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Take home messages

• Model-based data integration is a statistical framework to combine the analysis of data from
multiple sources to create a firmer evidence base on which to base decisions.

• Biodiversity data are usually fragmented in multiple datasets collected using a variety of
different methods, which are difficult to combine without loss of information (e.g. count data
and presence-only data) and which differ in their potential bias. Model-based data integration
provides a solution to make the most of these multiple sources of data to produce robust
metrics of biodiversity change.

• Model-based data integration has a number of analytical advantages, including increasing the
quantity of data available to be included in analysis, deriving more precise metrics, extending
the spatial and temporal extent of inference, and better correcting for biases in the data.

• By using model-based data integration we can make better inferences at smaller spatial scales
and produce trends for scarce species. Data integration also creates a shared evidence base
amongst conservation stakeholders, informs more efficient and flexible monitoring and can
lead to a more diverse and inclusive recording community.

• There continue to be challenges and questions about best practices for model-based
data integration and implementation still requires considerable technical skills and
statistical knowledge. However, as the availability of novel data sources grows, model-
based data integration will become more widespread amongst ecologists and user-friendly
implementations are likely to become available.
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Why should I be interested in model-based data 
integration?
Almost everywhere nature is under pressure. Thus, the need to monitor the state of nature and identify 
the many pressures affecting biodiversity has never been greater.  However, the current range of 
biodiversity monitoring activities is varied and complex. 

Technological advances have made it possible to collect new types of data on species distributions and 
abundance (e.g. acoustic devices, environmental DNA - eDNA). 

An increasing number of biodiversity records are collected ‘opportunistically’ (i.e. in an unstructured 
manner, from wherever and whenever a recorder chooses) enhancing engagement with the natural 
world. 

Data from standardised (structured) monitoring schemes are very useful but tend to be limited in their 
spatial, temporal and taxonomic coverage.

Additionally, some datasets cannot be clearly categorised as structured or unstructured, but fall 
somewhere along a “structure” gradient, for example surveys where recorders can choose where 
to look for species but follow a standardised protocol. Information on biodiversity (and other natural 
resources, such as habitat) is therefore often fragmented in different datasets and it can sometimes be 
hard to reconcile their different outputs. Model-based data integration is a statistical tool to combine 
these different sources of data to produce robust biodiversity assessments based on more of the 
available evidence.
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How can model-based data integration help me?
Model-based data integration is an emerging statistical tool that enables multiple data sources to be 
combined. This provides a firmer and broader evidence base on which to base decisions. 

In particular, different sources of species records can be brought together to produce more cohesive 
summaries of species’ distributions in space and time. This type of model-based data integration 
uses integrated distribution models (IDMs). IDMs make the most of all available data by retaining the 
strengths of each data source and accounting for the differences between them in the analysis. This is 
valuable: for example, it can enable better tracking of scarce species (which might appear too rarely in a 
single dataset to provide a robust trend or map) and/or allow estimation of trends in smaller geographic 
areas than would otherwise be possible. 

This guide is a non-technical introduction to model-based data integration and IDMs. We focus on 
models that integrate structured and unstructured biological records (Table 1) to derive temporal 
trends of species abundance or distribution, although this approach can work with other types of data 
too, such as museum records or novel data sources (e.g. eDNA, acoustic sensors). The aim of this 
guide is to present the concept of model-based data integration, give an introduction to the modelling 
framework and present the advantages derived from it through a series of case studies. Therefore, this 
is not a tutorial nor a practical guide but rather a general introduction to the opportunities of model-
based data integration aimed at a non-technical audience. The reference list provides resources for the 
reader that wishes to learn more about developing and implementing these models.
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Table 1. Definitions and benefits/disadvantages of the main types of data and modelling frameworks 
discussed in this guide.

What is it? Benefits Disadvantages

Structured 
data

Data collected with a standardised 
repeated protocol (e.g. transects or 
quadrats) and a sampling design.
For example, the UK Butterfly 
Monitoring Scheme9,10 or Breeding 
Bird Survey9,10. This term is not used 
to describe the database format: 
the data are usually stored in a 
structured way in a database

• Observations are
comparable in time
and space

• Site selection is
usually randomised,
so representative

• All species
observed are
recorded as well as
non-detections

• More demanding for
volunteers

• Generally lower
spatial coverage and/
or sampling intensity

• Usually covers only
one taxonomic group

Unstructured 
data

Data collected without a 
standardised protocol or sampling 
design or where the protocols are 
unknown.

For example, species recording 
in iRecord9,10,incidental records in 
BirdTrack9,10 or museum records. 
This term is not used to describe 
the database format: the data are 
usually stored in a structured way in 
a database

• Produces large
datasets

• Broad geographic
coverage

• High taxonomic
coverage

• Long time series

• Usually less
demanding or
time-consuming
for volunteers/
recorders

• Unknown whether all
species observed are
recorded

• Non-detections are
not recorded

• Survey effort less
standardised and/or
unknown

• Usually contain
spatial and temporal
bias

Semi-
structured 
data

• Data collected without a
standardised protocol or
sampling design, but where
some information regarding
the observation process is
recorded; for example complete
lists in BirdTrack9,10

• Data collected with a
standardised protocol but
without a sampling design, for
example Flower Insect Timed
Counts from the UK Pollinator
Monitoring Scheme9,10

This term is not used to describe 
the database format: the data are 
usually stored in a structured way in 
a database

• Effort is
standardised by
the protocol or
quantifiable by the
extra information
(metadata) reported
with the data

• Observations are
comparable in
space and time

• Slightly more
effort required by
observers compared
to unstructured
recording

• Requires specific
data recording
tools to capture the
additional information
on recording

• Spatial and temporal
sampling biases may
be present
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Table 1 cont. Definitions and benefits/disadvantages of the main types of data and modelling 
frameworks discussed in this guide.

