large number of sites. The Red knot data were sampled between 1975 
and 2018, and the Oystercatcher data are from 1992 to 2018. Some sites were sampled 
every year and other sites only once. The counts vary between 0 and 120,000. 
From a statistical point of view, these data are challenging. The main problems that we 
encountered are spatial dependency, zero inflation, non-linear trends, missing covariates 
and large variation in the bird counts. Ignoring any of these problems is likely to result 
in statistical models that provide incorrect ecological conclusions. Adopting the wrong 
solution for a specific problem will result in poor models and incorrect conclusions as 
well. As an example, due to the large variation in the data the initial models were 
highly overdispersed. The dispersion statistic was around 500. Adopting a quasi-Poisson 
approach is a popular solution for dealing with overdispersion, but with such a large 
overdispersion one should not do this. Instead, the source of the overdispersion should be 
found and modelled accordingly (Hilbe, 2014). 
Strong spatial correlation is present in the Red knot data (not only in the UK data but 
also in the European data). Ignoring spatial dependency is the worst sin that a statistician 
(or anyone who is analysing data) can commit, and it results in pseudoreplication. As a 
result the models will produce measures of uncertainty that are too small. It may also 
result in parameter estimates that are wrong, and this can lead to incorrect ecological 
conclusions. 
We were able to extend the models with spatial and spatial-temporal correlation using 
a recently developed statistical technique called INLA (Rue et al., 2009; Blangiardo 
and Cameletti, 2015; Zuur et al., 2017; Zuur and Ieno, 2018). We also dealt with 
the non-linear temporal patterns using generalised additive models and incorporated 
statistical distributions especially designed for data with excessive numbers of zeros. The 
resulting models show trends over time and also indicate which sites are utilised by the 
birds (where and when). 
The methods that we applied in this report are highly sophisticated and require a fair 
amount of knowledge to work with. This report aims to provide a quasi-layperson’s term 
introduction to Poisson, negative binomial and zero-inflated negative binomial generalised 
additive models with spatial and spatial-temporal correlation. We assume that the reader 
is familiar with multiple linear regression, mixed-effects modelling and generalised linear 
modelling (Zuur et al., 2009). 
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Chapter 2 

Introduction 

In this report we will analyse Red knot data from the United Kingdom and Oystercatcher 
data from South Africa and Namibia. The analysis of these data sets requires statistical 
techniques that can deal with spatial dependency, temporal dependency, zero inflation, 
large variation and non-linear trends. We will apply generalised additive models with 
spatial and spatial-temporal correlation using the software R-INLA. 

In Chapter 3 we will apply a detailed data exploration on the Red knot data. These are 
counts, and the first model that we will apply is a generalised linear mixed-effects model 
(GLMM) with a Poisson distribution in Chapter 4. The model is highly overdispersed, 
and a detailed model validation indicates that we definitely need to deal with spatial 
dependency and also with a non-linear year effect and zero-inflation issues. In Chapter 5 
we show how to execute a generalised additive model (GAM) in R-INLA, and the model 
is extended with spatial dependency in Chapter 6. Here is also where the numerical 
estimation problems start to appear. We noticed that tweaking initial values, priors 
and configurations of spatial components sometimes resulted in rather different posterior 
distributions of the parameters. This indicates model instability. The variation in the 
Red knot data is extremely large; we have sites with 0 counts and sites with 120,000 birds. 
We suspect that the numerical problems are partly due to this large variation. We also 
made an attempt to extend the models towards spatial-temporal dependency, but either 
the Red knots are not temporally correlated or numerical estimation problems prevented 
the model from finding the right solution. It should also be noted that computing time 
for these models is in terms of half day on a modern computer. In Chapter 8 we apply 
the same methodology on the Oystercatcher data, but our impression is that the spatial 
GAM does not provide an essential improvement compared to an ‘ordinary’ GAMM. This 
is because the spatial correlation is low for this data set. 

In Chapter 9 we discuss the statistical approach that is currently being applied on these 
data, namely TRIM. 

All calculations are carried out in the statistical software package R (R Core Team, 2020). 
This report was written with the add-on package Bookdown (Xie, 2020), which is an 
extension of the RMarkdown language. This means that the source files that were used 
to create this report contain all R code required to reproduce the analyses, and it can 
also be used to repeat the analysis for future data sets. Readers who are not interested 
in the R code can ignore the parts of text pertaining to the code. As to the statistical 
methods, we assume familiarity with multiple linear regression, generalised linear models 
and generalised additive models. 
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Chapter 3 

Data exploration for the Red knot 
data 

A statistical analysis should always start with data exploration. See for example Zuur 
et al. (2010), who developed an 8-step protocol for this. As part of this protocol we need 
to look at the presence of outliers, collinearity (i.e. correlation between covariates), the 
type of relationships that we may expect between covariates and the response variable 
(e.g. linear versus non-linear), and we also need to visualise spatial and spatial-temporal 
dependency. 

3.1 Import the data and load the packages 

Before we start data exploration, we first import the Red knot data with the read.csv 
function. It is assumed that the first row in the csv file contains the names of the variables 
(header = TRUE). Missing values should be coded as NA in the data file. The code that 
we do not show here is setting the working directory with the setwd() function as this is 
computer specific. 

CC <- read.csv(file = "CALCA.csv", 
header = TRUE, 
na.strings = "NA", 
stringsAsFactors = TRUE) 

source("HighstatLibV13.R") 

The source function sources our support file HighstatLibV13.R, which is available from 
www.highstat.com. We load a large number of packages. 

library(easypackages) #Defines 'libraries' function to load packages. 
libraries("sp", "rgdal", "raster", "utils", "colorRamps", "rgdal", 

"raster", "dismo","rasterVis", "RColorBrewer", "lattice", 
"gridExtra", "splancs", "lattice", "INLA", "gstat", "ggplot2", 
"mgcv", "ggmap", "plyr", "rgl", "cowplot", "maps", "maptools", 
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6 CHAPTER 3. DATA EXPLORATION FOR THE RED KNOT DATA 

"glmmTMB", "dplyr", 
"mapdata", "worldHiresMapEnv", "fields", "rgeos", "performance", 
"gamm4", "inlabru") 

3.2 Data preparation 

At certain stages of the analyses we need to calculate Euclidean distances between the 
sampling locations, and we will use UTM coordinates for this. We therefore convert the 
WGS84 coordinates of the sampling locations into UTM coordinates. We will use the 
function LongLatToUTM from our support file HighstatLibV13.R. This function requires 
the longitude and latitude coordinates of each site, and one value for the UTM zone. The 
study area covers various UTM zones and in such a case it is recommended to use the 
UTM value of the center of the study area. We will use UTM zone 31 for this. 

#' Convert WGS84 to UTM 
xy <- LongLatToUTM(x = CC$Long, 

y = CC$Lat, 
zone = 31, 
Hemisphere = "north") 

CC$Xkm <- xy[,2] / 1000 
CC$Ykm <- xy[,3] / 1000 

We have data from 44 years, and during the statistical analysis we will use year as a 
continuous covariate. At various stages of the data exploration and model validation, it is 
useful to have year also as a categorical covariate. 

CC$fYear <- factor(CC$Year) 

The response variable is the number of observed Red knots at a site in a year. In the next 
chapter we will present the statistical models. In these models we will use the notation 
RK𝑖𝑠 for the number of observed knots at site 𝑖 in year 𝑠. The data file uses Count for 
this. To avoid confusion, we will use the same name in the R code. We therefore rename 
the variable Count to RK. 

CC$RK <- CC$Count 
#CC <- rename(CC, "RK" = "Count") 

During the analysis we need a variable that identifies the country. The first two characters 
of the variable Site identify the country. For example, the first element of Site is 
DE01756, and this is an observation from Germany (DE refers to ‘Deutschland’). We will 
create a new variable Country that contains these two characters. We do this with the 
substr function, but the input of this functions needs to be of the type ‘character’ and not 
a categorical variable. This explains why we first convert Site into a vector of characters. 
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Site.Char <- as.character(CC$Site) 
CountryID <- substr(x = Site.Char, start = 1, stop = 2) 
CC$Country <- factor(CountryID) 

At some stage during the data exploration we will visualise the absence and presence of 
Red knots. For this we need a variable that contains zeros and ones for the absence and 
presence of Red knots, respectively. We use the ifelse function for this. If RK is larger 
than 0, then RK01 is 1, and 0 otherwise. 

CC$RK01 <- ifelse(CC$RK > 0, 1, 0) 

We now have all the required variables for the data exploration and the analysis. 

3.3 Spatial locations 

Figure 3.1 shows the spatial locations of all the sites. There are 546 sites in 11 countries. 
As mentioned in Chapter 2, one of the underlying questions in this report is to estimate 
one trend for all countries. As it currently stands, this trend will be based on all the sites 
illustrated in Figure 3.1. 

The get_map function and some basic ggplot2 code (Wickham et al., 2020) are used to 
create this graph. 

glgmap <- get_map(location = c(-11, 36, 14, 61), 
zoom = 4, 
maptype= "terrain", 
col = "bw") 

p <- ggmap(glgmap) 
p <- p + geom_point(data = CC, 

aes(x = Long, y = Lat), 
col = "red", 
size = 0.3, 
shape = 1) 

p <- p + xlab("Longitude") + ylab("Latitude") 
p 
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Figure 3.1: Sampling locations for all years. 

3.4 Spatial-temporal resolution 

The data are from 44 years. Figure 3.2 shows the sampling locations for each year. Note 
that the sampling resolution is not consistent over time. Some countries were measured 
throughout the sampling period, whereas other countries were only sampled during the 
latter years. This is a major problem as it means that changes in the long-term trend may 
be due to changes in the spatial position of the sampling locations. 

We used the xyplot function from the lattice package (Sarkar, 2020) to create this 
graph. 

xyplot(Lat ~ Long | fYear, 
data = CC, 
pch = 16, 
aspect = "iso", 
col = 1, 
cex = 0.3) 
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Figure 3.2: Sampling locations for each year. 

We further investigate the unbalanced spatial-temporal resolution of the data as this is 
a rather important aspect of the data. To see which countries were measured in which 
years, we create a table of the two variables Country and Year. 
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Z <- table(CC$Country, CC$Year) 

This table has 11 rows (countries) and 44 columns (years), which makes it too large to 
print. We will visualise the values in this table using the ggplot function. To do this, we 
need to convert the 11 by 44 matrix Z into a vector of length 484 by 1. We also add the 
year and site names. We use the as.vector and rep functions to do this. The results are 
stored in the data frame DataSiteYear2. 

DataSiteYear <- data.frame(NumSites = as.vector(Z), 
Years = rep(colnames(Z), each = nrow(Z)), 
Countries = rep(rownames(Z), ncol(Z))) 

DataSiteYear2 <- subset(DataSiteYear, NumSites > 0) 
head(DataSiteYear2, 5) #' Show the first 5 rows 

## NumSites Years Countries 
## 6 119 1975 GB 
## 17 115 1976 GB 
## 19 1 1976 NL 
## 28 114 1977 GB 
## 30 16 1977 NL 

The data frame MyData2 contains the number of sampled sites per year and country. We 
have plotted this information in Figure 3.3. A dot means that sampling took place in a 
specific country and year, whereas if nothing is plotted then no sampling took place for 
that country and year. The size of the dot is proportional to the number of sampled sites 
in that year and site. The graph indicates that in various countries, sampling started 
between 1975 and 1980, but there are also countries where sampling started much later 
(e.g. Spain, Ireland). Also note that the number of sampling sites differs considerably 
between the countries. A sensible approach is to use only the data from 1995 onwards. 

Basic ggplot2 code is used to create this graph. 

DataSiteYear2$MySize <- DataSiteYear2$NumSites / max(DataSiteYear2$NumSites) 
DataSiteYear2$Years <- as.numeric(DataSiteYear2$Years) 
p2 <- ggplot(DataSiteYear2, 

aes(x = Years, 
y = Countries, 
size = NumSites)) 

p2 <- p2 + geom_point() 
p2 <- p2 + scale_x_continuous(breaks = seq(from = 1975, to = 2020, by = 10)) 
p2 <- p2 + labs(x = "Year", y = "Country") 
p2 <- p2 + theme(text = element_text(size=10)) 
p2 



 

 

11 3.4. SPATIAL-TEMPORAL RESOLUTION 

DE

DK

ES

FB

FR

GB

IE

NL

NO

PT

WB

1975 1985 1995 2005 2015

Year

C
ou

nt
ry

NumSites

50

100

150

Figure 3.3: Visualisation of the number of sampled sites by country and year. The size of 
a dot is proportional to the number of sampled sites. 

The total number of sampled sites also increase over time within a country; see Figure 3.4. 
Trends over time in the red Knot abundances per country may be related to the number 
of sampled sites per country. The overall trend may be influenced by the different starting 
times of the time series. 

p2 <- ggplot(DataSiteYear2, aes(x = Years, 
y = NumSites, 
Countries = Countries)) 

p2 <- p2 + geom_point(aes(col = Countries), 
size = 1) 

p2 <- p2 + geom_line(aes(x = Years, 
y = NumSites, 
group = Countries, 
col = Countries)) 

p2 <- p2 + scale_x_continuous(breaks = seq(from = 1975, to = 2020, by = 10)) 
p2 <- p2 + labs(x = "Year", y = "Number of sampled sites") 
p2 <- p2 + theme(text = element_text(size=10)) 
p2 
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Figure 3.4: Visualisation of the number of sampled sites per country and year. 

Figure 3.5 is another graph visualising the potential problems with different sampling 
effort over time. It shows the total number of sampled sites in the study area. There is a 
sharp increase in the number of sampled sites from 1975 to 1995, after which the number 
of sampled sites is roughly constant. It may be interesting to compare this curve with the 
trend that will come out of the statistical analyses. 

The R code to create this graph uses basic ggplot2 code. 

MyData <- data.frame(NumYears = as.numeric(table(CC$fYear)), 
Years = as.numeric(names(table(CC$fYear)))) 

p2 <- ggplot(MyData, aes(x = Years, 
y = NumYears)) 

p2 <- p2 + geom_line() + geom_point() 
p2 <- p2 + scale_x_continuous(breaks =seq(from = 1975, to = 2020, by = 10)) 
p2 <- p2 + labs(x = "Year", y = "Number of sampled sites") 
p2 <- p2 + theme(text = element_text(size=10)) 
p2 
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Figure 3.5: Total number of sampled sites per year for the study area. 

In the next chapter we will apply a generalised linear mixed-effects model in which we use 
Site as random effect. Figure 3.6 shows one more time the number of observations per 
site. The number of observations (i.e. years) per site varies between 2 and 44. 
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Figure 3.6: Number of sampled years per site. The different colours correspond to different 
sites. 

3.5 Red knot numbers versus year 

We will now focus on the temporal trend in the Red knot counts. Figure 3.7 shows the 
number of Red knots for all sites versus year. A scatterplot smoother was added to aid 
the visual interpretation. There are no clear patterns, but this may be due to the large 
number of zeros and the large variation in the data. 
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p <- ggplot(data = CC, aes(x =  Year, y =  RK)) 
p <- p + geom_jitter(size = 0.1, height = 0.01, width = 0.1) 
p <- p + geom_smooth() 
p <- p + xlab("Year") + ylab("Counts of birds") 
p <- p + theme(text = element_text(size=15)) 
p 
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Figure 3.7: Scatterplot of number of birds versus year. A scatterplot smoother was added 
to aid visual interpretation. 

We also created this graph for each country, but the resulting smoothers were similar to 
the one in Figure 3.7. 

3.6 Number of zeros 

The number of zeros in the Red knot data is 64.81%, which is relatively large. We also 
present the number of observations and the number of observations equal (and not equal) 
to zero by country; see the table below. 
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## Number of observations Number of zeros Number of non-zeros % of zeros 
## DE 2426 2008 418 83 
## DK 256 203 53 79 
## ES 1295 1014 281 78 
## FB 215 158 57 73 
## FR 2445 1437 1008 59 
## GB 6931 4194 2737 61 
## IE 1076 424 652 39 
## NL 750 533 217 71 
## NO 75 73 2 97 
## PT 143 74 69 52 
## WB 2 1 1 50 

One of the statistical techniques that we will apply in later chapters is a zero-altered 
negative binomial GLM. In such a model we analyse the absence/presence data, and 
also the presence-only data. It is important to know the number of non-zeros as this 
will determine the complexity of the models that can be applied on the non-zero data. 
The numbers in the table above show that in some countries the number of non-zeros is 
relatively small, which means that estimating national trends based on only the data from 
one country may be impractical. Formulated differently, to estimate national trends we 
recommend using a model that is applied on all the data, and not on the data from only 
one country. 

Figure 3.8 shows a scatterplot of the 0-1 data versus year. We also added a scatterplot 
smoother. The pattern of this smoother is non-linear, which indicates that we may need 
a smoothing function of year in the model. This guides us towards generalised additive 
modelling techniques. 

Basic ggplot2 coding was used to create this figure. 