What is it? Benefits Disadvantages

Data 
merging

Merging different data types (e.g. 
unstructured and structured) in 
a single dataset by bringing all 
the data to a lowest common 
denominator (e.g. abundance 
data were degraded to presence/
absence) and assuming the 
observation processes that 
generated the different data types 
are the same

• The size of the
dataset is increased

• More
straightforward
way to combine
datasets that have a
similar observation
process
(e.g. multiple
unstructured
datasets)

• Loss of information
(i.e. structured
sampling is
treated as if it
was unstructured
recording)

• Differences in
the datasets are
disregarded

Model-
based data 
integration

Combining different data sources 
(e.g. unstructured and structured 
data) in a single statistical 
model by explicitly describing 
the differences between the 
two datasets. When the model is 
focussed on data related to species 
distributions, we call it an integrated 
distribution model 

• The size of the
dataset is increased

• Combines the
benefits of both
unstructured and
structured recording

• Produces more
precise estimates

• Corrects for biases

• Technically
challenging

• Computationally
intensive

• Very new, therefore
non-expert users
would rely on
contracting work
as no user-friendly
implementations are
yet available

In the first section of this guide we describe the advantages of using model-based data integration and some 
of the potential impacts on biodiversity monitoring and conservation. In the second section we explain the 
modelling framework. We then present three case studies that show some of the advantages of using IDMs 
with different types of data. Finally we talk about different options for implementation of IDMs and present 
some stakeholder views on the value and opportunities of data integration.
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Table 2. Glossary.

Bias Systematic error causing a loss of accuracy, which is a persistent difference 
between an estimate and the underlying true parameter value.

Citizen science A popular term for volunteer participation in scientific research and monitoring 
activities, sometimes also called community science. Levels of expertise may vary 
considerably between citizen scientists.

Credible interval An interval within which a parameter value falls with a particular probability. 
Credible intervals in Bayesian statistics are analogous to confidence intervals in 
frequentist statistics, but relate to the data at hand rather than a notional population 
of means.

Detection 
probability

The probability of observing a species that is present at the site being surveyed. 
Detection is rarely perfect, so detection probability is usually <1

Hierarchical model A hierarchical model is made of two sub-models that are linked, such as an 
observation and state sub-model. IDMs are a special type of hierarchical model.

Integrated 
distribution model 
(IDM)

A species distribution model where multiple data sources containing shared 
location information are combined using model-based data integration to account 
for their different data generation processes.

Integrated 
population model 
(IPM)

A model where multiple data sources containing information about population 
size and life-cycle stages are combined using model-based data integration to 
understand population changes; we do not focus on this type of integrated model 
in this guide but we include it in the glossary for completeness.

Latent state An unobserved, and often unobservable, property of the ecological system that 
is of interest (e.g. the true species distribution or the actual number of individuals 
present).

Model-based data 
integration

The process of combining multiple datasets in a single statistical model while 
respecting and accounting for differences in data collection among datasets.

Observation sub-
model

A statistical description of the way in which the data were collected, which can 
include known biases created by the observation process (e.g. observer behaviour) 
and ecological processes influencing detectability (e.g. seasonality).

Observation 
process

The way in which the dataset was collected.

Precision A description of random error or statistical variability of an estimate. An estimate is 
precise if repeated measurements under unchanged conditions show very similar 
results.

Species 
distribution

The aggregated spatial locations of all individuals of a species across a geographic 
space.

Species 
distribution model

A statistical model that describes how the density of the locations of individuals of 
a species varies. A species distribution model can produce a static representation 
of a species distribution (the distribution of individuals at a single point in time), 
or a dynamic one 6 (the distribution of individuals as it changes across time); 
species distribution models can be applied to presence-only, presence/absence or 
abundance data

State sub-model A statistical description of the underlying ecological processes governing the latent 
state
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Advantages of model-based data integration
Model-based data integration offers several advantages over the analysis of structured or unstructured data 
separately and data merging. 

• By using more sources of data, it increases the quantity of data available, thus making the most of all
the information available.

• It can ‘borrow strengths’ from multiple sources and/or types of data that contribute to it, for example
gaining from both the large spatial and temporal scale of large unstructured datasets and the robust
design from the structured monitoring data, while at the same time correcting, to some extent, for the
biases present in the data. Or an IDM can combine data with different modes of detection, e.g. from visual
surveys and eDNA or audio recorders.

• This can lead to reduced uncertainty and more precise estimates of species distributions7,8 and
trends9,10 and of the impact of potential drivers on species status or change11.

• Combining data can also allow better inference on ‘hidden’ parameters of interest for example rates
of site colonisation and extinction.

• Integrating multiple sources of data can increase the extent of inference, both in space, by using
large scale unstructured datasets, and in time, for example by using museum records12.

• We can translate between ecological ‘currencies’, for example, combining presence-absence data with
count data to make wide-scale inferences on population abundance9,13.



10 AN INTRODUCTION TO MODEL-BASED DATA INTEGRATION FOR BIODIVERSITY ASSESSMENTS

Impacts of model-based data integration for biodiversity 
monitoring and assessment
More widespread use of model-based data integration methods has the potential to achieve many positive 
outcomes, including:

• Local scale assessments of biodiversity trends may become possible, thanks to the increase in the
quantity of data available by integrating multiple sources.

• Assessments of scarce and/or hard-to-detect species become possible because more information
is available.

• Using data from multiple providers allows different stakeholders to work from a shared evidence
base, increasing trust in the model outputs and accelerating the translation of scientific evidence into
conservation action.