#' Scatterplot of absence-presence data versus year 
p1 <- ggplot() 
p1 <- p1 + geom_jitter(data = CC, 

aes(x = Year, y = RK01), 
size = 0.1, height = 0.01, width = 0.1) 

p1 <- p1 + geom_smooth(data = CC, 
aes(x = Year, 

y = RK01)) 
p1 <- p1 + xlab("Year") + ylab("Counts of birds") 
p1 <- p1 + theme(text = element_text(size=12)) 
#' Scatterplot of presence-only data versus year 
CCPos <- subset(CC, RK > 0) 
p2 <- ggplot() 
p2 <- p2 + geom_jitter(data = CCPos, 

aes(x = Year, y = RK), 
size = 0.1, height = 0.1, width = 0.1) 

p2 <- p2 + geom_smooth(data = CCPos, 
aes(x = Year, 

y = RK)) 
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p2 <- p2 + xlab("Year") + ylab("Counts of birds") 
p2 <- p2 + theme(text = element_text(size=12)) 
#' Plot both graphs 
plot_grid(p1, p2, ncol = 2, 

labels = c('A', 'B'), 
rel_widths = c(1, 1)) 
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Figure 3.8: A: Scatterplot of absence/presence of Red knots versus year. B: Scatterplot 
of the presence-only data versus year. 

3.7 Country effect 

Figure 3.9 shows a boxplot of the Red knot counts conditional on country. One can clearly 
see the excessive number of zeros for some countries. 

p <- ggplot(data = CC, aes(x =  Country, y =  RK)) 
p <- p + geom_boxplot() 
p <- p + xlab("Country") + ylab("Number of Red knots") 
p <- p + theme(text = element_text(size=15)) 
p 
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Figure 3.9: Boxplots of the number of Red knots conditional on country. 

3.8 Conclusions 

Data exploration has indicated that the Red knot counts contain a large number of zero 
counts. There may be non-linear patterns over time. And most importantly, the spatial 
resolution has changed over time. With this we mean that not all countries were sampled 
from start to end. And the number of sampled sites has increase sharply from 1975 to 
1995. This means that trends over time may be confounding with the spatial position of 
the sampling locations. 

A large number of imputation methods exist to estimate missing values in time series. 
However, the number of site-year combinations with no data is 35.01%. This is a rather 
large percentage of missing values to predict. Furthermore, the majority of these missing 
values are not ‘missing at random’, but due to sites and countries where sampling starts 
much later (e.g. around 1995). Hence these are structured missing values. Prediction of 
such missing values is a much more hazardous exercise than predicting a missing value 
for a single year in the middle of a time series (a random missing value). An additional 
argument not to implement imputation methods is that the scatterplot smoothers indicate 
that any temporal trend is likely to give a poor fit. So, we do not have a good model to 
predict missing values. Finally, computing time will also be an issue. In later chapters we 
will execute models with spatial-temporal dependency. With such models we do not have 
the luxury of rerunning the model multiple times. 

In summary, there are no magical tools that can resolve a situation in which 35.01% of 
the data are missing due to time series starting in different years. The safe option is to 
truncate the data and analyse the data from 1995 onwards. It should be noted that the 
techniques that will be applied later are quite capable of predicting missing values, and 
they even provide measures of uncertainty (e.g. a posterior distribution and 95% credible 
intervals for each missing value). For missing values at random, we have no qualms about 
using these. For non-random missing values we caution against using these for imputation 
purposes. 
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In the remaining chapters we will run the models on the 1995+ data. These are in the 
object CC2. 

CC2 <- subset(CC, Year >= 1995) 
CC2 <- droplevels(CC2) 



Chapter 4 

Poisson GLMM applied on the 
Red knot data 

Our strategy to find the optimal model for the Red knot data is to start simple and 
slowly build up the complexity of the model. We will first apply a Poisson generalised 
linear mixed-effects model (GLMM) on the Red knot data. Based on the data exploration 
results in Chapter 3, we expect that such a model will have problems with zero inflation 
and spatial dependency. A zero-inflated negative binomial (ZINB) generalised additive 
model (GAM) with a smoother for year and spatial-temporal dependency may solve some 
of the problems that we are going to encounter in this chapter. However, it is unwise to 
start with such a model. The excessive number of zeros in the data may be explained 
by the temporal trend. If the sites with zeros are next to one another, then the spatial 
correlation component may model the zeros. If sites have zero observations repeatedly 
over time, then this is auto-correlation. And if all these things happen, then the different 
components in the ZINB GAM with spatial-temporal dependency may all fight for the 
same information, potentially resulting in numerical estimation problems. This explains 
our motivation to start simple. 

4.1 Model formulation 

The first model that we will apply is a Poisson GLMM of the form 

RK𝑖𝑠 ∼ Poisson (𝜇𝑖𝑠)
E [RK𝑖𝑠] = 𝜇𝑖𝑠 (4.1)var [RK𝑖𝑠] = 𝜇𝑖𝑠 

log (𝜇𝑖𝑠) = 𝛽1 + 𝛽2 × Year𝑠 + 𝑎𝑖 

where RK𝑖𝑠 is the number of counted Red knots at site 𝑖 in year 𝑠. This expression states 
that the observed number of Red knots at a specific site 𝑖 in year 𝑠 follows a Poisson 
distribution with parameter 𝜇𝑖𝑠. By definition, the expected value of the number of Red 
knots at site 𝑖 in year 𝑠 is 𝜇𝑖𝑠 and so is its variance. The mean 𝜇𝑖𝑠 is modelled as an 
exponential function of the intercept (𝛽1), covariates and the random effects. 
The selected data set contains measurements from 1995 to 2018, hence the subscript 𝑠 
runs from 1 to 24. The total number of sites is 546, and therefore the index 𝑖 runs from 1 
to 546. The total sample size is 10673. 
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The term 𝑎𝑖 is a random intercept and these 546 random intercepts are assumed to 
be normal and independently distributed with mean 0 and variance 𝜎2. The random 
intercepts impose a dependency structure between all Red knots counts from the same 
site. All observations from different sites are assumed to be independent of one another. 
We have visualised this dependency structure in Figure 4.1. 

Figure 4.1: Dependency structure imposed by a Poisson GLMM using site as random 
intercept. All observations from the same site are correlated with a value 𝜙. Observations 
from different sites are assumed to be independent, even if they are close to one another. 

At some sites we only have 1 measurement over time, and at other sites we have 24 
observations. The dependency structure that is being imposed assumes that the correlation 
between any two Red knot observations from the same site is the same. Whether the 
distance in time between these two observations is 1 year or 27 years is not taken into 
account by this dependency structure. 

4.2 Applying the Poisson GLMM 

The R code below executes the Poisson GLMM. Due to the logarithmic link function 
it is crucial to standardise the covariate Year; otherwise we get numerical estimation 
problems. The function MyStd subtracts the mean and divides by the standard deviation. 
It is available in our support file HighstLibV13.R. The glmmTMB package (Magnusson 
et al., 2020) is used to execute the Poisson GLMM. 

CC2$Year.c <- MyStd(CC2$Year) 
M1 <- glmmTMB(RK ~ Year.c + (1| Site), 

data = CC2, 
family = poisson) 
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4.3 Overdispersion 

The first thing that we should do after executing a Poisson GLM(M) is to check for 
overdispersion. To do this we obtain the Pearson residuals, square them, add them all up 
and divide this by the sample size minus the number of parameters. This ratio should be 
close to 1. 

E1 <- resid(M1, type = "pearson") 
N <- nrow(CC2) 
Npar <- length(fixef(M1)) + 1 #One sigma 
Dispersion1 <- sum(E1^2) / (N - Npar) 
Dispersion1 

## [1] 503.2121 

In this case, the dispersion parameter is 503.21, which is considerably larger than 1, and 
indicates serious overdispersion. This means that the confidence intervals for the regression 
parameters and the long-term trend are too small, and the estimated regression parameters 
may be biased. 

Several factors can cause overdispersion, namely outliers, missing covariates, missing 
interactions, zero inflation, wrongly modelled covariate effects (e.g. non-linear instead of 
linear relationships), wrongly modelled dependency, wrong link function or variation that 
is larger than the Poisson distribution allows for. Each of these causes has its own solution. 
For example, if zero inflation is the cause of the overdispersion, then a zero-inflated Poisson 
GLMM needs to be applied. If there are missing interactions, then these should be added 
to the model. This whole process of fitting, assessing and modifying models does give the 
analysis a data phishing element, but this is sometimes unavoidable. 

If there is overdispersion we need to figure out the cause of the overdispersion and 
adjust the model accordingly. If we make the wrong choice, then the estimated 
parameters may be biased. 

To determine why we have overdispersion we continue with model validation. Note that 
if the dispersion statistic had been 1, we would still have to carry out a complete model 
validation. 

4.4 Model validation 

4.4.1 Model validation steps for a regression-type model 

After executing the Poisson GLMM model, we need to apply a detailed model validation. 
Figure 4.2 shows a flowchart of all relevant model validation steps. We need to plot Pearson 
residuals versus fitted values and assess that there is no violation of heterogeneity. We also 
need to plot the residuals versus each covariate in the model. In this case the only covariate 
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is year. If such a graph shows non-linear patterns, then we need to consider allowing for 
more flexibility by using, for example, a smoother (i.e. allow it to be more non-linear) or 
allow for interactions. We also need to plot the residuals versus each covariate not in the 
model. For example, we can plot the residuals versus country identity, or plot residuals 
versus year for different regions in Europe. If these graphs indicate that there are patterns, 
then we can conclude that the model with one temporal trend is not good and that model 
extensions are required. We also need to assess the residuals for temporal dependency and 
spatial dependency. We must also verify whether the GLMM can cope with the excessive 
number of zeros. All these steps are part of a systematic approach that should always be 
followed when working with regression-type models. 

Figure 4.2: Model validation steps for a regression-type analysis (including GLMM). 

4.4.2 Residuals versus fitted values 

We will plot Pearson residuals versus fitted values and Pearson residuals. To do that, we 
first extract the fitted values (we already have the Pearson residuals). We call these mu1 
in the code below. They are an estimate of 𝜇𝑖𝑠 in Equation (4.1). 

CC2$mu1 <- fitted(M1) 
CC2$E1 <- E1 

Now that we have the Pearson residuals and fitted values we plot them against one another; 
see Figure 4.3. The graph shows heterogeneity. This may be one of the causes of the 
overdispersion. It also indicates that the Poisson distribution is probably not appropriate 
for these data. The following R code was used to generate this figure. 

p1 <- ggplot(CC2, aes(x = mu1, y = E1)) 
p1 <- p1 + geom_point(size = 0.5) 
p1 <- p1 +geom_hline(yintercept = 0, 

linetype="dashed", 
color = "red") 

p1 <- p1 + labs(x = "Fitted values", y = "Pearson residuals") 
p1 <- p1 + theme(text = element_text(size=10)) 
p1 
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Figure 4.3: Pearson residuals plotted versus fitted values obtained by the Poisson GLMM. 

4.4.3 Observed versus fitted Red knot values 

We also plot the fitted values of the Poisson GLMM versus the observed Red knot values; 
see Figure 4.4. We would like to see that the majority of the points are close to the 1-1 
line, as this would indicate a good fit. Note that the model is not performing well with 
respect to the larger observed Red knot counts. 

The following R code was used to plot the fitted values versus the observed PIKE values. 

p3 <- ggplot(CC2, aes(x = mu1, y = RK)) 
p3 <- p3 + geom_point(size = 0.5, col= grey(0.5)) 
p3 <- p3 + geom_abline(intercept = 0, slope = 1, color = "red") 
p3 <- p3 + labs(x = "Fitted values", y = "Observed counts") 
p3 <- p3 + coord_fixed() 
p3 <- p3 + xlim(0, max(CC2$RK)) + ylim(0, max(CC2$RK)) 
p3 <- p3 + theme(text = element_text(size=10)) 
p3 
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Figure 4.4: Pearson residuals plotted versus fitted values obtained by the Poisson GLMM. 

4.4.4 Residuals versus covariates 

Figure 4.5 shows a plot of the Pearson residuals versus year. We have added a simple 
smoother to aid visual interpretation of this graph. If this smoother always contains 0 in 
its 95% confidence intervals, then there are no important residual patterns. In this case 
there are no clear residual patterns. However, it is indeed possible that the time effect is 
non-linear once we improve the model by adding spatial dependency and deal with the 
zero inflation. 

The R code to generate Figure 4.5 is given below. 
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Figure 4.5: Pearson residuals versus the covariate year. A scatterplot smoother is added 
to aid visual interpretation. 
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p <- ggplot(data = CC2, aes(x = Country, y = E1)) 
p <- p + geom_boxplot() 
p <- p + xlab("Country") + ylab("Pearson residuals") 
p <- p + theme(text = element_text(size=15)) 
p 

4.4.5 Spartial dependency in the random effects 

The next model validation step pertains to spatial correlation. We should check the 
Pearson residuals and the random effects for spatial dependency. Checking for spatial 
dependency in the random intercepts is often ignored in the literature. The random effects 
are assumed to be normal and independently distributed. We will investigate whether the 
random intercepts are indeed spatially independent. 

The first thing we do is visualise the values of the random intercepts with respect to the 
spatial locations of the sites. For this we first need to obtain the spatial locations of the 
sites. We do this with the tapply function. 

MyData <- data.frame(Xkm = tapply(CC2$Xkm, FUN = mean, INDEX = CC2$Site), 
Ykm = tapply(CC2$Ykm, FUN = mean, INDEX = CC2$Site)) 

We now have the spatial location of each site in UTM coordinates. We add the random 
effects to this data frame. 

MyData$ai <- ranef(M1)$cond$Site$'(Intercept)' 

Next we plot the sampling locations. The colour of the points reflects the sign of the 
random intercepts. If we can see a grouping of dots with the same colour, then this 
indicates sites close to one another have a similar value for the estimated random effect. 
And that is a violation of the spatial independence assumption. Figure 4.6 shows that 
this is indeed the case. 
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Figure 4.6: Visualisation of values of the random effect site. The colour reflects its sign. 

Based on a visual assessment, there seems to be a certain degree of spatial correlation in the 
random intercepts for Site. One may feel uncomfortable with a visual assessment of the 
presence of spatial dependency in Figure 4.6. To formalise the assessment, we can make a 
variogram of the random intercepts; see Figure 4.7. If the points in the sample variogram 
form a horizontal band of points, then we can conclude that there is no (stationary) spatial 
correlation. If the sample variogram shows a steady increase and then reaches a plateau, 
then we have spatial dependency in the Pearson residuals. In this case it seems that we 
have spatial dependency. 

coordinates(MyData) <- c("Xkm", "Ykm") 
V1a <- variogram(ai ~ Xkm + Ykm , 

data = MyData, 
cutoff = 200, 
cressie = TRUE) 

p4 <- ggplot() 
p4 <- p4 + geom_point(data = V1a, 

aes(x = dist, 
y = gamma), 

size = 0.5, 
col = grey(0.5)) 

p4 <- p4 + geom_smooth(data = V1a, 
span = 0.9, 
se = FALSE, 
aes(x = dist, 
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y = gamma)) 
p4 <- p4 + xlab("Distance (km") + ylab("Sample variogram") 
p4 <- p4 + theme(text = element_text(size=10)) 
p4 

7.5

10.0

12.5

15.0

17.5

0 50 100 150 200

Distance (km

S
am

pl
e 

va
rio

gr
am

Figure 4.7: Sample variogram of the random effects. 

In summary, the variogram also gives a clear indication of spatial dependency. The 
ultimate approach to determine whether there is really spatial dependency is to implement 
a model with spatial (or spatial-temporal) dependency and assess, for example, with the 
help of an AIC-related tool, whether the model improves. 

The same exercise needs to be applied on the Pearson residuals, but because we have 
multiple Pearson residuals per site, this model validation step is less useful. The Pearson 
residuals also exhibit spatial dependency, but results are not presented here. 

4.4.6 Zero inflation 

There is more misery. The data set consists of 10673 observations. We can easily simulate 
10673 values for the number of Red knots from the model. In a perfect world, these 
simulated ‘number of Red knot’ values are comparable to the observed ‘number of Red 
knots’. If that would be the case then the model performs well. We can define ‘similar’ in 
many ways. One way is to look for whether the number of zeros in both data sets match. 
Let us explain this idea with some R code. 
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We first set the random seed so that we get the same results if we run the code again. 
We obtain the fitted values from the model (where fitted values are defined as intercept + 
year effect + random effects) and then simulate 10673 from a Poisson distribution using 
the fitted values from the model M1. 

set.seed(1234) 
N <- nrow(CC2) 
RK.Simulated <- rpois(n = N, lambda = CC2$mu1) 

The RK.Simulated object contains simulated numbers of Red knots from the Poisson 
GLMM. In the simulated data we have 3641 values equal to 0, whereas we have 6665 for 
the observed data. It seems that the simulated data (which are truly Poisson) contain a 
fewer number of zeros. But this is only one set of simulated ‘number of Red knot’ values. 
We can easily do this 10,000 times, and for each simulated data set we determine the 
number of zeros. That is what the next block of R code does. 

NSim <- 1000 
Ysim <- simulate(M1, seed = 12345, nsim = NSim) 

The simulate function simulates random effects from a normal distribution with mean 
0, and the sigma is taken from the estimated model. Using the estimated regression 
parameters, it will then calculate the expected values, and the rpois function is used 
to simulate count data. Note that the simulation process itself can be improved by also 
simulating the regression parameters. 

Now that we have 1,000 simulated sets of ‘number of Red knots’ we can calculate the 
numbers of zeros in each simulated data set and see how often we predict 0 times a zero, 
1 times a zero, 2 times a zero, etc. We made a frequency plot of these values; see Figure 
4.8. If the model can cope with the excessive number of zeros in the sampled data, then 
the red dot (representing the number of zeros in the observed Red knot values) would be 
within the range of the simulated values. That is not the case here, which means that the 
Poisson GLMM cannot cope with the 62.45% of zeros in the Red knot data. Therefore 
this model fails the model validation with respect to zero inflation, and it cannot be used 
for inferences. Further model improvement is required. 

zeros <- vector(length = NSim) 
for(i in 1:NSim){ zeros[i] <- sum(Ysim[,i] == 0)} 
N <- nrow(CC2) 
par(mfrow = c(1,1), cex.lab = 1.5, mar = c(5,5,2,2)) 
hist(100 * zeros / N, 

xlab = "Percentage of zeros", 
ylab = "Frequency", 
xlim = c(20, 80), 
main = "") 

points(x = 100 * sum(CC2$RK == 0) / N, 
y = 0, 
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pch = 16, 
cex = 5, 
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Figure 4.8: Results of a simulation study showing how often the Poisson GLMM predicts 
a zero. The red dot is the number of zeros in the observed Red knot data. 

To assess whether the Poisson GLMM can cope with the excessive number of zeros 
in the Red knot data, we simulate a large number of truly Poisson data sets from 
the model. If the numbers of zeros in these simulated data sets are comparable to 
the numbers of zeros in the observed Red knot data, then the model performs well 
with respect to the zeros. Results indicate that the Poisson GLMM cannot cope 
with the excessive number of zeros in the Red knot data. 

4.4.7 Explained variation 

Using the performance package (Lüdecke et al., 2020) we can calculate an 𝑅2 for the 
Poisson GLMM. The marginal 𝑅2 below is the explained variation by the 𝛽2 ×Year𝑠 term, 
also called the fixed part of the model. It hardly explains anything. The conditional 𝑅2 is 
the variation in the Red knot data explained by the fixed effects and the random effects, 
which is nearly 98%. This means that the random effect Site explains a lot of variation. 
We suspect that this is due to many sites having lots of years with 0 red knots. Large 
negative random effects will model zero-inflated data rather well (the exponential of a 
large negative value is close to 0). 

library(performance) 
r2_nakagawa(M1) 
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## # R2 for Mixed Models 
## 
## Conditional R2: 0.982 
## Marginal R2: 0.000 

Note that this does not mean that there is no temporal trend. It only indicates that 
modelling the trend as 𝛽2 × Year𝑠 is not a good idea. 

4.4.8 Summary of the Poisson GLMM 

The Poisson GLMM is overdispersed, and the dispersion statistic is too large to ignore. 
Model validation of the Poission GLMM indicated two main problems: there is spatial 
correlation in the random effects, and the model cannot cope with the excessive number 
of Red knot values equal to 0. Model validation did not indicate any major non-linear 
year effects in the Pearson residuals. We are slightly surprised by this because in our 
experience trends over time tend to be non-linear for this type of data. To verify whether 
there really is no non-linear year effect, we will briefly run a generalised additive mixed 
model in the next section. 

4.5 Poisson GAMM applied on the Red knot data 

In the previous section we applied a Poisson GLMM, and model validation indicated that 
there was no non-linear year effect in the Pearson residuals. We are surprised by this, 
partly because of our experience with this type of data but also because Figure 3.8 did 
indicate a non-linear year effect for the absence/presence data. To put our minds at ease, 
we will verify that there really is no non-linear year effect. To do this we apply a Poisson 
generalised additive mixed-effects model (GAMM) on the Red knot data. Such a model 
is defined as follows. 

RK𝑖𝑠 ∼ Poisson (𝜇𝑖𝑠)
E [RK𝑖𝑠] = 𝜇𝑖𝑠 (4.2)var [RK𝑖𝑠] = 𝜇𝑖𝑠 

log (𝜇𝑖𝑠) = 𝛽1 + 𝑓(Year𝑠) + 𝑎𝑖 

The only difference between Equations (4.1) and (4.2) is the 𝛽2 ×Year𝑠 and 𝑓(Year𝑠). The
𝑓(Year𝑠) is a smoother. The aim of the smoothing function of year is to obtain a curve 
that captures the general pattern of the Red knot counts-year relationship. Smoothers are 
explained in more detail in Wood (2017), Zuur et al. (2009), Zuur et al. (2015) and Zuur 
and Ieno (2018). For the moment it suffices to know that the smoother that we will apply 
in a moment has a mechanism that is called ‘cross validation’. This tool determines the 
amount of smoothing of a smoother. Formulated differently, cross validation estimates the 
effective degrees of feeedom (edf). If the edf is 1, then the smoothing function 𝑓(Year𝑠)
is a straight line, and we might as well use the Poisson GLMM instead of the Poisson 
GAMM. The larger the edf, the less smooth is the smoothing function (which represents 
the year effect). Right now we are only interested in whether a GAMM gives an edf of 1 
for the smoother 𝑓(Year𝑠). If it does, then using a GAMM may give better results than a 
GLMM. We execute the Poisson GAMM with the following code. 
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G1 <- gamm4(RK ~ s(Year), 
random =~ (1| Site), 
data = CC2, 
family = poisson) 

The s(Year) term implements the default smoother, which is a thin-plate regression spline. 
It is not important to know the exact mathematical details of this smoother. In Appendix 
A we explain that a smoother consists of a collection of so-called basis functions (we also 
call them Lego pieces). These basis functions are used as covariates, and each of them has 
an associated regression parameter. The gamm4 function will use the lme4 package (Bates 
et al., 2020) to estimate these regression parameters, together with all the other model 
components. The basis functions of the thin-plate regression spline are defined differently 
from the smoothers that we explain in Appendix A. 
The estimated smoother is plotted in Figure 4.9. The edf of the smoother is 9, which 
is considerably larger than 1. This indicates that the year effect may be non-linear. At 
this stage we will refrain from trying to understand the shape of the smoother because 
we have not dealt yet with the overdispersion. The presence of unaccounted spatial and 
spatial-temporal dependency may have caused the non-linear pattern in the smoother. 
The bottom line is that we need to allow for a non-linear trend in the Red knot data. 

plot(G1$gam) 
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Figure 4.9: Estimated smoother for year obtained by a GAMM. 

The Poisson GAMM is still overdispersed. 

GE1 <- resid(G1$mer, type = "pearson") 
Npar <- sum(G1$gam$edf) + 1 #'+1' is for sigma nest 
N <- nrow(CC2) 
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GE1 <- resid(G1$mer, type = "pearson") 
OverdispGAMM <- sum(GE1^2) / (N - Npar) 
OverdispGAMM 

## [1] 497.8361 

Following the same model validation steps as for the Poisson GLMM shows that we still 
have spatial dependency; see Figure 4.10. 
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Figure 4.10: Sample variogram of the random effects of the Poisson GAMM. 

4.6 What is next? 

The Poisson GLMM is overdispersed, violates the spatial independence assumption and 
cannot cope with the excessive number of zeros in the Red knot data. At this stage we 
should not read too much into the shape of the smoother in Figure 4.9, as the GAMM 
needs to be extended so that it can cope better with the zero inflation and spatial-temporal 
dependency. During that process, the shape of the smoother may change. What it tells 
us now is that we should consider using a smoother in the model for the covariate Year. 

When trying to fix the spatial dependency and zero-inflation problems we should not 
implement a model that attempts to solve all problems at once. Some of the problems 
may be due to the same cause; for example, lots of zeros next to one another is zero 
inflation but also spatial correlation. And if these zeros occur in sequential years, then the 
temporal smoother may also try to capture them. These are all scenarios for numerical 
estimation problems. We should really extend the model step by step. The question 
is then how to proceed, which problem do we tackle first. This is a matter of knowing 
the data, doing simple things first and addressing the underlying questions. Violation of 
independence is a more important problem than zero inflation. We will therefore apply 
models with spatial dependency in the next chapter. 



Chapter 5 

GAMM applied on the UK Red 
knot data in R-INLA 

5.1 Model formulation 

In this chapter we will apply a Poisson GAMM on the Red knot data from the UK in 
R-INLA. The reason for focusing on the UK data is to avoid excessively long computing 
time at this stage. The UK data were measured from 1975 onwards, and there is no need 
to remove the pre-1995 data for this country. 

CC2 <- subset(CC, Country == "GB") 
CC2 <- droplevels(CC2) 

In Appendix A of this report we explain that a smoother is a collection of abstract 
mathematical functions. We show that the smoother of the covariate Year can be written 
as 𝑓(Year) = 𝑋 × 𝛽, where the matrix 𝑋 contains columns with abstract mathematical 
functions, and the 𝛽s are the corresponding regression parameters. We also show in 
Appendix A how to execute a GAM as a linear regression model. We used the lm function 
to do this. The covariates in the lm function were the abstract mathematical functions in 
the matrix 𝑋. To understand the R code in this chapter, we assume that you are familiar 
with the code in Appendix A. 

The Poisson GAMM that we will apply is defined in (5.1). We will use a smoother for the 
covariate year. It is the long-term trend present at all sites. 

Counts𝑖𝑠 ∼ Poisson (𝜇𝑖𝑠)
E [RK𝑖𝑠] = 𝜇𝑖𝑠 (5.1)var [RK𝑖𝑠] = 𝜇𝑖𝑠 

log (𝜇𝑖𝑠) = 𝛽1 + 𝑓(Year𝑠) + 𝑢𝑖 

Instead of 𝛽×Year𝑠, which was used in the GLMM, the GAMM uses a smoothing function 
𝑓(Year𝑠). 
Just as in the previous chapter, initial analysis showed that the Poisson GAMM is still 
overdispersed. The same holds for the Poisson models with spatial correlation that will be 
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applied in the next chapter. We therefore decided to also implement a negative binomial 
(NB) GAMM; see Equation (5.2). 

Counts𝑖𝑠 ∼ NB (𝜇𝑖𝑠, 𝜃) 
E [RK𝑖𝑠]  = 𝜇𝑖𝑠 (5.2)

𝜃
𝑖𝑠 var [RK𝑖𝑠] = 𝜇𝑖𝑠 + 𝜇2 

log (𝜇𝑖𝑠)  = 𝛽1 +  𝑓(Year𝑠) + 𝑢𝑖 

Note that this distribution has an extra parameter 𝜃. For small values of 𝜃, the NB 
distribution allows for a large variation of the counts. In our experience, the NB 
distribution is capable of dealing rather well with zero-inflated data. 

5.2 Executing the Poisson GAMM in mgcv 

We only need three lines of R code to execute the Poisson GAMM in the gamm4 package 
(Wood and Scheipl, 2020) in R. 

G1 <- gamm4(RK ~ s(Year), 
data = CC2, 
family = "poisson") 

Instead of using the output of this model, we will execute the same model in R-INLA. 
The reason for this is that in R-INLA we can easily add spatial and spatial-temporal 
correlation. Doing this in the gamm4 or mgcv packages is bound to result in numerical 
estimation problems. The only problem with executing the Poisson GAMM in R-INLA is 
that the required code is rather lengthy. 

5.3 Executing the Poisson GAMM in R-INLA 

In this section we will show how to execute a GAMM in R-INLA. The R code to do this 
is not well described in the literature, so we will therefore present and explain the code in 
detail. It is fully explained in Zuur and Ieno (2018). 

In Appendix A we explain that a smoothing function of a covariate can be written as
𝑋  × 𝛽, and we also show how to obtain the basis functions (i.e. the columns of the 𝑋 
matrix). As explained in Appendix A we will keep the smoother relatively simple and use 
unpenalised cubic regression splines with 7 degrees of freedom. 

We will apply a Poisson GAMM in which Year is modelled as a smoother. The 
native smoothers in R-INLA can be quite unstable, and we will therefore use 
unpenalised cubic regression splines with 7 degrees of freedom. This will result in 
a curve that is fairly smooth and will only pick up the main patterns of a covariate 
effect. 



35 5.3. EXECUTING THE POISSON GAMM IN R-INLA 

We use the smoothCon function from the mgcv package to obtain the basis functions of a 
smoother. This is the X matrix for a smoother. 

NumKnots <- 8 #df = Number of knots - 1 
Lego.Year <- smoothCon(s(Year, bs = "cr", k =  NumKnots, fx = TRUE), 

data = CC2, absorb.cons = TRUE)[[1]] 

The Lego.Year component contains the knot positions and the basis functions, among 
other information. The 𝑋 matrix is extracted below. 

X.Year <- Lego.Year$X #f(Year) = X.Year * beta 

The object X.Year contains the 7 abstract mathematical functions that we will use as 
covariates in the model. This means that in order to estimate the smoother, we need to 
estimate 8 regression parameters (1 intercept + 7 parameters for the smoother). 

The inla function will be used to execute the Poisson GAMM in R-INLA. Just like the lm 
and glm functions we can use the data= argument to provide the data. However, if there 
is spatial correlation, then we need to make adjustments in how we pass data to R-INLA. 
This is done with the so-called stack function. 

When we apply models with spatial correlation then we need to use the stack 
function to combine the response variable, covariates and spatial correlation 
components. We might as well start using the stack function now as it means 
that in later chapters we only have to make small changes to the R code. 

We don’t have spatial correlation yet, but we might as well use the stack function at this 
stage of the analysis so that in later chapters we only have to make small modifications 
to the code. We use the stack function to combine all the data. The code for the stack 
function is explained in more detail in the next chapter. 

N <- nrow(CC2) 
StackPoissonGAMM <- inla.stack( 

tag = "Fit", 
data = list(RK = CC2$RK), 
A =  list(1, 1, 1), 
effects = list( 

Intercept = rep(1, N), #Intercept 
X.Year = X.Year, #f(Year) = X.Year * beta 
Site = CC2$Site)) #random intercept 

The last thing that we need to do is to specify a prior for the 𝜎 of the random intercept. 
As explained in Wang et al. (2018), the default gamma priors for variance parameters 
in R-INLA do not perform well for GLMMs, and it is recommended to use penalised 
complexity (PC) priors for such hyperparameters. A PC prior is defined as 𝑃(𝜎  > 𝑈) = 𝛼. 
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The task of the user is to select values for 𝑈 and 𝛼, for example 𝑃(𝜎 > 4) = 0.05. This 
states that the probability that the 𝜎 from the random intercept site is most likely smaller 
than 4. Such a prior is defined below. 

priorpc <- list(prec = list(prior = "pc.prec", 
param = c(4, 0.05))) 

The choice for this prior may appear subjective, but we can easily get some idea of likely 
values for 𝜎 by applying a model without any covariates and inspecting the estimated 𝜎 
for the random intercepts. In such a worst-case scenario, the value of 𝜎 is probably the 
largest that we may find. Wang et al. (2018) used a 𝜎 that is slightly larger than the 𝜎 
obtained by a model without any covariates. One should also keep in mind that a 𝜎 of 4 
implies that the majority of the random intercepts are between −1.96 × 4 and 1.96 × 4. 
And a random intercept of 7 or 8 means that the fitted values are around exp(7) or exp(8), 
which are rather large values. 

For the regression parameters we use diffuse normal priors, and there is no urgent need to 
adjust these. 

When we apply a GLMM or GAMM in R-INLA, an educated guess is required for 
the likely values of the 𝜎 of the random intercepts 𝑢𝑖, where 𝑢𝑖 ∼ 𝑁(0, 𝜎2). The 
general recommendation is to use a penalised complexity prior for 𝜎 and specify 
some sort of upper limit for the likely values of 𝜎 via 𝑃(𝜎 > 𝑈) = 0.05. Based 
on prior knowledge, initial data analysis and common sense, a sensible value for 𝑈 
needs to be selected. 

We are now ready to execute the Poisson GAMM in R-INLA; see the code below. 

Pois1 <- inla(RK ~ -1 + Intercept + X.Year + 
f(Site, model = "iid", hyper = priorpc), 

data = inla.stack.data(StackPoissonGAMM), 
control.predictor = list(A =  inla.stack.A(StackPoissonGAMM), 

link = 1), 
control.compute = list(dic = TRUE, waic = TRUE), 
control.inla = list(strategy='gaussian', 

int.strategy = 'eb'), 
family = "poisson") 

We also execute the negative binomial GAMM; see the code below. We compared the 
results with those obtained by the frequentist package glmmTMB. Results were similar. 