• All contributions by volunteers are valued and used in analysis, because we no longer exclude
opportunistic recording nor degrade structured sampling to the lowest common denominator.

• We can design more flexible monitoring schemes for volunteers because more people’s
contributions can be included, whether they can commit to contributing to structured monitoring or not.

• The integrated modelling framework can inform the efficient planning and implementation of
future monitoring by answering questions such as: what is the minimum number of sites that need to
be surveyed through a standardised monitoring protocol to add value to the unstructured data?; how
much structured data is enough?; which sites should be prioritised for structured monitoring?
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Box 1 - Imperfect ecological observations 

A species record in a dataset is the product of two processes: firstly, the species needs to be present 
at the site and time of sampling, secondly the species needs to be detected and identified/recorded. 
Detection is rarely perfect, regardless of the data collection protocol (or lack thereof). In almost all cases 
not all individuals across sites will be counted, or all species seen, so detection probability is usually 
less than 1.

Ignoring imperfect detection can lead to inaccurate estimates of the latent state. For example, imagine 
that we could sample all the sites within the region of interest. If a species is actually present in 70% of 
the sites, but its detection probability is 60%, then ignoring the imperfect nature of detection will lead us 
to believe that the species is only present in 42% of the sites. Moreover, a species detection probability 
can be influenced by many factors: how visible a species is (a large, colourful or very vocal species is 
easier to detect), observer behaviour (personal preferences and experience, or time spent searching) or 
ecological variables (season or time of day). Ignoring these processes affecting detection may therefore 
bias our estimates about the true biological state. 

In unstructured recording schemes, volunteer recorders choose which sites to visit – maybe preferring 
nature reserves, or places close to home. This may create a systematic overestimation of species 
occupancy or abundance by over-sampling sites where the species of interest is easier to record. 
Structured sampling can reduce this bias by selecting survey sites at random, so that both sites 
where the species is easy to detect and sites where occupancy or detectability are low are surveyed. 
Structured sampling also standardises effort by employing consistent sampling protocols. Because 
the probability of detecting a species increases with time spent searching, by using a standardised 
sampling protocol a species detection probability is kept constant across visits making them 
comparable.

Structured sampling can be more demanding for volunteers, who might be asked to survey a site that 
is difficult to reach, or where the taxon of interest is unlikely to be seen. Structured sampling might also 
require specialist equipment and/or ID skills. For these reasons structured sampling usually produces 
relatively small datasets that are limited in taxonomic, temporal and spatial coverage. On the other 
hand, unstructured monitoring tends to produce very large, but heterogeneous, datasets with higher 
spatial coverage, greater sampling intensity and longer time series. Model-based data integration 
makes it possible to benefit from the strengths of each data source, while controlling for their respective 
weaknesses.
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What is model-based data integration?
Combining data from unstructured recording and structured monitoring schemes has, in the past, been 
very challenging, because most conventional modelling methods are designed to work with a single 
specific type of data (e.g. the MaxEnt procedure for presence-only data14, or TRIM15, for structured 
abundance data). Therefore, when faced with multiple datasets, ecologists typically had a choice between 
selecting only a single dataset for their analysis, analysing each dataset separately, or ignoring any 
differences between datasets and merging them into one single analysis. 

• Dataset selection means discarding other datasets that are available, so the effort in collecting them and
the information they can contribute are both wasted.

• Modelling each data source separately can often lead to different results and trying to reconcile these
differences can be difficult.

• Data merging (Figure 1A) comes with a major caveat: it completely disregards any differences in the
way the data were generated. If the datasets were very similar in the way they were collected, then
data merging could be an acceptable option, however, with datasets that were generated through very
different observation processes (e.g. structured and unstructured sampling) data merging would be a
poor choice (Box 2). Similarly, data-merging is not well-suited when data are collected on different parts
of the population (e.g. different life-stages).

The most effective way to combine datasets from different sources is through model-based data integration 
(Figure 1B). In this case, the two datasets are kept separate and the differences in the way the data were 
collected are explicitly described in two separate observation models (Box 2).

Box 2 - Problems with data merging and the benefit of IDMs 

Data merging is a straightforward way to make use of all the available information on the ecological 
process of interest (e.g. a species distribution or abundance). It can, however, be problematic. For 
example, simply merging a dataset of structured sampling of amphibian counts, and structured 
sampling via environmental DNA sampling, will not take account of the very different observation 
processes and detectability in each dataset. Similarly, if we wanted to combine data from the National 
Biodiversity Network (NBN), a database composed largely of unstructured biological records, with data 
collected by a structured monitoring scheme (e.g. the UK Butterfly Monitoring Scheme - UKBMS), data 
merging would either ignore significant biases present in the NBN data, or assume that these biases 
are also present in the structured data. In both cases, the risk with data merging is that signals from the 
more representative structured data are masked by the biases in the larger unstructured dataset thus 
compromising the interpretability of the analysis output. 

An IDM for the NBN + UKBMS data would include two observation models describing the observation 
processes that generated the two datasets. The observation model for the NBN data would account for 
its biases, for example it could include a spatial term to describe spatial bias in recorder density and 
a proxy variable for effort to account for the lack of a standardised protocol. On the other hand, the 
observation model for the UKBMS data would be much simpler, only needing to account for changes 
in detectability due to, for example, the ecology of the species (in this case seasonal flight time). These 
two observation models would be used together to get a better estimate the latent state of interest.  