NB1 <- inla(RK ~ -1 + Intercept + X.Year + 
f(Site, model = "iid", hyper = priorpc), 

data = inla.stack.data(StackPoissonGAMM), 
control.predictor = list(A =  inla.stack.A(StackPoissonGAMM), 
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link = 1), 
control.compute = list(dic = TRUE, waic = TRUE), 
control.inla = list(strategy='gaussian', 

int.strategy = 'eb'), 
family = "nbinomial") 

HyperMar <- NB1$marginals.hyperpar 
theta.pd <- HyperMar$`size for the nbinomial observations (1/overdispersion)` 
theta.pm <- inla.emarginal(function(x) x, theta.pd) 

The reason that we execute the negative binomial GLMM is that we would like to use the 
posterior mean value of the parameter 𝜃 as a starting value for the spatial models that 
will be applied in later chapters. The NB GAMM produces a posterior mean of 𝜃 = 0.18. 
Once the model is finished, we have posterior mean values of all the regression parameters. 
We can also obtain fitted values and Pearson residuals. This allows us to assess the model 
for overdispersion and apply model validation. We still have spatial correlation in the 
random effects, and the Poisson GAMM cannot cope with the excessive number of zeros. 
The only problem that has been solved by the Poisson GAMM is the non-linear covariate 
effects. 
We will not show any of these model validation graphs here. Instead, we will show how to 
plot the smoothers in the next section, before we apply models with spatial correlation. 

5.4 Plotting the smoother in R-INLA 

When we use the plot function after applying the gamm4 or gam functions in a frequentist 
analysis, we get a graph of the smoother. There is no plot function that does this for 
the INLA smoothers. Instead, we have to implement a series of coding steps ourselves 
before we can visualise the smoothers. In essence, these are the same steps that the plot 
function does for a gamm4 object. 
In order to visualise or plot the smoother we need to perform a couple of steps. In short, 
we need to create a certain number (say 50) of made-up values for the covariate Year, 
and for these values we calculate the predicted counts. But because this is a smoother, we 
need to convert these made-up values into basis functions with the same knot locations as 
the original smoother. These new basis functions are then put into a stack (one stack per 
smoother) and then combined with the original stack. The code to do this is not presented 
here, but it is in the RMarkdown document that was used to generate this report. 
Before we show the smoother, we need to mention one more point. Recall that the Poisson 
GLMM is of the form 

= 𝑒Intercept+𝑓(Year𝑠)+𝑢𝑖 𝜇𝑖𝑠 

. 
Using some high school mathematics, namely 𝑒𝑎+𝑏 = 𝑒𝑎×𝑒𝑏, we can write the link function 
as 

= 𝑒Intercept × 𝑒𝑓(Year𝑠) × 𝑒𝑢𝑖 𝜇𝑖𝑠 

https://theta.pd
https://theta.pm
https://theta.pd
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. 

Figure 5.1A shows the 𝑒𝑓(Year𝑖) component obtained by the Poisson GAMM, and panel B 
shows the component obtained by the negative binomial GAMM. Note that we applied 
the exponential function. This means that the curve shows the multiplication factor to 
obtain the expected values of the Red knot counts. Let us focus on the smoother obtained 
by the negative binomial GAMM in panel B. When year is around 2000 then we need to 
multiply the rest of the model by approximately 1.35 to obtain the fitted values. When 
the year values are between 1975 and 1988, we need to multiply the rest of the components 
by a value close to 0.8 to obtain the expected values. 

1.2 

1.1 
1.5 

1.0 

1.00.9 

0.8 

0.5 

0.7 

Figure 5.1: A: Posterior mean values and 95% credible intervals for the smoother obtained 
by the Poisson GAMM applied on the Red knot data from the UK. B: Posterior mean 
values and 95% credible intervals for the smoother obtained by the negative binomial 
GAMM applied on the Red knot data from the UK. The smoothers are unpenalised cubic 
regression splines with 7 df. 

Finally, we have random effects. We extract them and combine them with the spatial 
coordinates of the site. 

a_i <- NB1$summary.random$Site[,"mean"] 
MyData.gamm <- data.frame(a_i = a_i, 

Xkm = tapply(CC2$Xkm, 
FUN = mean, 
INDEX = CC2$Site), 

Ykm = tapply(CC2$Ykm, 
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FUN = mean, 
INDEX =CC2$Site), 

Sign = ifelse(a_i > 0, "Positive", "Negative")) 

As discussed earlier in this section, we assume that the random intercepts are 
independently distributed. Figure 5.2 shows that this is not the case. Panel A shows 
a scatterplot of the spatial coordinates, and we have superimposed the sign of the 
random intercepts (obtained by the negative binomial GAMM). There is a clear grouping 
structure indicating spatial dependency in the random effects. Panel B shows a sample 
variogram of the random intercepts (of the negative binomial GAMM) and also indicates 
that there is spatial dependency to about 60 km. In summary, there is clear evidence 
that the random intercepts are spatially correlated. We therefore conclude that the 
Poisson GAMM and the NB GAMM are not good models, and further model extensions 
are required. 
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Figure 5.2: A: Plot of Xkm versus Ykm. Colours of the points are related to the sign of the 
posterior mean value of the random intercepts obtained by the negative binomial GAMM. 
B: Sample variogram of the posterior mean values of the random intercepts obtained by 
the negative binomial GAMM. 
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Chapter 6 

Spatial GAM applied on the UK 
Red knot data 

6.1 Introduction 

In Chapter 5 we applied generalised additive mixed-effects models and estimated a 
temporal trend for the UK Red knot data. We used random effects to model dependency 
between all observations from the same site. We called these the 𝑢𝑖s. We ended up with 
one 𝑢𝑖 for each site 𝑖. One of the underlying assumptions of the GAMM is that these 
random intercepts 𝑢𝑖 are independently distributed. However, model validation indicated 
that there is spatial dependency in these random effects, and that violates the model 
assumptions. In this chapter we will implement statistical models that allow for spatial 
dependency between the 𝑢𝑖s. The models are estimated using the INLA method, which 
is implemented in the R-INLA package (Rue et al., 2020) in R. 
In this report we avoid discussing technicalities of INLA. Instead, we focus on the 
conceptual points underlying INLA and show how to run a model with spatial correlation. 
We will also set the scene for the spatial-temporal GAMs that will be applied in Chapter 
7. For a detailed discussion of R-INLA, see Blangiardo and Cameletti (2015), For a 
non-technical explanation plus a large number of case studies, see Zuur et al. (2017) and 
Zuur and Ieno (2018). 

In this section we will apply Poisson, negative binomial, zero-inflated negative 
binomial and zero-altered negative binomial GAMs with spatial correlation. 

6.2 Model formulation Poisson GAM with spatial correlation 

The underlying questions are identical to those in Chapter 5. We will start with the 
following model. 

RK𝑖𝑠 ∼ Poisson (𝜇𝑖𝑠)
E [RK𝑖𝑠]  = 𝜇𝑖𝑠 (6.1)var [RK𝑖𝑠] = 𝜇𝑖𝑠 

log (𝜇𝑖𝑠)  = 𝛽1 +  𝑓(Year𝑠) + 𝑢𝑖 

41 



42 CHAPTER 6. SPATIAL GAM APPLIED ON THE UK RED KNOT DATA 

RK𝑖𝑠 is the number of Red knots at site i in year s. A smoother is used to model the 
effect of year. One may wonder what the difference is between the models in Equation 
(6.1) and Equation (5.1), which was presented in Section 5.1. The answer lies with the 
random effects 𝑢𝑖. In Section 5.1 the random intercepts 𝑢𝑖 were independently distributed 
with mean 0 and variance 𝜎2. Note the word ‘independently’. It implies that two random 
intercepts 𝑢𝑖 and 𝑢𝑗 are independent of each other, even if the corresponding sites are only 
1 kilometer apart. In this section we will relax this assumption and allow the random 
effects 𝑢𝑖 to be spatially correlated. 

It should be noted that the spatially correlated random effects may represent real 
dependency, but also unmeasured covariate effects. It is not possible to discriminate 
between them, unless such covariates become available and are included in the model. 
The role of the spatially correlated random effects is to ensure that no residual spatial 
patterns are left. It also imposes dependency on the Red knot counts. 

The only difference between the statistical models used in this chapter and those 
used in Chapter 4 is the independence assumption for the random effects. In this 
chapter we will allow them to be spatially correlated. This may affect the measures 
of uncertainty around the temporal trend. 

6.3 Distances between sites 

The purpose of the spatial correlation in the model is to capture small-scale dependency, 
where ‘small’ is relative to the distances between the sites. The first thing that we need to 
do is to define what is ‘small’ for these data. The left panel in Figure 6.1 shows a histogram 
of the distances between sites (in km). The right panel shows the cumulative distances. 
We would like to avoid the situation where the spatial correlation affects too many sites, 
so we limit it to about 10%-20% of the distance combinations. Spatial patterns on a larger 
scale may be captured with the covariates ‘Xkm’ and/or ‘Ykm’. Based on Panels A and 
B in Figure 6.1 we label distances up to about 150 to 200 km as ‘small’. 

The spatial correlation is meant to capture only small-scale spatial dependency. 

6.4 Defining the mesh 

The spatial correlation in the GAM is modelled via the random effects 𝑢𝑖. When we 
applied the Poisson GAMM in Chapter 5 we assumed that the random effects 𝑢𝑖 were 
independent and normal distributed, which we wrote as 𝑢𝑖 ∼ 𝑁(0, 𝜎𝑢

2). To allow for spatial 
dependency, we change the covariance structure and assume that the random intercepts 
are normal distributed with mean 0 and covariance matrix Ω. 

𝑢 ∼ 𝑁(0, Ω) 

The off-diagonal elements of Ω allow for correlation between the random effects at different 
locations. Estimating such a covariance matrix Ω has long been a major problem in 



43 6.4. DEFINING THE MESH 

Fr
eq

ue
nc

y 

0 
50

00
00

 
15

00
00

0

C
um

ul
at

ive
 p

ro
po

rti
on

 

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

0 400 800 1200 0 400 800 1200 

Distance between sites (km) Distance between sites (km) 

Figure 6.1: Left panel: Histogram of distances (km) between sites. Right panel: 
Cumulative distances between sites (km). 

statistics. Rue et al. (2009) provided an efficient computing approach using integrated 
nested Laplace approximation (INLA), which is implemented in the R-INLA package in 
R. A brief outline is provided below. A more detailed, and non-technical explanation can 
be found in Blangiardo et al. (2013), Zuur et al. (2017), Zuur and Ieno (2018) or Wang 
et al. (2018). 

Instead of estimating the random intercepts 𝑢𝑖 directly, a grid is defined. This grid is 
called the ‘mesh’; see Figure 6.2 for an example. The mesh consists of a large number 
of triangles that share vertices and corner points (also called nodes). The configuration 
of the triangles is such that a sampling site is either inside a triangle or on one of the 
three nodes. At each node there is a 𝑤𝑘. If a mesh has 2,000 nodes, there will be 2,000 
of those 𝑤𝑘s. If a sampling location is inside a triangle, then the random intercept 𝑢𝑖 is 
calculated as a weighted average of the three 𝑤𝑘s of the relevant triangle (nodes). The 
weights are given by the distances between the sampling location and the nodes of the 
relevant triangle. The covariance matrix Ω is also a function of the covariance matrix of 
the 𝑤𝑘s. So the problem of estimating the random intercepts 𝑢𝑖 and its covariance matrix 
Ω shifts to estimating the 𝑤𝑘s and its covariance matrix. 

In a model with spatial correlation, R-INLA does not estimate the random effects 
𝑢𝑖 directly. Instead it defines a dense grid of triangles. At each node of the triangle 
a 𝑤𝑘 is estimated. Once we know the 𝑤𝑘s we can calculate the random effects 𝑢𝑖. 

The R code below was used to generate and plot the mesh. In essence only the RangeGuess 
is a value that the user needs to select. All other settings can be kept as it is. We will 
discuss the code in more detail. 

RangeGuess <- 175 #in km 
MaxEdge <- RangeGuess / 5 
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Loc <- cbind(CC2$Xkm, CC2$Ykm) 
NonConvHull <- inla.nonconvex.hull(Loc, convex = -0.06) 
mesh <- inla.mesh.2d(boundary = NonConvHull, 

loc = Loc, 
max.edge = c(1,5) * MaxEdge, 
cutoff = MaxEdge / 5) 

par(mfrow = c(1,1), mar = c(0, 0, 0, 0)) 
plot(mesh, asp=1, main = "") 
points(Loc, col = 2, pch = 1, cex = 0.5) 

Figure 6.2: Mesh for the UK Red knot data. 

We need not only the 𝑤𝑘 but also its covariance matrix. Instead of trying to estimate the 
covariance matrix of the 𝑤𝑘s directly, a mathematical function is used to define the value of 
the correlation. This is done with the so-called Matérn correlation function. This function 
depends on the distance between sites. It has two parameters: a 𝜎𝑢 and a parameter 𝜅 
(pronounced kappa). The parameter 𝜅 is linked to the range, which represents the distance 
at which spatial dependency diminishes. So in principle we can forget about the 𝜅 and 
only think about the range. If the range is large, then the spatial correlation covers large 
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areas; if the range is small, then it only affects sites close to one another. Hence, if R-INLA 
gives a very small range we might as well apply a model without spatial correlation. 

For a given mesh, R-INLA will estimate the 𝑤𝑘 values and its covariance matrix. 
Once we have these, we can calculate the 𝑢𝑖s if we wish. The finer the mesh, the 
more accurate the solution but at a cost of more intensive computing. Behind the 
magical curtain of integrals and derivatives, R-INLA uses a complex mathematical 
function to define covariance between the 𝑤𝑘s as a function of distance between 
sites and two unknown parameters (the range and 𝜎𝑢). 

Let us return to the mesh in Figure 6.2 and the R code that we used to generate the mesh. 
There is an inner area and an outer area, separated by a blue line. It is recommended 
to use an outer area to avoid numerical estimation problems due to so-called boundary 
problems. This is a purely technical requirement. Because every extra node means we 
have to estimate an extra 𝑤𝑘 value, it is preferable to use a less dense resolution in the 
outer area. The max.edge = c(1, 5) * MaxEdge causes a ratio of 1 to 5 between the 
resolutions in the inner and outer parts. This is a recommended ratio. The blue line that 
divides the inner and outer areas is obtained by putting a non-convex hull around the 
sampling location. There are different ways to control the density of the triangles, for 
example, with the maximum edge length of the triangles. When selecting the maximum 
edge value we should keep in mind the anticipated value of the range. Based on our desire 
to let the correlation affect sites that are separated by up to about 150-ish km, we selected 
a range of 175 km (this is RangeGuess). During initial analysis we also tried values of 125, 
150 and 200 km. It is recommended to define the maximum edge length as a fifth of this 
value. The cutoff argument ensures that sampling locations that are within a distance 
that is smaller than the cut-off value are replaced by a single vertex. This is useful if there 
are sampling locations with the same spatial locations or if some are very close to one 
another. It avoids a mesh with lots of very small triangles in certain areas. 

Before continuing we show the number of nodes. 

mesh$n 

## [1] 1589 

Our mesh has 1589 observations. As we mentioned earlier, the more nodes we have, the 
more 𝑤𝑘s we use, and the more accurate the INLA approximation, but the longer the 
computing time. In general, a mesh with 1000 nodes (i.e. 𝑤𝑘 values) takes only a few 
minutes on a fast computer. We can easily cope with meshes of higher density, although 
ultimately the choice of the mesh size depends on available computing power. In practice 
we choose the value of RangeGuess as large as computing time allows. Having said that, 
there will be a point at which increasing the value of RangeGuess no longer has any benefit. 
It is recommended to run the models with different mesh configurations and investigate 
whether there are any differences in the outcome. 
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From a practical point of view, we only need to choose the value of RangeGuess 
to generate a mesh. We defined it as 100 km. 

6.5 Controlling the spatial dependency term 

Next, we execute three commands. The first and third commands should be executed 
without making changes for different models and mesh configurations. They require no 
explanation at this stage. The second command does require some explanation. 

A <- inla.spde.make.A(mesh, loc = Loc) 
spde <- inla.spde2.pcmatern(mesh, 

prior.range = c(100, 0.05), 
prior.sigma = c(5, 0.05)) 

w.index <- inla.spde.make.index('w', n.spde = spde$n.spde) 

In Appendix A we explain smoothers. At this point in the reading of this report you 
may want to glance at that appendix. We start with the moving average and LOESS 
smoothers. We explain that the wiggliness of these smoothers is controlled by the size of 
the window that selects local points. Use a large window and the smoother is a straight 
line; use a small window and the smoother goes from point to point. We then introduce 
linear spline regression, quadratic spline regression and cubic spline regression models. 
The wiggliness of such smoothers can be controlled (partly) by the number of knots. 
The spatial correlation term in the GAM is essentially a two-dimensional smoother of 
spatial coordinates. Again, there is a mechanism to control the wiggliness of such a 
smoother. We will discuss this mechanism now. The spatial correlation can be envisioned 
as a collection of mountains. If the value of the range is large, then there is only one, or 
perhaps a few, gently sloping mountains. If the range is small, then we may end up with 
lots of small-radius mountains. In addition to the width of a mountain there is also the 
height of a mountain. We can control this with the 𝜎𝑢 parameter. If 𝜎𝑢 is small, then the 
mountains are not very high, whereas a large 𝜎𝑢 will result in high mountains. So a large 
range and a large 𝜎𝑢 imply that we have a few, but high and wide, mountains. A small 
range with a large 𝜎𝑢 means lots of high mountains with a small diameter. 
As we have already mentioned, one can also view the ‘spatial dependency’ term as a 
two-dimensional smoother of the spatial coordinates. If such a model is fitted with the 
mgcv package in R, then we use the notation s(Xkm,Ykm), and we can control the shape 
of such a smoother with a term called the effective degrees of freedom (edf). A high value 
for edf means that we have a smoother that is rather non-smooth, whereas a smoother 
with a low edf results in a rather smooth two-dimensional shape. 

The spatial correlation in the GAM is essentially a two-dimensional smoother of 
the spatial coordinates. We can control the amount of smoothing via the range and 
the 𝜎𝑢. A large range and a small 𝜎𝑢 means that we have a rather smooth pattern, 
whereas a small range and a large 𝜎𝑢 means that we have a two-dimensional 
smoother that shows lots of small and high values, and may even result in a perfect 
fit. 
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When estimating the smoother in a GAM using the mgcv or gamm4 packages in R, certain 
tools exist to estimate the optimal value for the amount of smoothing (i.e. the edf). This 
process is called cross-validation. But such a process is not available when determining 
the amount of smoothing that the ‘spatial dependency’ term is allowed to do. Instead we 
can specify likely values for the range and 𝜎𝑢. Or formulated better, we specify non-likely 
values via so-called penalised complexity priors. This means that, a priori, we need to 
specify the values 𝑟𝑎𝑛𝑔𝑒0 and 𝑠𝑖𝑔𝑚𝑎0 (and also 𝛼1 and 𝛼2) in the following two expressions. 

𝑃(range < 𝑟𝑎𝑛𝑔𝑒0) = 𝛼1
𝑃 (𝜎𝑢 > 𝜎0)  = 𝛼2 

In the R code above we use 

𝑃(range < 100 km) = 0.05
𝑃 (𝜎𝑢 > 5) = 0.05 

What we are saying here is that the probability that the range is smaller than 100 
km is rather small, and the probability that 𝜎𝑢 is larger than 5 is also rather small. 
By increasing range0 and decreasing sigma0 we can force the spatial correlation to be 
smoother. Choosing these values is a matter of trial and error, prior knowledge and visual 
observation that the resulting smoother does not overfit the data. This sounds subjective, 
but in practice it is not too difficult to choose these values. 

When we apply a spatial GLM or GAM in R-INLA, an educated guess is required 
for the likely values of the range (distance at which the spatial dependency 
diminishes) and the variation of the spatial random field (𝜎𝑢). This is done with 
penalised complexity priors. Using common sense, biological knowledge, results 
from initial analysis, expertise and some educated guess work, we need to specify 
values for range0 in 𝑃(range < range0) > 0.05 and 𝜎0 in 𝑃 (𝜎𝑢 > 𝜎0) = 0.05. 

6.6 Stack for the GAM with spatial correlation 

When using functions like lm, glm, gam, glmer or glmmTMB in R, the data can be specified 
with the data = ... argument. R-INLA uses the function inla to execute the models, 
but it has no data = ... argument, at least not when models with spatial correlation 
are executed. Instead we combine the response variable, covariates and the information 
about the 𝑤𝑘s in a so-called stack. 

The stack is defined with the inla.stack function; see the R code below. In the data 
argument of this function we specify the counts of Red knots. In the effects part we 
define covariates. 

The A = list(1,1,...,A) is perhaps the most confusing part of the stack. It requires 
modifications if covariates are added or removed. The problem is that the response variable 
and the covariates are measured at the sites, whereas the spatial dependency, defined on 
the nodes of the triangles, has a much higher resolution. In order to match the sampling 
locations with the nodes of the mesh we use the 1 as a sort of identify matrix and the 



48 CHAPTER 6. SPATIAL GAM APPLIED ON THE UK RED KNOT DATA 

second A to map the w_ks to the response and covariates. Note that this stack is nearly 
the same as we used for the Poisson GAMM. 

N <- nrow(CC2) 
StackGAMSpatial <- inla.stack( 

tag = "Fit", 
data = list(RK = CC2$RK), 
A =  list(1, 1, 1, A), 
effects = list( 

Intercept = rep(1, N), #Intercept 
X.Year = X.Year, #f(Year) = X.Year * beta 
fsite = CC2$Site, #Random intercept 
w = w.index)) #Spatial random field 

The stack is a tool to combine data that is defined on different spatial scales 
(i.e. response and covariates at the sites and the 𝑤𝑘s at the nodes of the mesh). 

6.7 Defining the formula 

Now that we have done the hard work we are nearly ready to execute the GAM with 
spatial correlation in R-INLA. We only have to define the model formula. 

Form1 <- RK ~ -1 + Intercept + X.Year + f(w, model = spde) 

This formula states that the counts of the Red knots are modelled as a function of an 
intercept, a year effect and the spatial dependency. Note that the ‘−1’ removes the 
standard intercept, and we use the newly defined Intercept from the stack. The reason 
for this odd way of coding an intercept is numerical stability of the software. 

6.8 Executing the spatial GAMs in R-INLA 

We are now ready to execute the spatial Poisson GAM. 

Spat.Pois <- inla(Form1, 
data = inla.stack.data(Stack50GAMSpatial), 
control.predictor = list(A =  inla.stack.A(Stack50GAMSpatial), 

link = 1), 
control.compute = list(dic = TRUE, waic = TRUE), 
#Faster calculation: 
control.inla = list(strategy='gaussian', 

int.strategy = 'eb'), 
family = "poisson") 
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The only piece of code that we did not show is adding the stacks that contain the 50 
covariate values for the two smoothers so that we can plot them. This explains why we 
use Stack50GAMSpatial and not StackGAMSpatial. 

Just as for the Poisson GLMM and Poisson GAMM, we need to extract the fitted values 
and calculate the Pearson residuals. We need to plot residuals versus fitted values, 
and versus all available covariates. The random effects are now allowed to be spatially 
correlated, so we do not need to check them for spatial dependency. We also need 
to simulate 1000 data sets from the model and see whether the model can cope with 
the excessive number of zeros. The Poisson GAM with spatial correlation was still 
overdispersed, which explains why we also execute the negative binomial GAM with spatial 
correlation. 

Hyper.NB <- list(size = list(initial = theta.pm, fixed = TRUE)) 
Spat.NB <- inla(Form1, 

family = "nbinomial", 
data = inla.stack.data(Stack50GAMSpatial), 
control.predictor = list(A = inla.stack.A(Stack50GAMSpatial), 

link = 1), 
control.family = list(hyper = Hyper.NB), 
control.inla = list(strategy='gaussian', 

int.strategy = 'eb'), 
control.compute = list(dic = TRUE, waic = TRUE)) 

As an alternative to the negative binomial distribution, we can use the zero-inflated Poisson 
(ZIP) or the zero-inflated negative binomial (ZINB) distributions. The ZIP and ZINB 
distributions are explained in Zuur et al. (2012). These are just modifications of the 
Poisson and negative binomial distributions in the sense that they allow for an excessive 
number of zeros (zeros that cannot be explained with the covariates). We will apply ZIP 
and ZINB GAMs with spatial dependency. The same covariates are used. 

We execute the ZIP and ZINB models as follows. 

Spat.ZIP <- inla(Form1, 
data = inla.stack.data(Stack50GAMSpatial), 
control.predictor = list(A = inla.stack.A(Stack50GAMSpatial), 

link = 1), 
control.compute = list(dic = TRUE, waic = TRUE), 
#Faster calculation: 
control.inla = list(strategy='gaussian', 

int.strategy = 'eb'), 
family = "zeroinflatedpoisson1",) 

Spat.ZINB <- inla(RK ~ -1 + Intercept + X.Year + f(w, model = spde), 
data = inla.stack.data(Stack50GAMSpatial), 
control.predictor = list(A = inla.stack.A(Stack50GAMSpatial), 

https://Hyper.NB
https://theta.pm
https://Hyper.NB
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link = 1), 
control.compute = list(dic = TRUE, waic = TRUE), 
control.inla = list(strategy='gaussian', 

int.strategy = 'eb'), 
control.family = list(hyper = Hyper.NB), 
family = "zeroinflatednbinomial1") 

6.9 Comparing models 

To compare models with different sets of covariates or different dependency structures, we 
use the DIC and WAIC, which are Bayesian alternatives for the AIC. These are as follows. 

## DIC WAIC 
## Poisson GAMM 5240502.16 2.285740e+06 
## Poisson GAM + SRF 4807554.01 1.202780e+64 
## NB GAMM 45669.55 4.584367e+04 
## NB GAM + SRF 66759.86 6.889427e+04 
## ZINB GAM + SRF 57696.48 5.901783e+04 

The abbreviation ‘SRF’ stands for ‘spatial random field’ and represents the spatial 
dependency. The lower the DIC, the better the model, as judged by the DIC. Note that 
the Poisson GAM with spatial correlation has rather odd values for the DIC and WAIC. 
The posterior mean value of 𝜎𝑢 is 34 in the Poisson GAM with spatial correlation. This 
means that some of the 𝑤𝑘 are excessively large. Its four largest values are 41.28, 46.12, 
56.04 and 244.07. After applying the exponential function we end up with fitted values 
that are extremely large. This is the first indication that there are some serious problems 
with the analysis of these data. We tried to reduce the value of 𝜎𝑢, but that caused other 
problems (i.e. a rather small range). 
Note that the negative binomial GAMM has a lower DIC than the negative binomial GAM 
with spatial correlation. This is to be expected. The random effects in the NB GAMM 
have full flexibility, whereas in the NB GAM with spatial correlation, random effects of 
sites close to one another are forced to be similar. In this case, the model with restrictions 
is more limited in what it can do, and therefore its DIC is larger. However, the NB 
GAMM violates the independent assumption, so it is not a candidate model. The only 
four models that we should consider here are the models with spatial correlation. Of these, 
the zero-inflated negative binomial GAM with spatial correlation is considerably better 
than the other models, and we therefore focus on the ZINB GAM with spatial correlation 
in the next sections. 
A model validation applied on the zero-inflated negative binomial GAM with spatial 
correlation did not indicate any major problems. 

6.10 Results of the ZINB GAM with spatial dependency 

Before presenting the results of the ZINB GAM with spatial correlation, we present the 
model formulation. 

https://57696.48
https://66759.86
https://45669.55
https://4807554.01
https://5240502.16
https://Hyper.NB
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RK𝑖𝑠 ∼ ZINB (𝜇𝑖𝑠, 𝜃, 𝜋) 
E [RK𝑖𝑠]  =  (1  − 𝜋) × 𝜇𝑖𝑠 (6.2)var [RK𝑖𝑠]  =  (1 − 𝜋)  × 𝜇𝑖𝑠 × (1 + 𝜋  ×  𝜇𝑖𝑠 + 𝜇

𝜃
𝑖𝑠 )

log (𝜇𝑖𝑠)  = 𝛽1 +  𝑓(Year𝑠) + 𝑢𝑖 

The term 𝜋 is used to model the excessive number of zeros that cannot be modelled with 
the covariates in the count part of the model. When 𝜋  = 0  we obtain the negative binomial 
distribution. In R-INLA, 𝜋 cannot be modeled as a function of covariates. Instead, it is 
constant. The posterior mean value of 𝜋 is 0.52. 

The count part of the ZINB GAM with spatial correlation contains an intercept, the 
smoother for year and spatial correlation. The smoother is plotted in Figure 6.3. Just as 
before we have applied the exponential function, so along the 𝑦-axis we are visualising the 
multiplication factors to get the expected counts for Red knots. 
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Figure 6.3: Posterior mean values and 95% credible intervals for the year smoother 
obtained by the ZINB GAM with spatial correlation applied on the UK Red knot data. 
The smoother is an unpenalised cubic regression spline with 7 df. 

In Equation (6.2) we explained that the expected values of the ZINB GAM are given by 

(1 − 𝜋) × 𝑒Intercept × 𝑒𝑓(Year𝑠) × 𝑒𝑢𝑖 

and we plotted the effects of year in Figure 6.3. When we plotted the smoother, we applied 
the exponential function. The ZINB GAM with spatial correlation has correlated random 
effects 𝑢𝑖. We explained that we estimate 𝑤𝑘 values on a fine mesh. We can extract these 
𝑤𝑘s and plot them; see Figure 6.4. Just as in Section 5.4 we can choose whether we want 
to plot the 𝑤𝑘s or 𝑒𝑤𝑘 . We decided to plot the 𝑤𝑘s. 

The interpretation of the spatial random field in Figure 6.4 is as follows. In those areas 
where we have dark red colours, the 𝑤𝑘s and therefore the 𝑢𝑖s, are around 9. This means 
that the multiplication factor (to get the expected RK) due to the spatial correlation is 
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around exp(9) ≈ 8100. That is considerably more than the effect of the trend! In the 
dark purple areas, the 𝑤𝑘 are around −5. This means that the multiplication factor to 
get the fitted values is around exp(−5) ≈ 0. In simple terms this means that we either 
have missing covariates or real spatial dependency that is causing higher expected values 
in the red areas and lower expected values in the purple areas. In the dark red areas the 
multiplication factor is more than 8000, and in the dark purple areas we probably have 
plenty of zero Red knots. 
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Figure 6.4: Spatial random field obtained by the ZINB GAM with spatial correlation. 
Yellow dots represent the sampling locations. 

The underlying mathematical model for the spatial correlation in the GAM is the Matérn 
correlation function. The parameters of this correlation function are estimated by R-INLA, 
and its shape is presented in Figure 6.5. 

The posterior mean value of the range is 30.15 km. If we quantify ‘highly correlation’ 
as correlation values between 0.8 and 1, then the Matérn correlation function in Figure 
6.5 indicates that sites separated by up to around 50 km are highly correlated. And if 
we deem correlation between 0.5 and 0.8 and ‘moderately correlated’, then all sites that 
are separated by 50 to 100 km are deemed moderately correlated. Any sites separated by 
more than 30.15 km (which is the value of the range) have a very low correlation. The 
value of the range indicates that about 2% of the site combinations are affected by the 
spatial correlation. 

6.11 Two major problems 
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Figure 6.5: Matérn correlation function obtained by the ZINB GAM with spatial 
correlation applied on the UK Red knot data. 

6.11.1 Correlation changing over time 

There are two major problems with the spatial ZINB GAM (and all other spatial models 
that we have executed thus far), that may potentially limit its use. The Matérn correlation 
function allows that random effects of neighboring sites are correlated. But it does not 
allow for any temporal changes in the correlation. Formulated differently, the model 
assumes that two observations separated by (for example) 10 km are highly correlated, 
even if one observation was made in 1995 and the other in 2018. From a biological point of 
view it is unlikely that there is correlation between these two observations. The solution 
to this problem is to allow the spatial correlation to change over time. For this we need a 
GAM with spatial-temporal dependency. We will do this in the next chapter. 

6.11.2 Small fitted values 

The second problem becomes appearent when we plot the fitted values versus the observed 
data. The fitted values of the ZINB GAM with spatial correlation are obtained as follows. 

N <- nrow(CC2) 
mu <- Spat.ZINB$summary.fitted.values[1:N, "mean"] 
Pi <- Spat.ZINB$summary.hyperpar[ 

"zero-probability parameter for zero-inflated nbinomial_1", 
"mean"] 

ExpCounts <- (1 - Pi) * mu 

Once we have the fitted values ExpCounts of the ZINB GAM with spatial correlation, we 
plot them against the observed number of Red knots; see Figure 6.6. Note that the model 
is not able to fit the larger fitted values. The largest fitted value of the ZINB GAM with 
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spatial correlation is 5563.02. There are 364 observations on Red knots that are larger 
than 5563.02. If we want to predict population trends, then this is a major problem. 
Allowing for spatial random fields that change over time may improve this problem. 
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Figure 6.6: Observed data plotted versus the fitted values of the ZINB GAM with spatial 
correlation. 

6.11.3 A small simulation study 

In this subsection we will explain why the fitted values obtained by the ZINB GAM 
with spatial correlation produces fitted values that do not represent the larger Red knot 
observations very well. We will use a small simulation study for this. 

We will simulate data from a zero-inflated Poisson GLM, but the same principles apply 
for the negative binomial and ZINB distributions. Suppose that we use the following ZIP 
GLM. 