ISBN: [number here]

Registered in England and Wales. Company no. 05380206
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Figure 1. Data selection (A) and merging (B) vs. model-based data integration (C). The structured and 
unstructured datasets are independent realisations of the same underlying state, the species’ true 
site occupancy. Data selection models one or both datasets separately, often leading to different 
inferences of the latent state. Data merging attempts to infer this latent state by merging the datasets 
and assuming the same observation process, while model-based data integration employs two separate 
observation models to explicitly describe the differences in the two sampling processes.
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The modelling framework
Here, we explain in outline how IDMs are constructed. Firstly, we consider the analysis of a single dataset 
with what is called a ‘hierarchical model’. This type of model produces estimates of the imperfectly 
observed latent state (i.e. the species’ true abundance or occupancy – this is the thing we are really 
interested in), while taking account of the observation process (i.e. biases that are inevitable when making 
records of the natural world), which we are usually less interested in. The model is hierarchical because the 
observation process is layered on top of the underlying latent state and we estimate parameters in both 
sub-models simultaneously within the hierarchical model. In this section, we then show how to extend 
such a model to integrate multiple data sources to provide more robust inference about our population of 
interest.

A hierarchical model is made of two sub-models that are linked. Latent states are characterised by the state 
sub-model, which describes the ecological process that we believe to govern the true state of the target 
species (e.g. a species-habitat association). The latent state is linked to the observed data by a statistical 
description of the observation process that generated the data, the observation sub-model (Figure 2). This 
observation sub-model is designed to account for the fact that a species may be present but not seen and 
for different forms of bias in the data (Box 1). These hierarchical models have a long history in analysis of 
ecological survey data, with more recent applications to citizen science data, e.g. in the form of occupancy-
detection models for presence-only data16,17. 

Figure 2. Schematic of an occupancy-detection model. The latent state, described by the latent sub-
model in red, is the true presence/absence or abundance of the species at a site. The observation sub-
model (in blue) describes the probability of detecting the species as a function of a variable explaining the 
spatial distribution of recording intensity, a proxy variable for effort and a covariate describing seasonality 
(e.g. Julian date or month).
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Because this type of hierarchical model separates the observation and state process they are ideal 
for integrating different datasets. We can simply extend our basic model (Figure 2) from one to two 
data sources by adding a second observation sub-model, while the underlying state sub-model will be 
shared based on the assumption that the same population is being sampled. Each observation sub-
model now describes the observation process that generated each dataset (Figure 3). The multiple 
datasets represent independent observations of the same latent state, for example a species presence 
record and a non-zero count are both conditional on the species being actually present at the site 
at the time in which it was surveyed. Therefore the state sub-model is shared and both observation 
sub-models are linked to it. Because the observation processes that generated the two datasets 
are different, their statistical descriptions (the observation sub-models) are different too. While the 
observation sub-model for the unstructured data (in blue in Figure 2 and Figure 3) includes terms to 
correct for spatial bias and uneven survey effort, the observation sub-model for the structured data 
(in green in Figure 3) does not contain these terms as these data were collected with a standardised 
protocol and, in this example, using a randomised sampling design that does not introduce spatial bias. 
One term that is common in both observation sub-models in this example is seasonality because the 
hypothetical species have seasonal behaviours that will influence their detectability regardless of the 
mode of data collection (e.g. bees flying in spring and summer or birds becoming more vocal during the 
breeding season). This is an example of how we can use the observation sub-model to better account 
for ecological processes that we think might influence or bias the observation process, which may be 
shared by both data sources.  

In the next section we present three case studies that show some of the advantages of using the 
integrated modelling framework described above to analyse biological records data from multiple 
sources.

Figure 3. Schematic of an integrated model. The state sub-model in red and the observation sub-
model in blue are the same as those in Figure 1. The shapes in green describe the observation sub-
model for the second dataset. As in this example the second dataset (in orange) is collected through 
a standardised protocol, this observation sub-model estimates the probability of detecting the 
species as a function only of species phenology. The parameters describing this seasonality in the 
probability of detecting the species are shared between the two observation sub-models.
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Case study 1: Improving small-area trends for an endangered 
farmland bird
National scale biodiversity monitoring schemes are designed to evaluate overall trends for a range of 
common species. They are often closely linked to conservation legislation and policy. However, the 
legislative and executive implementation of conservation policy is increasingly devolved within nations 
and the need to measure the effectiveness of landscape-scale conservation projects (which would be 
prohibitively expensive using traditional survey techniques) means there is increasingly desire to evaluate 
trends at smaller spatial scales.

In the UK, comprehensive structured bird monitoring is undertaken through the Breeding Bird Survey2 (BBS). 
The BBS uses a strict observation protocol and a randomized sampling design which is stratified to account 
for different levels of volunteer availability across the UK. It provides national population trends for about 120 
common and widespread bird species. Trends are not available for c. 100 rare and cryptic breeding species, 
and are not available for many species on regional spatial scales. The leading UK scheme for opportunistic 
citizen science bird recording is BirdTrack4. It provides greater coverage in space and time, but lacks the 
structured protocols and formal sampling design of the BBS. Observers choose when and where to record 
birds, but they can record effort metadata, such as the time spent compiling a list, or whether all detected 
species were recorded. 

Based on both data sources, we show how population trends for the Corn Bunting Miliaria calandra, an 
endangered lowland farmland bird, can be derived at spatial scales smaller than a BBS stratum. To do this 
we make use of the overlap of BBS surveys and BirdTrack complete lists and use data from two areas to 
contrast different levels of recording coverage: the South Downs National Character Area (NCA) of southern 
England which has an expanse of c. 1,000 km2, and a similar sized area largely dominated by arable 
farmland in North East Scotland. The South Downs are close to major population centres and are well 
covered by BirdTrack records from recreational birdwatchers; recording in North East Scotland occurs at 
much lower rates.