𝑌𝑖 ∼ ZIP (𝜇𝑖, 𝜋) 
E [𝑌𝑖] = (1 − 𝜋) × 𝜇𝑖 (6.3) 

log (𝜇𝑖) = 1 + 3 × 𝑋𝑖 

This is a simple ZIP GLM in which we selected the intercept as 1, the slope for a covariate
𝑋𝑖 as 3, and we will use 𝜋 = 0.75. We will simulate 1,000 values for a covariate 𝑋𝑖 by 
drawing values from a uniform distribution. Once we have the intercept (1), slope (7), 
covariate (X) and 𝜋 (0.75),we can calculate the mu and simulate zero-inflated Poisson data 
(Y) with the rzipois function from the VGAM package (Yee, 2021). 

set.seed(123) 
library(VGAM) 

<- sort(runif(1000)) 
mu <- exp(1 + 7 * X) 
X 
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Pi <- 0.75 
Y <- rzipois(1000, lambda = mu, pstr0 = 0.75) 
ZipData <- data.frame(X = X, 

Y = Y) 

The data frame ZipData contains the data that we would normally sample in the field. 
Figure 6.7 shows a frequency plot of the Y data and also a scatterplot of Y versus X. The 
percentage of observations in Y equal to 0 is 75.6%. 
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Figure 6.7: Left: Frequency plot of the simulated Y variable showing an excessive number 
of zeros. Right: Scatterplot of Y versus X. The horizontal line at 0 is in fact a series of 
observations that are all equal to 0. 

When we apply a ZIP GLM on these data we obtain estimated values close to the original 
ones, as can be seen from the code below. 

library(pscl) 
M2 <- zeroinfl(Y ~ X | 1, 

data = ZipData) 
summary(M2) 

## 
## Call: 
## zeroinfl(formula = Y ~ X | 1, data = ZipData) 
## 
## Pearson residuals: 
## Min 1Q Median 3Q Max 
## -0.5689 -0.5677 -0.5559 -0.4726 3.6030 
## 
## Count model coefficients (poisson with log link): 
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## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 1.02435 0.01912 53.58 <2e-16 *** 
## X 6.97005 0.02233 312.09 <2e-16 *** 
## 
## Zero-inflation model coefficients (binomial with logit link): 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 1.12749 0.07369 15.3 <2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Number of iterations in BFGS optimization: 5 
## Log-likelihood: -1462 on 3 Df 

Note that the zeroinfl function does not give 𝜋 directly. Instead, we can calculate 𝜋 via
𝜋 = exp(1.12)/(1 + exp(1.12)) = 0.76. 

The dispersion statistic of the ZIP GLM is 0.96, indicating that there is no overdispersion. 
Figure 6.8 shows the model fit of the ZIP. The red line is equal to (1 − 𝜋) × 𝜇𝑖, and these 
are the expected values of the ZIP GLM. The green line is the 𝜋 and the black line is the 𝜇𝑖 

component. Note that the expected values of the ZIP (red line) are between the lines for 
the count data and the zeros. Many users of ZIP, NB and ZINB models are surprised to 
see that the expected values of the model are not going through the centre of the non-zero 
count data. The expected values of a ZIP are a weighted average of the count part of the 
model (𝜇𝑖) and the binary part (𝜋). This explains why the fitted values obtained by the 
ZINB GAM with spatial correlation applied on the Red knot data produces fitted values 
that are considerably lower than the 90 largest observed values. 
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Figure 6.8: Fitted values of the ZIP (red line). The count part (red line) and binary part 
(green line) of the ZIP model are also presented. 

Finally, we discuss why a quasi-Poisson model is not a good alternative. If we apply a 
Poisson GLM on these data, we get the following results. 

https://exp(1.12
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M3 <- glm(Y ~ X, 
family = poisson, 
data = ZipData) 

summary(M3) 

## 
## Call: 
## glm(formula = Y ~ X, family = poisson, data = ZipData) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -36.297 -12.188 -4.189 -1.491 64.375 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 0.05506 0.01788 3.08 0.00207 ** 
## X 6.43910 0.02085 308.89 < 2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for poisson family taken to be 1) 
## 
## Null deviance: 462296 on 999 degrees of freedom 
## Residual deviance: 285285 on 998 degrees of freedom 
## AIC: 286852 
## 
## Number of Fisher Scoring iterations: 6 

The estimated slope of this model is diverting from what we selected (7), and the model has 
a dispersion statistic equal to 316.98, which indicates severe overdispersion. Actually, we 
choose the slope as 7 in this simulation study to mimic the amount of overdispersion that 
we obtained for the Red knot data. Some scientist apply a quasi-Poisson model when the 
Poisson is overdispersed. Such a model produces the same slope, but corrects the standard 
errors (of the Poisson GLM) by multiplying them with the square root of the dispersion 
statistic. This procedure is fine if the overdispersion in the Poisson GLM is small (<5), but 
it may produce biased parameter estimates for larger amounts of overdispersion. Below 
we apply the quasi-Poisson GLM on the simulated data. 

M4 <- glm(Y ~ X, 
family = quasipoisson, 
data = ZipData) 

summary(M4) 

## 
## Call: 
## glm(formula = Y ~ X, family = quasipoisson, data = ZipData) 
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## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -36.297 -12.188 -4.189 -1.491 64.375 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 0.05506 0.31833 0.173 0.863 
## X 6.43910 0.37117 17.348 <2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 317.0195) 
## 
## Null deviance: 462296 on 999 degrees of freedom 
## Residual deviance: 285285 on 998 degrees of freedom 
## AIC: NA 
## 
## Number of Fisher Scoring iterations: 6 

The standard error of the slope has now been corrected, but the 95% confidence interval 
just contains only the original value. We could have simulated data in which the 
quasi-Poisson produces biased parameter estimates. Hilbe (2014) argues that if there 
is overdispersion, then the cause of the problem has to be found, and this needs to be 
modelled accordingly. In other words, if there is severe overdispersion in a Poisson GLM 
or GAM, then quasi-Poisson should not be applied. 



Chapter 7 

GAM with spatial-temporal 
replicate correlation 

In the previous chapter we applied negative binomial and zero-inflated negative binomial 
GAMs with spatial correlation. The spatial correlation was assumed to be constant over 
time. In this chapter we will apply the same two GAMs, except that we now allow the 
spatial correlation to change over time. The link function for both models is defined as 
follows. 

log(𝜇𝑖𝑠) = 𝛽1 + 𝑓(Year𝑖𝑠) + 𝑣𝑖𝑠 

Note that we now use the notation 𝑣𝑖𝑠 for the random intercepts. We discuss two options 
to model the spatial temporal random effects 𝑣𝑖𝑠. Both options will produce a set of 𝑤𝑘s 
for each year. This means that we will end up with 44 spatial random fields for the UK Red 
knots data, and we can plot these in 44 colour images. These spatial random fields may 
represent missing covariates, missing interactions or real dependency. The fundamental 
question is now how these spatial random fields change from year to year. 
Option 1 is to use an auto-regressive correlation of order 1 (AR1). This means that we 
use 

𝑣𝑖,𝑠 = 𝜌 × 𝑣𝑖,𝑠−1 + 𝑢𝑖,𝑠 

We used a comma between the two subscripts to clearify the notation. The AR1 correlation 
states that the random effects in year 𝑠 are a function of the random effects in year 𝑠 − 1. 
The random effects 𝑢𝑖𝑠 are only spatially correlated and are modelled by the Matérn 
correlation function. The parameter 𝜌 is unknown and needs to be estimated. If 𝜌 is close 
to 1, then the spatial correlation in year 𝑠 is similar to that of year 𝑠 − 1. Hence, we will 
end up with 44 colour images that change rather slowly over time. 
Option 2 is the so-called replicate correlation. We get this if we force 𝜌 to be 0. It means 
that in each year there is spatial correlation, as determined by the random effects 𝑢𝑖𝑠, but 
from year to year the location of the spatial correlation is allowed to change randomly. It 
means that in year 𝑠 − 1 we may have high values for the spatial random field in one part 
of the study area and in year 𝑠 we can have high values in another part part. The strength 
of the spatial correlation, as quantified via the parameters for the Matérn correlation 
function, is assumed to be the same in all years. 
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The replicate correlation may be required for species that are dynamic in their spatial 
positions over time (e.g. birds), whereas the AR1 correlation may be more useful for 
species that are relatively stationary over time with respect to their spatial positions. In 
this report we will use the replicate correlation, for the simple reason that computing time 
is considerably shorter than for the AR1 model. 

7.1 Projector matrix 

We will use the same mesh as in Chapter 6. To implement a model in which the 
spatial correlation changes randomly from year to year, we need to inform R-INLA which 
observations belong to the same year. This needs to be coded via a vector with the values 
1 1 1 2 2 2, etc. This is the variable Repl in the code below. It has the value 1 for all 
observations from 1975, 2 for all observations from 1976, etc. 

Repl <- CC2$Year - min(CC2$Year) + 1 
NRepl <- length(unique(Repl)) 

The number of years is NRepl = 44. The number of observations per year varies between 
114 and 185. The model will estimate a spatial random field for each year. The minimum 
number of sites per year that is required for this technique is about 50. 

We need to define a projector matrix that contains 44 blocks of weighting factors. The 
argument repl = Repl in the inla.spde.make.A function below does that. 

Arepl <- inla.spde.make.A(mesh = mesh, 
loc = Loc, 
repl = Repl) 

We also need to inform INLA that the spatial random field consists of 44 blocks. 

wrepl.index <- inla.spde.make.index( 
name = 'w', 
n.spde = spde$n.spde, 
n.repl = NRepl) 

7.2 Defining the stack 

The stack for the models with the replicate correlation is similar to that of the spatial 
models. We only changed is the projector matrix (Arepl), the name of the spatial random 
field (wrepl.index) and the name of the stack. 
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N <- nrow(CC2) 
StackRepl <- inla.stack( 

tag = "Fit", 
data = list(RK = CC2$RK), 
A = list(1, 1, Arepl), 
effects = list( 

Intercept = rep(1, N), # Intercept 
X.Year = X.Year, # f(Year) 
w = wrepl.index)) # Spatial-temporal correlation 

All.StackRepl <- inla.stack(StackRepl, #Observed data. 
StackPr.Year) #f(Year) for 50 values. 

7.3 NB and ZINB GAMs with the replicate correlation 

We execute the NB and ZINB GAMs with the replicate correlation with the following 
code. 

Repl.NB <- inla(RK ~ -1 + Intercept + X.Year + 
f(w, model = spde, replicate = w.repl), 

family = "nbinomial", 
#control.family = list(hyper = Hyper.NB), 
control.inla = list(strategy='gaussian', 

int.strategy = 'eb'), 
data = inla.stack.data(All.StackRepl), 
control.predictor = list( A = inla.stack.A(All.StackRepl), 

link = 1), 
control.compute = list(dic = TRUE, waic = TRUE)) 

Repl.ZINB <- inla(RK ~ -1 + Intercept + X.Year + 
f(w, model = spde, replicate = w.repl), 

family = "zeroinflatednbinomial1", 
#control.family = list(hyper = Hyper.NB), 
control.inla = list(strategy='gaussian', 

int.strategy = 'eb'), 
data = inla.stack.data(All.StackRepl), 
control.predictor = list( A = inla.stack.A(All.StackRepl), 

link = 1), 
control.compute = list(dic = TRUE, waic = TRUE)) 

We compare both models with their DIC and WAIC values. 

## DIC WAIC 
## NB GAM + replicate SRF 51120.37 51157.96 
## ZINB GAM + replicate SRF 50802.27 51975.50 

https://51975.50
https://50802.27
https://51157.96
https://51120.37
https://Hyper.NB
https://Hyper.NB
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The ZINB GAM with the spatial replicate correlation has the lower DIC and WAIC values, 
and we will present the results of this model. 

7.4 Results of the ZINB GAM with replicate correlation 

The temporal trend is presented in Figure 7.1. It shows a nearly flat line with large 95% 
credible intervals, and it indicates that there are no major changes over time. Note that 
we have visualised exp(𝑓(Year𝑖𝑠)). 
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Figure 7.1: Posterior mean values and 95% credible intervals for the temporal trend 
obtained by the ZINB GAM with the spatial-temporal replicate correlation. 

The model also produces a spatial random field for each year. We have plotted these 
in Figure 7.2. The dark red areas correspond to hotspots (higher abundances) of Red 
knots and the dark purple areas to coldspots (lower abundances). There are only minor 
changes over time, and if we compare the DICs of the models with spatial correlation 
and spatial-temporal correlation, then the spatial models are prefered. This indicates that 
there are only minor changes over time. An AR1 model gives a 𝜙 close to 1, which also 
indicates that there are minor changes over time. 

These results can be interpreted in two ways. The first interpretation is that there 
are spatial patterns in the distribution of Red knot counts, but these do not change 
much over time. This would mean that a spatial ZINB GAM will be sufficient to 
describe the data, and that there is no need for spatial temporal models for this specific 
species. The second possible interpretation is that there are temporal changes, but 
numerical estimation problems prevent the model from estimating it. We noticed that 
the spatial-temporal models are rather sensitive to changes in the mesh configurations, 
priors and starting values. Closely related models sometimes gave rather different 
values for the range, 𝜃 and 𝜎𝑢. To avoid excessively long computing time, we had to 
use control.inla = list(strategy = 'gaussian', int.strategy = 'eb'), which 
means that the software uses rather crude (though fast) approximation techniques to 
obtain the posterior distributions. This may be due to the rather large values for the 
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Figure 7.2: Posterior mean values of the spatial random field for each year by the ZINB 
GAM with the spatial-temporal replicate correlation. 
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counts, or high count values that are not spatially correlated. To further investigate 
which of these two is a plausible explanation, we will implement one more type of model, 
namely a hurdle model. 

7.5 ZANB GAM with spatial-temporal correlation 

7.5.1 Outline of ZANB analyses 

As a final analysis of the UK Red knot data, we will apply a GAM with a zero-altered 
negative binomial (ZANB) distribution. This is also called a hurdle model. In a 
ZANB model we apply two separate analysis. We first apply a Bernoulli model on the 
absence/presence data, and then we apply a truncated negative binomial model on the 
presence-only data. Once we have applied these two models, we can combine the two 
components and calculate the expected values. These are then used to predict Red knots 
counts. We summarise the workflow below. 

1. Apply Bernoulli GAM with spatial correlation on the absence/presence data of Red 
knots. 

2. Apply a Bernoulli GAM with the spatial-temporal replicate correlation on the 
absence/presence data of Red knots. Compare the DIC and WAIC of both Bernoulli 
models. 

3. Apply a zero-truncated negative binomial GAM with spatial correlation on the 
presence-only Red knot data. This is data in which the zeros are removed. 

4. Apply a zero-truncated negative binomial GAM with spatial-temporal replicate 
correlation on the presence-only Red knot data. Compare the DIC and WAIC of 
both zero-truncated models. 

5. Combine the relevant components of the Bernoulli and zero-truncated models to 
calculate expected values of the ZANB model. 

We will provide the statistical formulation of the ZANB model towards the end of this 
section. 

7.5.2 Bernoulli models 

As explained above, a Bernoulli GAM with spatial correlation, and also with spatial 
temporal correlation, will be applied on the absence/presence data. The first thing that 
we need to do is to define a variable RK01, which represents absence (0) and presence (1) 
of Red knots. 

CC2$RK01 <- ifelse(CC2$RK > 1, 1, 0) 

The RK01 variable will be the new response variable. From here onwards the R code and 
statistical analyses are nearly identical to that of the Poisson and negative binomial GAMs. 
All that we need to do is to change family = "poisson" to family = "binomial". The 
R code is not presented here, but it is available in the RMarkdown file. 
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We executed both the Bernoulli GAM with spatial correlation and the Bernoulli GAM 
with spatial-temporal replicate correlation. The models were quite stable in the sense that 
mesh configurations, priors and starting values had minimal effect on the results. 

## DIC WAIC 
## Bernoulli GAM + SRF 5108.700 5069.976 
## Bernoulli GAM + replicate SRF 8725.813 8693.941 

Results show that the Bernoulli GAM with spatial correlation (that does not change over 
time) is better that the spatial-temporal model. This indicates that there are no major 
temporal changes over time in the probability of presence of Red knots at the sites in the 
UK. 

The trends obtained by both models are presented in Figure 7.3. Their temporal patterns 
are similar, although the 95% credible intervals are smaller for the replicate model. 
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Figure 7.3: Posterior mean values and 95% credible intervals of the temporal trend 
obtained by the Bernoulli GAM with spatial correlation (panel A) and the Bernoulli 
GAM with spatial-temporal replicate correlation (panel B). 

Figure 7.4 shows the spatial random field obtained by the Bernoulli GAM with spatial 
correlation. Sites in dark red areas have a higher probability of presence of Red knots, 
and sites in blue areas have a lower probability of presence. 

Out of curiosity, we also plot the 44 spatial random fields obtained by the Bernoulli GAM 
with spatial-temporal replicate correlation; see Figure 7.5. There are indeed no major 
changes over time in the probability of presence for this specific species. 
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Figure 7.4: Posterior mean values of the spatial random field for each year by the Bernoulli 
GAM with the spatial correlation. 

7.5.3 Truncated NB GAM with spatial-temporal correlation 

In order to execute the zero-truncated negative binomial GAMs, we need to create a new 
response variable. 

CC2$RKPos <- ifelse(CC2$RK > 0 , CC2$RK , NA) 

The variable RKpos equals the observed Red knot data, but the value of 0 is replaced by 
an NA. Missing values (NA) will not influence the posterior distributions of the regression 
parameters in R-INLA. The alternative is to remove all the rows for which RK equals 0, 
but that generates some problems when we calculate the expected values of the ZANB 
model. Executing a zero-truncated NB requires fairly complicated R code and is discussed 
in detail in Zuur and Ieno (2018). We will not explain the code here. 
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Figure 7.5: Posterior mean values of the spatial random field for each year by the Bernoulli 
GAM with the spatial-temporal replicate correlation. 
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We first applied a zero-truncated NB GAM with spatial correlation, but the model did 
not converge. This indicates that the numerical estimations problems that we encountered 
throughout the analyses of this data set are linked to the count part of the data. The model 
with the spatial-temporal replicate correlation did converge. The temporal trend obtained 
by this model is presented in Figure 7.6, and the spatial random fields are presented in 
Figure 7.7. To show that we still have similar ‘problems’ as for the ZINB models, we have 
plotted the observed data (without the zeros) versus predicted values from the truncated 
NB GAM (with spatial-temporal correlation); see Figure 7.8. Just as for the ZINB GAMs, 
the fitted values are considerably lower than the observed values. Most likely this is due 
to the use of negative binomial distribution; its mean value is not necessarily at the centre 
of the data. 
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Figure 7.6: Posterior mean values of the spatial random field for each year obtained by the 
zero-truncated negative binomial GAM with the spatial-temporal replicate correlation. 

7.5.4 ZANB model formulation 

Once we have fitted the Bernoulli GAM and the zero-truncated NB GAM, we can extract 
the relevant components of the model and calculate the expected values of the ZANB 
model as follows. These are the ones that will be used for estimation of population trends. 
We have plotted these versus the observed data in Figure 7.9. 

RK𝑖𝑠 ∼ ZANB (𝜇𝑖𝑠, 𝜃, 𝜋) 
E [ ] = 𝜋𝑖𝑠 RK𝑖𝑠 1−𝑃0 

× 𝜇𝑖𝑠 

𝑃0 = (𝜇𝑖𝑠
𝜃
+𝜃)𝜃 

(7.1)𝜋𝑖𝑠 
𝜃
𝑖𝑠 ) − (  𝜋𝑖𝑠 var [RK𝑖𝑠] =  1−𝑃0 

× (𝜇2
𝑖𝑠 + 𝜇𝑖𝑠 + 𝜇2 

1−𝑃0 
× 𝜇𝑖𝑠)2 

log (𝜇𝑖𝑠)  = 𝛽1 +  𝑓(Year𝑠) + 𝑣𝑖𝑠 

logit (𝜋𝑖𝑠)  = 𝛾1 +  𝑓(Year𝑠) + 𝑧𝑖𝑠 

In the second model, a truncated negative binomial GAM is applied on the data without 
the zeros. This will given the 𝜇𝑖𝑠 and the 𝜃. 
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Figure 7.7: Posterior mean values of the spatial random field for each year obtained by the 
zero-truncated negative binomial GAM with the spatial-temporal replicate correlation. 
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Figure 7.8: Observed number of Red knots (without zeros) and the fitted values of the 
zero-truncated NB GAM with spatial-temporal replicate correlation. 

0

40000

80000

120000

0 40000 80000 120000

Fitted values of the ZANB GAM

O
bs

er
ve

d 
da

ta
 w

ith
 z

er
os

Figure 7.9: Observed number of Red knots and the fitted values of the ZANB GAM with 
spatial-temporal replicate correlation. 



Chapter 8 

Oystercatcher data 

In this chapter we will apply the same methodology on the Oystercatcher data from South 
Africa. 

8.1 Data preparation 

In this section we will apply the same data preparation steps as in Section 3.1. We first 
import the data from the HAEMOV2.csv file, convert longitude and latitude into Xkm and 
Ykm, convert year into a categorical covariate and redefine Count as OC. Not all R code is 
presented here, but it is available in the RMarkdown file. 

OC <- read.csv(file = "HAEMOV2.csv", 
header = TRUE, 
na.strings = "NA", 
stringsAsFactors = TRUE) 

source("HighstatLibV13.R") 

8.2 Data exploration 

8.2.1 Spatial locations 

We first visualise the spatial locations on the sites; see Figure 8.1. 
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Figure 8.1: Sampling locations for all years. 

When we split this up by year we can see that the spatial-temporal resolution of the data 
is not as good as for the Red knot data. For sure, we cannot make a distinction between 
the two countries. For spatial-temporal models, we need at least 50-ish observations per 
year. This is not always the case. We should at least omit the data from 1992 to 2001. 
Alternatively, we should consider a model without spatial-temporal correlation. 
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Figure 8.2: Sampling locations for each year. 

We also visualised when the sites were sampled; see Figure 8.3. Note that a large number 
of sites were sampled rather inconsistently over time. This means that a trend over time 
may also reflect a change in sampling location. 
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Figure 8.3: Visualisation of sampling. A dot is plotted if a site was sampled in a year. 
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8.2.2 Oystercatcher numbers versus year 

We will now focus on the temporal trend in the Oystercatcher counts. Figure 8.4 shows 
the number of Oystercatchers for all sites versus year. A scatterplot smoother was added 
to aid the visual interpretation. There are no clear patterns, but this may be due to the 
large number of zeros and the large variation in the data. 
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Figure 8.4: Scatterplot of number of birds versus year. A scatterplot smoother was added 
to aid visual interpretation. 

8.2.3 Number of zeros 

The number of zeros in the Oystercatcher data is 29.14%, which is relatively large. We 
also present the number of observations and the number of observations equal (and not 
equal) to zero by country; see the table below. 

## Number of observations Number of zeros Number of non-zeros % of zeros 
## NA 269 62 207 23 
## ZA 740 232 508 31 

8.2.4 Conclusions 

The number of observations per year is relatively low, perhaps too low to implement 
models with spatial-temporal correlation. The percentage of zeros is 29.14%, which is not 
as high as for the Red knot data, but we do expect zero-inflation issues. 
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8.3 Poisson GLMM 

Our starting point is the same Poisson GLMM as in Equation (4.1). 

#Without the outlier: 
OC$Year.c <- MyStd(OC$Year) 
M1 <- glmmTMB(Count ~ Year.c + (1| Site), 

data = OC, 
family = poisson) 

We first check the model for overdispersion, which is indeed present. 

E1 <- resid(M1, type = "pearson") 
N <- nrow(OC) 
Npar <- length(fixef(M1)) + 1 #One sigma 
Dispersion1 <- sum(E1^2) / (N - Npar) 
Dispersion1 

## [1] 16.49304 

The amount of overdispersion is relatively large, and a detailed model validation was 
applied; see Figure 8.5. There is one observation that has a large Pearson residual. 
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Figure 8.5: Model validation graphs for the Poisson GLMM applied on the Oystercatcher 
data. A: Pearson residuals versus fitted values. B: Pearson residuals versus the covariate 
year. Observed versus fitted values. C: Spatial locations of the sites. The colour of a dot 
is linked to the sign of a Pearson residual. D: Sample variogram of the random intercepts. 
E: Results of simulating 1,000 data sets from the model. The histogram is the percentage 
of zeros in the 1,000 simulated data sets. The red dot is the percentage of zeros for the 
observed data. 
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The variation explained by the covariate is minimal, but the random effects explain quite 
a lot. 

library(performance) 
r2_nakagawa(M1) 

## # R2 for Mixed Models 
## 
## Conditional R2: 0.921 
## Marginal R2: 0.001 

Although it is not immediately obvious that we have to apply a GAM, we decide to give 
it a try. 

G1 <- gamm4(Count ~ s(Year), 
random =~ (1| Site), 
data = OC, 
family = poisson) 

The estimated smoother is presented in Figure 8.6 and shows that we do have a non-linear 
trend effect. Note that the shape of the smoother may well be linked to the unbalanced 
nature of the sampling of the sites. 
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Figure 8.6: Estimated smoother for year obtained by a GAMM. 

The Poisson GAMM is still overdispersed. 
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GE1 <- resid(G1$mer, type = "pearson") 
Npar <- sum(G1$gam$edf) + 1 #'+1' is for sigma nest 
N <- nrow(OC) 
GE1 <- resid(G1$mer, type = "pearson") 
OverdispGAMM <- sum(GE1^2) / (N - Npar) 
OverdispGAMM 

## [1] 13.23961 

The observation with the large Pearson residual is from site NA00011 in 1996. It is the 
observation with the largest observed value in Figure 8.4. Out of curiosity, we rerun all 
analysis without this observation. The overdispersion dropped to around 6. Panel A in 
8.5 looked much better, but all other model validation tools produced similar graphs. The 
estimated smoother obtained by apply the GAMM on the data without this observation 
was similar as well. We decided not to remove this observation. 

8.4 GAM with spatial correlation 

We decided to apply a GAM with spatial correlation, although we were not 100% convinced 
whether this is needed. The left panel in Figure 8.7 shows a histogram of the distances 
between sites (in km). The right panel shows the the cumulative distances. Based on 
Figure 8.7 we label distances up to about 150-200 km as ‘small’. 
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Figure 8.7: Left panel: Histogram of distances (km) between sites. Right panel: 
Cumulative distances between sites (km). 

Using identical code as for the Red knot data we create a mesh; see Figure 8.8. 

The mesh has 2090 nodes. We applied a Poisson GAMM with random effect site, a negative 
binomial GAMM with random effect site, a Poisson GAM with spatial correlation and a 
negative binomial GAM with spatial correlation. For the smoothing function of year, we 
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Figure 8.8: Mesh for the Oystercatcher data. 

used a cubic regression spline with 7 knots. We used a PC prior of the form 𝑃(𝜎 > 2) = 
0.05 for the 𝜎 of the random intercepts. For the range we used 𝑃 (Range < 100) = 0.05. 

We compare all four models with the DIC and WAIC values. Clearly, the two negative 
binomial models are better than the Poisson models. The DIC and WAIC of the GAMM 
are lower than those of the GAM with spatial correlation. With the Red knot data we 
argued that the GAMM was violating the independence assumptions, and therefore it was 
not a good model. That argument does not hold here as there was no clear pattern in 
the sample variogram of the Pearson residuals. Hence, in principle the negative binomial 
GAMM may be sufficient for these data. But out of curiosity we will present the trends 
and spatial random field obtained by the spatial GAM. 

## DIC WAIC 
## Poisson GAMM 9600.493 12260.983 
## NB GAMM 5511.053 5558.011 
## Poisson GAM + SRF 9973.889 12630.720 
## NB GAM + SRF 5616.179 5658.759 

8.4.1 Results of the spatial NB GAM 

Figure 8.9 shows the posterior mean value and 95% credible intervals for exp(Intercept +
𝑓(Year𝑖𝑠)). The trend shows a downward pattern from 1995 to 2000, a small increase 
around 2003, and a larger increase from 2007 to 2012, after which there are no major 
changes. 
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Figure 8.9: Posterior mean values and 95% credible intervals for the year effect obtained 
by the NB GAM with spatial correlation applied on the Oystercatcher data. The smoother 
is an unpenalised cubic regression spline with 7 df. We visualised exp(f(Year)). 

The spatial random field is presented in Figure 8.10. Note that we have some rather large 
negative values of the spatial random field. These are probably sites with zero counts. 

The fitted values of the NB GAM with spatial correlation are plotted versus the observed 
counts in Figure 8.11. Although the fit looks reasonably good, we have the impression 
that we are overfitting the data. 
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Figure 8.10: Spatial random field obtained by the NB GAM with spatial correlation. 
Yellow dots represent the sampling locations. 
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Figure 8.11: Observed number of oystercatchers and the fitted values of the NB GAM 
with spatial correlation. 
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Figure 8.12: Matérn correlation function obtained by the NB GAM with spatial correlation 
applied on the Oystercatcher data. 



Chapter 9 

Comments 

In this report we analysed count data from Red knots in the UK and Oystercatchers from 
South Africa. The aim was to provide a better approach than what is currently being used 
for these data, namely via TRIM. The TRIM approach predicts missing values, adds up 
the counts from all sites and then analyses the univariate time series using a quasi-Poisson 
GLM or GAM. 

One of our criticism against this approach is that adding up data from all sites ignores 
any spatial dependency issues. The analysis presented in this report shows that there 
is strong spatial correlation. Aggregating spatially correlated data results in information 
loss and obscures important processes in the ecological system under study. Clark and 
Avery (1976) already warned against aggregation and explained concepts as aggregation 
bias of regression parameters. Furthermore, aggregation of Red knot counts for 500-ish 
sites means that the few rather abundant sites dominate the signal. One might as well 
only use the data from only those few sites. 

Another criticism of the TRIM approach is that it used a quasi-Poisson approach if there 
is overdispersion. Such an approach should only be used if the overdispersion is up to 
about 5, not if the overdispersion is in the range of 500. Hilbe (2014) and Zuur et al. 
(2014), among many other publications, argue that overdispersion has a variety of causes. 

1. Outliers in the response variable. 
2. Missing covariates. 
3. Missing interactions. 
4. Covariate effects that are modelled as linear, whereas their effects are in fact 

non-linear. 
5. Temporal and spatial dependency that are not taken into account. 
6. Repeated measurements that are not taken into account. 
7. Use of the wrong link function. 
8. Zero inflation that is not taken into account by the model. 

It is the task of the scientist to determine what is driving the overdispersion, and to extend 
the model in such a way that the source of the problem is modelled. Selecting the wrong 
approach may result in biased parameter estimates and the wrong ecological conclusions. 

In this report we made an attempt to analyse the data using R-INLA. We only partly 
succeeded with this. The fact that the trends obtained by R-INLA do not look like the 
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trends obtained by TRIM is not the reason that we used the phrase ‘partly succeeded’. 
The TRIM trend for the Red knot data is mainly determined by a few abundant sites. 
Zero-inflation issues are removed by aggregating data. However, when we analyse the 
data from all 500-ish sites, we do have to deal with zero-inflation issues. We used 
negative binomial GAMs and zero-inflated negative binomial GAMs with spatial (and 
spatial-temporal) correlation for this. We noticed that the trends obtained by the models 
did not fit the observed data well. It is important to realise what the negative binomial 
distribution and its zero-inflation cousin do. We will simulate 10,000 values from a negative 
binomial GLM. We will use an intercept of −2, a slope of 0.1 and 𝜃 = 0.1 (which is a 
realistic value for the bird data sets that were analysed in this report). 

set.seed(123) 
X <- sort(runif(10000, 1, 2)) 
mu <- exp(-2 + 0.1 * X ) 
Y <- rnbinom(10000, mu = mu, size = 0.1) 

The simulated data are presented in Figure 9.1. The red line is the mu, and the fitted 
values of the model would be a line similar to the red line. Note that it is rather close 
to 0, which means that the non-zero data are fitted rather poorly. We noticed a similar 
pattern in Figure 6.8, where we showed the fitted value of a ZIP model. The actual fitted 
line of the model was in an area with no observed data at all. This is confusing for many 
scientists as they are used to the model fit of a linear regression model with a Gaussian 
distribution. In such models, the fitted line will go though the centre of the data. This is 
not necessarily the case for NB, ZINB and ZANB models. 
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Figure 9.1: Simulated negative binomial data. The red line represents the mean of the 
distribution. 

However, the use of the NB and ZINB distributions is not the main reason that the fit 
of the models is poor. The data are extremely noisy in the sense that one site can have 
1 bird and the next site can have 100,000 birds in a specific year. A model with only 
a temporal trend and spatial correlation is not capable of describing these data well. It 
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would be better to add covariates to the model that are able to describe the patterns in 
the data. 





Appendix A 

Technical information on 
smoothers 

Readers who are not interested in the technical background of basic smoothers may skip 
this appendix or just read the summary statements. The text below is partly based on 
Chapter 20 in Zuur and Ieno (2018). 

Smoothing techniques constitute a scientific field in itself, and a large number of books 
and papers are available that discuss it in various degrees of complexity; see for example 
Hastie and Tibshirani (1990), Ruppert et al. (2003), Keele (2008), Yee (2015), Zuur et al. 
(2015), Wood (2017) and Zuur and Ieno (2018), to name just a few. The smoothers that 
will be used in later chapters are relatively complex. They are fully discussed in Zuur 
and Ieno (2018). In this appendix we discuss five basic smoothers. The reason for doing 
this is that by the time we reach the maths of the fifth smoother, you will understand the 
general principle of smoothers, and that is all that is needed for this report. The more 
advanced smoothers are all based on similar principles. Throughout this appendix we will 
ignore the fact that we have pseudo-replication. We also use the normal distribution for 
RK. This is just a didactic choice as it simplifies the explanation of smoothers. 