Figure 4. BBS surveys and BirdTrack lists are both observations of the true spatio-temporal distribution 
of birds. Observations from each scheme differ in their information quality and quantity. BBS counts 
are collected with known effort and spatially unbiased, but comparably sparse. BirdTrack lists are more 
numerous, but come from non-random locations and effort is heterogeneous. The IDM account for this by 
using a separate observation model for each source.
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We produced standard BBS trend models and an integrated trend model (BBS + BirdTrack; Figure 4) 
for both study areas. However, because of the lower density of records in both schemes in North East 
Scotland, both trend models required the use of records from a larger area spanning Elgin to Peterhead, 
approximately three times the size of the South Downs. For both areas, the trend estimates from the 
integrated model did not differ substantially from abundance changes derived from BBS alone. All models 
for the South Downs NCA showed a decline between 2005 and 2011 followed by a period of relative 
stability (Figure 5), and the models for North East Scotland yielded highly uncertain abundance trends, 
which did not provide statistically significant evidence of change since 2005 (Figure 5).

The trends from the integrated model were more negative compared to BBS trends at both locations, but 
fell within the credible intervals of the BBS trend. In the South Downs the credible intervals for 
the integrated model were about five times more precise than those of the BBS trend (Figure 5). The 
integrated model suggests a significant decline of Corn Bunting abundance in the study area between 
2005 and 2011. In contrast, models based on either dataset alone did not allow inferences about 
population change given the large uncertainty about annual index values. In Scotland the knowledge 
gains from data integration were more modest. The credible intervals of the integrated abundance trend 
were about half as wide as those for the BBS standard model (Figure 5). 

Aside from the inferences about range and abundance changes the integrated model also provides 
estimates of detection parameters such as the influence of time spent recording on the probability of 
detecting a given species. This is a useful feature to assess the properties of opportunistic observations, 
and could e.g. inform minimum effort requirements to detect particular target species.

Figure 5. Data sources (blue = BBS locations; orange BirdTrack locations) and model results for the 
integrated abundance trend (green) for Corn Bunting in the South Downs and in North East Scotland, 
as compared to the BBS trend (blue). Dashed line shows relative abundance in 2005. Ribbons show 
posterior 95% credible intervals.

In this case study, we found that model-based data integration of structured and semi-structured 
bird data is feasible and offers potential to improve regional bird trend estimates, although a need to 
independently validate trends remains. Smaller gains are achieved in areas where uptake of recording 
is low. The integration of opportunistic records from volunteer-selected locations alone may therefore 
not adequately address monitoring gaps for management and policy applications. To achieve the latter, 
scheme organisers should consider providing incentives for achieving representative coverage of target 
areas in both structured and less structured recording schemes.

Modelling approach
We used a hierarchical model to integrate count data from BBS surveys and detection / non-detection 
data from BirdTrack complete lists. The state sub- model in this case describes species-specific 
abundances at a site in every year. We link this sub-model to the count and detection / non-detection 
data with a separate observation sub-model for each data source11. Standard BBS trends were also 
calculated for each study area as a comparison. All analyses were conducted in a Bayesian framework 
and a full description of the models and example code for parameter estimation are provided in9.
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Case study 2: When can model-based data integration 
provide the most benefits? A case study integrating two 
citizen science datasets on bumblebees in the UK
In this case study we compared the performance of data selection and data merging with the performance 
of an IDM in estimating trends in occupancy for bumblebee species in the UK. We used data from two 
citizen science schemes: the Bees Wasps and Ants Recording Society18 (BWARS) and the BeeWalk19 
survey scheme from Bumblebee Conservation Trust (BCT). In the case of the BWARS data, details of the 
observation process, such as survey effort and whether all species observed were recorded, are not 
reported as standard practice so we would categorise these data as unstructured. On the other hand, 
the BeeWalk data are collected by volunteers using a standardised protocol: a fixed transect is walked 
at least four times a year and all individuals of each species of bumblebee observed are counted. The 
transect location, however, is chosen by the volunteer and therefore it does not follow any sampling design. 
Because of these characteristics, we would consider this dataset as semi-structured. We implemented four 
models: two single-dataset models (a BWARS-only and BeeWalks-only model), one merged model and 
one integrated model. All our models are variants on the occupancy-detection model described in Figure 2. 
The state (i.e. true bumblebee distribution) sub-model is identical for all model variants, but the observation 
sub-models differ to account for the different observation processes. We evaluate model performance by 
looking at the precision of the estimated state parameters. Precision is a measure of uncertainty with which 
the parameter is estimated, so that the higher the precision the lower the uncertainty. 

Estimates of occupancy (proportion of sites occupied by each species) were generally similar across all 
model variants (Figure 6). The estimates from the integrated model were most similar to those from the 
merged variant (Figure 6, right), which is not surprising because all of the study sites and records are 
shared. The biggest difference in estimated values of occupancy is found in the comparison between the 
integrated model (the IDM) and the BeeWalk-only model (Figure 6, centre) reflecting the small number of 
sites and records in the BeeWalk data, which hence contribute less to the integrated model. The width of 
the 95% credible intervals (the uncertainty), shown in Figure 6 as vertical and horizontal lines, also show 
that measures from the BeeWalk-only model are generally less precise than those from the integrated 
model.

Figure 6. Comparison of estimates of annual occupancy between the four model variants. In each panel, 
the annual occupancy estimates for every bumblebee species from the integrated model (the IDM) are 
plotted on the y-axis; the x-axis shows annual occupancy estimates for the same species in the BWARS-
only model (left), the BeeWalk-only model (centre) and the merged model (right). Each point represents a 
species:year combination. The vertical and horizontal lines are the 95% credible interval and the dashed 
line is the 1:1 line. The further away from the dashed line a point is, the more different the estimates of 
occupancy are from the integrated and non-integrated model.
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The precision of the annual variability in the probability of occupancy (one of the state model 
parameters) was generally higher in the integrated model than in the BWARS-only and the BeeWalk-
only models (reflecting larger sample size), but no substantial difference was found between the 
integrated and merged model (Figure 7).

Figure 7. Comparison of precision of one of the state sub-model parameters from integrated model 
vs BWARS-only model (left), BeeWalk-only model (centre) and merged model (right). Each point 
represents the precision of an estimate of the temporal effect on probability of occupancy. The 
different colours represent different species and the black line and grey shaded area are the linear 
regression line and confidence intervals. The dashed line is the 1:1 line: every point above that line 
indicates that the parameter is estimated more precisely by the integrated model.

In this case study, we found that combining the two individual datasets in a single analysis had benefits 
for the precision of the parameter estimates, i.e. using both the BWARS and BeeWalk data together led 
to more precise estimates of trends in bumblebees. 

As we have described, model-based data integration was expected to have benefits compared to data 
merging, but this was not the case here: the annual occupancy estimates of the merged model were 
just as precise, on average, as the IDM. So why did the IDM not provide additional benefits compared 
to data merging? One explanation for this result is that we were estimating occupancy, so treated the 
BeeWalk data as presence/absence data, thus discarding the BeeWalk information on abundance. This 
is the first iteration in developing an IDM for these datasets and the decision to degrade the BeeWalk 
data to presence/absence was made to keep the model simple in this first model development stage. 
If we had undertaken an analysis of abundance rather than occupancy, then the benefit of IDMs would 
have been clearer as we would have been able to estimate species abundance. Another explanation is 
that the selection of site locations did not follow a randomised sampling design for both the BeeWalk 
(semi-structured) and BWARS (unstructured) data (Figure 8), meaning that the datasets are quite 
similar in their observation processes, and so the merged model could estimate model parameters 
adequately. And thirdly, the datasets were very different in size: there were a huge number of records 
in the unstructured data (32594) compared to the much smaller number (6381) of semi-structured 
records from BeeWalks. It has been shown that large discrepancies in the size of datasets could lead 
to domination of the results by a single source and reduce any meaningful gain from integration20. In 
this case study, the information from the larger unstructured BWARS dataset may be swamping the 
information provided by the BeeWalk data. Weighting has been proposed as an approach to avoid this 
problem21, however weighting is going to require some arbitrary choices and guidelines or best 
practices are not yet available.
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This case study shows that model-based data integration may sometimes not be worth the effort it 
takes to design and implement the models, especially when the datasets are very similar in the way 
they were generated. Clear and extensive guidelines on when IDMs may provide the greatest benefits 
are not yet available, but improving our understanding of the limitations of IDMs is an active topic of 
research. A recent simulation study20 has shown that integration alone was unable to correct for 
spatial bias in presence-only data, resulting in single-dataset models performing better than IDMs, 
while including a covariate to explain spatial bias and having larger structured datasets improved IDM 
performance. 

Our results therefore provide a baseline assessment on the value of integration, rather than the final 
answer. These results also pose further questions:

• Can we use a better metric to evaluate model performance? A high precision makes a model useful
as it can allow us to detect a trend where there is one. However, the model could be very precisely
wrong. Model evaluation and metrics for occupancy-detection models are still an active area of
research so this remains unknown for now.

• How much structured data is enough to add value to an unstructured dataset? Simulation studies
or random sampling of real data followed by re-evaluation of the models would provide some
insights. Answering this question will be important to provide guidelines on when model-based
data integration can provide benefits over simple data merging, but it can also have more practical
implications. It can guide the design and implementation of new monitoring schemes because we
would be able to assess the minimum number of sites that need to be monitored using a structured
protocol in order to add value to the many large unstructured datasets that are already available.

Figure 8. Spatial overlap between BWARS and BeeWalk bumblebee datasets. Points are 1 km sites 
surveyed by recorders.
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Modelling approach
From both datasets we selected observations from the years 2010-2016, as both schemes were 
active during those years and data were available. In order to keep the model simple, we degraded the 
BeeWalk counts to presence-absence data (a full analysis would also make use of this extra information). 
Because the BWARS records are presence-only data, we inferred non-detections from records of other 
bee species in the same visit (combination of 1 km2 site and date). We excluded records with a date 
precision lower than a day, a site precision of less than 1 km2 and any species that did not have records 
in both datasets, resulting in 21 species being modelled. The BWARS data accounted for more than 90% 
of all the sites visited (11315) and more than 80% of the total records (38975). The BWARS data have a 
greater spatial coverage compared to the BeeWalk data, but there is some spatial overlap between the 
two sets of records (Figure 8) with 51 sites being surveyed by both schemes.