A.1 Moving average and LOESS smoothers 

Figure A.1A shows a scatterplot of RK versus year for the Red knot data. We would like 
to add a line that captures the main patterns in this scatterplot. One option is to connect 
sequential points in time, but such a graph is not very informative in this case. Another 
option is to add a straight line, but then we may be missing important patterns in the 
data. 
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Figure A.1: A: Scatterplot of RK versus year for the Red knot data. B: Target value at 
2010. The vertical dotted lines define a window from 2008 to 2012. C: Moving average 
smoother based on a window of 4 years. 

A smoother is a line that attempts to visualise the important patterns in the data. 
Conceptually, the easiest smoother to explain is probably the moving average smoother. 
This smoother works as follows. Figure A.1B shows the same scatterplot as in Figure 
A.1A, except that we have added a window of 4 years around a target value, which in 
this case is the year 2010. The window is identified by the two vertical dotted lines. All 
points inside this window (which ranges from 2008 to 2012) are plotted as filled circles. 
The moving average technique takes the average of all the RK values inside this window. 
Instead of doing this at only one target value, the moving average smoother slides the 
window from left to right and each time takes the average. The resulting smoother is 
presented in Figure A.1C. The moving average smoother shows an increase from 2006 and 
reaches a plateau in 2012. This may be a real pattern, but it can also be due to a missing 
covariate, pseudo-replication or poor performance or usage of the smoothing technique. 
As to usage of the smoothing technique, we made a rather subjective decision to use a 
window of 4 years. We also could have used a window of 5 years, or a window of 1 year. 
In the former case we would have obtained a nearly straight line, whereas in the latter 
case we would have obtained a line that fluctuates considerably. So the size of the window 
determines how smooth the smoother is. 

All smoothing techniques have a tuning mechanism that controls the amount of smoothing. 
This may be off-putting to some, but with no other options to model non-linear (temporal) 
patterns and with sensible use, smoothing techniques can be useful. However, the moving 
average smoother tends to produce rather wiggly curves, and we therefore continue with 
a slightly more advanced smoother. 

Instead of taking the average of all points in a window, we can apply a linear regression 
using only the data inside a window. In such a linear regression model we can fit a 
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straight line or even a quadratic model. We could also down-weight observations that are 
further away from the target value, resulting in a smoothing technique that is called locally 
weighted smoothing (LOESS). Figure A.2 shows two examples of a LOESS smoother. 
Instead of specifying the boundaries of the window around the target it is possible to define 
the proportion of data points that should fall within a window and let the software figure 
out the boundaries. This proportion is called the span width. The larger the span width, 
the wider the window and the smoother the LOESS smoother, and vice versa. LOESS 
smoothers are available in various scatterplot functions in R, but for implementation in 
more advanced regression models (e.g. zero-inflated GLMs with spatial correlation) we 
prefer more advanced smoothing tools. 

LOESS, span = 0.3 LOESS, span = 0.9 
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Figure A.2: LOESS smoother with a span of 0.3 and a span of 0.9. 

The moving average smoother and the LOESS smoother are conceptually the 
easiest smoothers. They result in a curve that captures the general pattern in 
the data. We can control the shape of the curve via the size of a window that 
determines which points are used to calculate the smoother at a specific value. 

A.2 Linear spline regression 

The next smoother that we discuss is the linear spline regression. The underlying idea of 
spline regression is to separate the covariate Year into 𝐾 segments and apply a bivariate 
linear regression model on the data of each segment. By connecting the regression lines 
for all segments we obtain a smoother. We will start our explanation of spline regression 
with 𝐾  = 2  segments. The right panel in Figure A.2 gave the (vague) impression that 
there is a change in relationship at around 2012. We will fit a bivariate linear regression 
model on the data to the left of 2012 and also a bivariate linear regression model on the 
data to the right of 2012. We ensure that the lines are connected at 2012. The fit of such 
a model is presented in Figure A.3. Note that we have two lines with different slopes and 
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the lines intersect at the year 2012. If you are familiar with generalised additive models 
(GAMs), we just fitted a GAM with a Gaussian distribution, albeit with a super-simple 
smoother. 
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Figure A.3: Fit of a linear spline model with one internal knot at Year = 2012. 

To show that GAMs are essentially just simple linear regression models (or GLMs), we 
dive a little bit more deeply into the R code for the linear spline regression. To fit the linear 
spline regression model in R we define (with the emphasis on define) a new mathematical 
function. 

0 if 𝑌 𝑒𝑎𝑟𝑠 < 2012 (𝑌 𝑒𝑎𝑟𝑠 − 2012)+ = { 𝑌 𝑒𝑎𝑟𝑠 − 2012 if 𝑌 𝑒𝑎𝑟𝑠 ≥ 2012 

Note the subscript ‘+’ in this expression. It looks scary, but it defines the term (𝑌 𝑒𝑎𝑟𝑠 −
2012)+ as being equal to 0 if 𝑌 𝑒𝑎𝑟𝑠 is smaller than 2012; otherwise it is equal to 𝑌 𝑒𝑎𝑟𝑠 −
2012. It is just a definition; nothing else. Faraway (2006) gives an R function to calculate 
this new covariate. 

rhs <- function(x, TH) ifelse(x >= TH, x-TH, 0) 

This function is executed in R with rhs(CC3$Year, 2012) and gives the output 𝑌 𝑒𝑎𝑟𝑠 −
2012 if 𝑌 𝑒𝑎𝑟𝑠 is larger than 2012, and 0 otherwise. Seeing is believing, and to see this in 
action we print the first 10 rows of 𝑌 𝑒𝑎𝑟𝑠 and (𝑌 𝑒𝑎𝑟𝑠 − 2012)+ side by side. 

SeeIt <- cbind(CC3$Year, rhs(CC3$Year, 2012)) 
colnames(SeeIt) <- c("Year", "(Year - 2012)+") 
head(SeeIt, 10) 

## Year (Year - 2012)+ 
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## [1,] 1999 0 
## [2,] 2015 3 
## [3,] 2010 0 
## [4,] 1998 0 
## [5,] 2016 4 
## [6,] 2017 5 
## [7,] 2003 0 
## [8,] 2007 0 
## [9,] 2005 0 
## [10,] 2009 0 

The left column is Year and the right column is either equal to 0 (if the year is smaller 
than 2012) or Year - 2012 if Year is larger than or equal to 2012. In the first 10 rows 
we have 9 values smaller than 2012, hence the zeros on the right. There is one row where 
year equals 2013. The newly defined variable is 1 (= 2013 – 2012). 
We can now formulate the linear spline regression model with one knot at 2012 as follows. 

𝑅𝐾𝑖𝑠 = 𝛽1 + 𝛽2 × 𝑌 𝑒𝑎𝑟𝑠 + 𝛽3 × (𝑌 𝑒𝑎𝑟𝑠 − 2012)+ + 𝜖𝑖𝑠 

The 𝜖𝑖𝑠 is the usual residual term in a linear regression model; it is assumed to be normal 
distributed with mean 0 and (unknown) variance 𝜎2. The fancy expression above is 
shorthand notation for writing 

= { 
𝛽1 + 𝛽2 × 𝑌 𝑒𝑎𝑟𝑠 + 𝜖𝑖𝑠 if 𝑌 𝑒𝑎𝑟𝑠 < 2012 𝑅𝐾𝑖𝑠 𝛽1 + 𝛽2 × 𝑌 𝑒𝑎𝑟𝑠 + 𝛽3 × (𝑌 𝑒𝑎𝑟𝑠 − 2012) + 𝜖𝑖𝑠 if 𝑌 𝑒𝑎𝑟𝑠 ≥ 2012 

At 𝑌 𝑒𝑎𝑟𝑠 = 2012, both expressions are the same, ensuring that the two lines touch each 
other at this year. The unknown regression parameters are 𝛽1, 𝛽2 and 𝛽3 and the variance 
of the residuals. The R code to fit the model is as follows. 

Mcsr <- lm(RK ~ Year + rhs(Year, 2012), data = CC3) 

Note that this is a linear regression model with two covariates. The function rhs creates 
the new covariate, and we end up with three estimated regression parameters. Once we 
have fitted the model it is quite easy to create Figure A.3. We can predict RK values for 
year values on a regular grid, say 100 values from 2002 to 2017. These values correspond 
to the smallest and largest year values, and the value of 100 is chosen arbitrarily. 

ND <- data.frame(Year = seq(min(CC3$Year), 
max(CC3$Year), 
length = 100)) 

Pcsr <- predict(Mcsr, newdata = ND) 
par(mfrow = c(1, 1), mar = c(5,5,2,2), cex.lab = 1.5) 
plot(x = CC3$Year, y = CC3$RK, 

xlab = "Year", ylab = "RK", 
cex = 0.7, pch = 16, col = grey(0.1)) 
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lines(x = ND$Year, y = Pcsr, lwd = 5) 
abline(v = 2012, lty = 2) 

The point where we separated the year gradient is called a knot. In Figure A.3 we use 1 
internal knot and we also count the outer edges as knots; hence we used 3 knots in the 
model. The choice of Year = 2012 for the internal knot is rather subjective. It is more 
objective to use the quantiles of year for the knot positions. Another problem is how many 
knots we should use. Suppose we use 7 knots (i.e. 2 outer knots and 5 internal knots) 
and quantiles to choose the knot positions. In that case the values of these knots are as 
follows. 

Knots <- quantile(CC3$Year, probs = seq(0, 1, length = 7)) 
Knots 

## 0% 16.66667% 33.33333% 50% 66.66667% 83.33333% 100% 
## 1995.0 1998.5 2002.0 2006.0 2011.0 2014.5 2018.0 

The internal knots are at the 16.66%, 33.33%, 50%, 66.66% and 83.33% quantiles. These 
are the years 2005, 2008, 2010, 2013 and 2015. We fit a regression model with knots at 
these values. 

Mcsr <- lm(RK ~ Year + 
rhs(Year, Knots[2]) + rhs(Year, Knots[3]) + 
rhs(Year, Knots[4]) + rhs(Year, Knots[5]) + 
rhs(Year, Knots[6]), data = CC3) 

Figure A.4 shows the model fit. 
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Figure A.4: Fit of the linear spline model with 5 internal knots. 



93 A.3. QUADRATIC AND CUBIC SPLINE REGRESSION 

The solid line in Figure A.4 is the smoother 𝑓(𝑌 𝑒𝑎𝑟). Its mathematical formulation is 
given below. We changed the regression parameters of the second part of the smoother 
from betas to 𝑏s for notational convenience. 

𝑓(𝑌 𝑒𝑎𝑟𝑠) = 𝛽2 × 𝑌 𝑒𝑎𝑟𝑠 

𝑏1 × (𝑌 𝑒𝑎𝑟𝑠 − 2005)++
𝑏2 × (𝑌 𝑒𝑎𝑟𝑠 − 2008)++
𝑏3 × (𝑌 𝑒𝑎𝑟𝑠 − 2010)++
𝑏4 × (𝑌 𝑒𝑎𝑟𝑠 − 2013)++
𝑏5 × (𝑌 𝑒𝑎𝑟𝑠 − 2015)+ 

The problem with this notation is that when we use more knots, the equation gets rather 
lengthy. We can write the expression more compactly as follows. 

𝐾 

𝑓(𝑌 𝑒𝑎𝑟𝑠) =  𝛽2 × 𝑌 𝑒𝑎𝑟𝑠 + ∑ 𝑏𝑗 × (𝑌 𝑒𝑎𝑟𝑠 − 𝑘𝑗)+𝑗=1 

where 𝐾  = 5  internal knots and the 𝑘𝑗 are the knot positions. The parameters 𝛽2, 𝑏1, 𝑏2, 
…, 𝑏5 are unknown regression parameters that need to be estimated using linear regression, 
and 𝑌 𝑒𝑎𝑟𝑠 and the (𝑌 𝑒𝑎𝑟𝑠 − 𝑘𝑗)+ 

terms are known covariates. 

A smoother is nothing more than a collection of Lego pieces (i.e. abstract covariates 
defined at knots), and the corresponding regression parameters can be estimated 
with linear regression, GLM or GLMM procedures. 

A.3 Quadratic and cubic spline regression 

The smoother in Figure A.4 is not visually appealing due to the ‘peaky’ connection at 
the internal knots. To solve this problem we can increase the number of knots, but a 
linear spline regression tends to stay peaky, even for larger numbers of knots. The only 
solution to avoid peaky connections is to improve the smoother itself. The quadratic spline 
regression is defined by 

𝐾 

𝑓(𝑌 𝑒𝑎𝑟𝑠) =  𝛽2 × 𝑌 𝑒𝑎𝑟𝑠 + 𝛽3 × 𝑌 𝑒𝑎𝑟𝑠
2 + ∑ 𝑏𝑗 × (𝑌 𝑒𝑎𝑟𝑠 − 𝑘𝑗)

2 

+𝑗=1 

This function produces a smoother that is less wiggly than the linear spline regression. 
We can even go one step further and define the cubic spline regression; such a smoother 
is less wiggly than the quadratic spline regression. The cubic spline regression is defined 
below. 

𝐾 

𝑓(𝑌 𝑒𝑎𝑟𝑠) =  𝛽2 × 𝑌 𝑒𝑎𝑟𝑠 + 𝛽3 × 𝑌 𝑒𝑎𝑟𝑠
2 + 𝛽3 × 𝑌 𝑒𝑎𝑟𝑠

3 + ∑ 𝑏𝑗 × (𝑌 𝑒𝑎𝑟𝑠 − 𝑘𝑗)
3 

+𝑗=1 

The fit of the cubic spline regression is presented in Figure A.5. 
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Figure A.5: Fit of the cubic spline model with 5 internal knots. 

The difference between the linear, quadratic and cubic spline regression models is 
the Lego pieces that are used to define a smoother. The underlying principle is 
otherwise the same. 

As can be seen from the equations of the linear, quadratic and cubic spline regression 
models, we do get a mathematical equation for a smoother, and this allows us to 
interpolate, predict, calculate confidence and prediction intervals, do hypothesis testing, 
etc. However, these equations are not particularly useful; they are merely the building 
blocks (or Lego pieces) of the smoother. Note that we did not include an intercept in any 
of the smoothers. The intercept is already specified in the linear regression model itself, 
and it is better not to include it into the smoother. This becomes an issue particularly if 
multiple smoothers are used. In such cases there will be only one intercept and none of 
the smoothers contains an intercept. 

The basis of a smoother is defined as the set of covariates (also called basis functions) 
that are being used as known covariates by the smoother. The basis functions of the cubic 
spline regression smoother are as follows. 

𝑌 𝑒𝑎𝑟𝑠, 𝑌 𝑒𝑎𝑟𝑠
2, 𝑌 𝑒𝑎𝑟𝑠

3, (𝑌 𝑒𝑎𝑟𝑠 − 2005)3
+, ..., (𝑌 𝑒𝑎𝑟𝑠 − 2015)3

+ 

Different types of smoothers use different bases. Zuur and Ieno (2018) discuss more 
complex smoothers like thin-plate regression splines, O’Sullivan splines, B-splines, 
smoothing splines, random walk smoothers of orders 1 and 2, etc. In principle, there is 
no need to fully understand the technical details of these smoothers as all that they do is 
provide ‘better’ basis functions, where ‘better’ is with respect to the performance of the 
numerical estimation processes and aesthetics of a smoother (i.e. whether a smoother is 
not too wiggly and ‘behaves well’ at the edges). 
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The cubic spline regression contains small mathematical building blocks, which 
enable us to build up a smoother. The basis of a smoother is the set of basis 
functions (i.e. building blocks) that are used as covariates for the smoother. 

Another point that we need to discuss is how to control the amount of smoothing. 
Specialised packages like mgcv (Wood, 2017) have tools that determine the optimal amount 
of smoothing (i.e. the optimal size of the window or the optimal span width). However, 
the underlying maths is rather complex. With multiple smoothers R-INLA is not very 
good at determining the optimal amount of smoothing (it sometimes results in a smoother 
that is too wiggly or at the other extreme, a flat horizontal line). In such cases it is better 
to control the amount of smoothing manually. Technically, we can use unpenalised cubic 
regression splines. These are explained in detail in Wood (2017) and used in combination 
with R-INLA in Zuur and Ieno (2018) In short, the data analyst specifies the amount 
of smoothing a priori and uses the smooth.construct function from the mgcv package 
(Wood, 2020) to obtain the basis functions (i.e. the Lego pieces). We suggest only allowing 
for a small amount of smoothing (in technical jargon this mean that we use smoothers 
with only three or four degrees of freedom). We will explain this in more detail when we 
do the analysis in R-INLA. 
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