The four model variants shared the same state sub-model: the species is present (1) or absent (0) from a 
site with a probability (occupancy probability) that varies in time (yearly) and space (site). The observation 
sub-models differed between the model variants. The single-dataset variant for the BWARS data has 
to take into account the potential biases in the unstructured observation process, for example uneven 
recording effort across visits; therefore, the observation sub-model for this variant includes the number of 
species recorded in each visit (the list length) as a proxy for recorder effort. We additionally include a term 
to model the seasonal variation in detection as bumblebees are more likely to be observed in spring/
summer than in autumn/winter. Our single-dataset model for the BeeWalk data is simpler, reflecting the 
fact that transect walks are a standardised protocol, such that effort can be assumed to be constant for 
all visits and so the observation sub-model for the BeeWalk data models detection as a function only 
of season. The integrated model variant includes two observation sub-models, one for each data type 
(Figure 3). The two observation sub-models are taken from the respective single-dataset variants. Note 
that the seasonal detection part of the two observation sub-models is identical and the parameters 
describing this seasonality are shared between the BWARS and BeeWalk observation sub-models. This 
feature allows information from one dataset to be shared with the other, and is one of the key features 
behind the power of model-based data integration. The final variant is the merged model, in which data 
from BWARS and BeeWalk are analysed together but ignoring the different data generation processes. 
In this model, we simply merged the BWARS and BeeWalk datasets and modelled the data with a single 
observation sub-model taken from the BWARS-only model. This is because in order to merge the two 
datasets together we had to degrade the BeeWalk data to the lowest common denominator and assume 
the same biases found in the BWARS data to be present in the semi-structured dataset. More detail can 
be found in22.
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Case study 3: Designing new monitoring schemes with 
data integration in mind
Structured monitoring schemes have been a great tool to provide excellent data for rigorous 
assessment of biodiversity trends. However, collecting these data requires a major commitment 
by volunteers. For example the UK Butterfly Monitoring Scheme asks recorders to visit a fixed 
transect weekly between April and September and count butterflies. However, this type of 
approach only works well for ‘popular’ taxa (i.e. those with many recorders) because only a small 
proportion of all the recorders will be willing or able to take on this task (e.g. over 100,000 people 
take part in the Big Butterfly Count23, whereas only a couple of thousand people take part in the 
UK Butterfly Monitoring Scheme1), and we need a minimum number of sites to be monitored to 
provide statistically robust evidence of trends.

Many taxa have fewer dedicated recorders than ‘popular’ taxa like birds and butterflies, and 
their recording is overseen by a wide range of societies and recording schemes. Some of these 
societies have explored the possibility of developing structured monitoring schemes. Many 
people record dragonflies and damselflies and the records are verified and collated by the British 
Dragonfly Society (BDS). The BDS have recently published a State of Dragonflies in Britain 
and Ireland 202124, which assesses trends in these species based on occupancy analysis of 
unstructured data. 

Several years ago, BDS trialled a structured recording scheme to assess changes in the 
abundance (not just the presence) of dragonflies and damselflies. This required regular visits to 
predetermined sites in suitable weather conditions to identify and count dragonflies. The results 
for individual sites were very valuable, but members of the BDS concluded that, at that time, this 
would not be a feasible monitoring scheme: there were not enough volunteers who were able 
and willing to undertake the monitoring at enough sites across the country, to provide data for 
statistically robust national-level results.

However, with IDMs, it would be possible to combine data from a small number of well-monitored 
sites with the larger amount of unstructured data, to provide a rigorous assessment of changes 
in the abundance of dragonflies. This evidence would enhance the conservation of these species 
and their use as bioindicators of water quality and climate change. Further investigation will help 
the BDS, and societies supporting the recording of other taxa, to assess the number of well-
monitored sites that are required to provide data for effective IDM analysis. This approach to 
developing new monitoring schemes with data integration in mind has the potential to lead to a 
more efficient and effective use of new and existing datasets to understand how biodiversity is 
changing.
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What do I need for model-based data integration?
Model-based data integration requires two or more biodiversity datasets that cover the species 
and region of interest. The datasets might have been generated through very different observation 
processes, but as long as the analyst can describe each dataset with its own observation sub-model, 
it does not matter how the data are categorised in terms of sampling structure (Table 1).

So an IDM could be used to integrate two or more differently-structured datasets, two or more 
unstructured datasets or a mixture of structured and unstructured datasets, but each dataset will 
have its own observation sub-model. Usually we want the datasets to overlap in space and/or time to 
ensure the assumption of modelling the same population holds, thus allowing us to share information 
within the model.

It is also important to carefully consider what each dataset can contribute to integration. For example, 
when combining a structured and unstructured dataset that do overlap in space and time we can use 
detectability information from the structured dataset to estimate detection biases in the unstructured 
dataset. Additionally, auxiliary data25 or data filtering26 can be used to further reduce bias in individual 
unstructured datasets so that they can be integrated in a model. 

The less datasets overlap, the more important it is to have as much information about the recording 
process as possible. For example data from a lowland bird survey can likely be combined with an 
upland bird survey if both are reasonably structured and collect detectability information. If only one of 
the surveys collects detectability information and there is little overlap between surveys, then it will be 
impossible for the model to distinguish whether any differences in the estimated latent states will be 
due to habitat type or differences in the surveys. 

It is important to notice that, although the occupancy-detection models have a hierarchical structure 
and the observation sub-model provides a mechanism to model the biases that might arise from the 
observation process, this not in itself a guarantee that those biases will be accounted for17. When the 
observation sub-models are specified, they need to follow careful consideration of the potential biases 
present in the datasets. This should lead to the inclusion of variables that are relevant to model the 
ecological and observation processes that might affect the detectability of a species, or to limiting 
the inference to the extent (spatial, temporal, taxonomic or environmental) at which the datasets can 
be considered a representative sample of the population of interest. There are now tools available to 
both explore potential biases in the data27 and transparently assess the risks from these biases when 
drawing inferences on species distributions28.
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Implementation: technical considerations
The IDMs described here are typically implemented in a Bayesian statistical framework simply because of 
its flexibility. Models can be developed using the BUGS language, which is flexible enough to express the 
hierarchical structures needed and facilitate the inclusion of one latent state linked to multiple observation 
models. Markov Chain Monte Carlo (MCMC) software can be used to fit these models, such as WinBUGS29, 
JAGS30, or Nimble31, all of which can be used within the statistical software R32. New MCMC software such 
as Stan33 and greta34 are also an option and they can run much faster. 

All of these implementations are best suited when space can be represented in discrete units, for example 
on the British National Grid. If data needs to be modelled in continuous space then software such as 
INLA35,36 can be used, which makes it possible to fit many complex ecological models efficiently using 
point processes7. There is however a trade-off with flexibility in terms of the range of models that can be 
implemented.

Regardless of the software chosen, it is challenging to set the models up, requiring programming skills 
and statistical expertise, and they often require high performance computing to run. User-friendly 
implementations have not yet been developed as the framework is still in active development. As this is 
a new approach, there are still a lot of questions to be answered and best practices are not necessarily 
clear. We are still discovering how to run models efficiently and how to best evaluate model output. As 
a consequence, caution (and input from a statistician) is required when developing these models and 
interpreting the results. 
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Implementation: stakeholder views
We ran a workshop as part of the UK Terrestrial Evidence Partnership of Partnerships (UKTEPoP) Festival 
2021. The aim of the workshop was to introduce the concept of model-based data integration, present 
the case studies and collect feedback and perspectives from potential users of IDMs. This section will 
summarise some of the stakeholders’ views and reflections from the discussion sessions of the workshop.

Thirty-nine people attended the workshop, the majority of whom indicated working for a Government Agency 
(44%) or a conservation charity (33%). The rest of the attendees indicated working for a recording scheme 
or society, a data holding organisation or a research institute (8% each). The majority of attendees described 
themselves as a data analyst (67%), but many were also subject specialists (38%), project managers (36%), 
scheme organisers (26%) or team leaders (10%). These responses suggest that we had a diverse audience 
of potential end users of IDMs, as well as an audience who was mostly knowledgeable and skilled in data 
analysis.

The most used type of biodiversity data among the attendees was volunteer collected and structured data, 
although professionally collected, semi-structured and unstructured data were also used by many of the 
attendees. Participants indicated that the data are mostly used to model temporal trends and the effects 
of environmental drivers. We also asked what types of data, if any, are underutilised, which revealed that 
“unstructured data” is the least used data type, followed by citizen science, habitat and marine data. The 
most common words used to describe why the data is not used were: “complexity”, “subjective” and 
“interpretation”. This suggests that the analytical complexities of dealing with data that does not contain any 
information on the data collection procedure result in the loss of potentially valuable information from further 
analysis.

We asked the stakeholders whether they could see the value of applying the IDM framework to their data. 
Respondents highlighted how IDMs could help make the most of available data sources that are currently 
underused, especially ad-hoc and historical data, and to produce a coherent narrative on the state of 
biodiversity from all the available information, especially when this information is fragmented into different 
and usually small datasets.  Another advantage of using IDMs highlighted by the stakeholders was that it 
would be able to combine surveys at different scales, for example national and local scale surveys, to derive 
better inferences at smaller scales.

Stakeholders also recognised the value of IDMs in informing the development of new monitoring schemes, 
for example by understanding gaps in available datasets that can be filled by opportunistic data or new 
structured monitoring, especially for identifying areas to survey for rare species. It was also mentioned that 
the IDM framework could help redesigning and improving existing surveys to reach a good balance of quality 
versus quantity of data. 

Stakeholders also commented on the potential for IDMs to contribute to diversifying recording and 
making it more inclusive: different survey types may appeal to different audiences with different abilities or 
commitment levels, so designing monitoring with data integration in mind can help reach a bigger and more 
diverse audience. Analysing citizen science data within an integrated modelling framework can therefore 
increase volunteer motivation as all the data that is collected will be valued and used to produce outputs. 
Finally, stakeholders highlighted the collaborative aspect of bringing different data sources together in an 
IDM framework. This would result in the co-production of knowledge and, in turn, facilitate collaboration and 
reduce conflicts between different stakeholders. This can be particularly helpful in cases of conservation 
conflicts, where different surveys can be set up to be conducted by the different actors involved in the 
conflict and then the data brought together to generated evidence that is more likely to be accepted by all 
parties. 
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Conclusions
IDMs are a novel statistical tool that allows the use of multiple datasets to estimate biodiversity change 
from multiple sources of evidence. The power of this modelling framework is best realised when 
combining datasets where the observation models are too different to permit simple data merging without 
losing substantial information, for example count and presence-only data. There have been considerable 
advances in model-based data integration recently, both conceptually and in implementation7, and as 
the availability of new data types increases, IDMs will become a valuable approach for many ecological 
modelling applications. 

There are still many challenges to overcome before this framework becomes common practice amongst 
ecologists. One challenge is to quantify the information gained by data integration and the information 
that each data source can contribute to the inference. Progress in this area will inform guidelines or rules-
of-thumb on when data integration is most useful. Another challenge is the validation of IDMs. Evaluating 
the performance of IDMs when using real data is an active topic of research and a challenge that, when 
overcome, will help guide the practice and implementation of IDMs. 

Given the novelty of IDMs it is not surprising that the learning curve to develop and implement these 
models is still quite steep. But as opportunities for data integration grow and more research is done 
to overcome some of the challenges described above, more training, documentation and user-friendly 
interfaces will be developed, lowering the barriers to the use of IDMs amongst ecologists.

Model-based data integration also provides new opportunities to shape the future monitoring of 
biodiversity. Despite the critical need for evidence in the face of an ongoing biodiversity crisis, large-
scale biodiversity monitoring is costly and very few countries are able to implement unified standardised 
biodiversity monitoring programmes of different taxa at a national scale. On the other hand, there are a 
wide range of grass-root initiatives to monitor biodiversity at different scales and a culture of integration 
can help to address our large scale monitoring needs. Designing new monitoring schemes with data 
integration in mind means that we will be better able to cost-effectively fill the gaps in current biodiversity 
recording, produce high quality datasets that can add value to those already available and engage a 
more diverse recording community. Integrated monitoring will create a network of stakeholders around 
biodiversity monitoring, who will work from a shared evidence base, creating a feeling of ownership and 
trust, which accelerates the translation of conservation evidence into action.
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