Please note: the content of this PDF file is taken from archive holdings, and has been rendered to produce the best possible output. However, you may experience fluctuations in quality due to these files not being created from electronic originals.

No. 99
NATIONAL SAND DUNE VEGETATION SURVEY
SITE REPORT NO. 49
PORT-EYNON TO HORTON
1989

T C DARGIE

Contract HF3-03-434

Nominated Officer: G. Radley, CSD

Further copies of this report can be obtained from Periodicals Section, Information and Library Services, Nature Conservancy Council, Northminster House, Peterborough PEl 1UA

Copyright NCC 1990

ISSN 0952-4355

NCC COASTAL ECOLOGY RESEARCH PROGRAMME

The Coastal Ecology Branch of the Chief Scientist Directorate was established in August 1979. One of the functions of the branch is to co-ordinate a programme of research and survey in the field of terrestrial coastal conservation. To this end a research programme has been developed with four main aims:

- To describe the size, location and quality of the main coastal habitats in Great Britain (saltmarshes, sand-dunes, vegetated shingle, sea cliffs, strandlines, 'reclaimed' land and maritime islands).
- 2. To assess the impact of major development projects on sites of national importance for nature conservation.
- 3. To provide guidance on the management of the main coastal habitats for nature conservation.
- 4. To investigate the role of physical and biological processes in the maintenance of natural and semi-natural coastal habitats.

The results are disseminated in a variety of Nature Conservancy Council publications.

- a. CSD Contract reports: limited numbers with specialist interest are produced. Copies are usually prepared by the contractor and made available as a Chief Scientist Directorate Report in microfiche through the Nature Conservancy Council's Information and Library Services.
- b. Contract survey reports
- c. Research and survey in nature conservation
- d. Focus on nature conservation

If you would like any further information on this report or on the research programme please contact Dr Doody in Peterborough.

Dr Pat Doody Coastal Ecologist NCC (GBHQ) Peterborough

CONTENTS

			Page
1.	BACKGR	OUND AND OBJECTIVES	1
2.	METHOD	S	2
3.	SITE D	ESCRIPTION	2
4.	VEGETA	TION OF PORT-EYNON TO HORTON	5
5.	RARE	LANTS	. 6
6.	SITE A	SSESSMENT	6
7.	COMMEN	TS AND SUGGESTIONS	6
ANNEX	. 1	METHODS	7
ANNEX	2	SITE RECORDING FORM	12
ANNEX	3	VEGETATION TYPES	13
ANNEX	4	QUADRAT MEMBERSHIP OF VEGETATION TYPES	23
ANNEX	5	FLORISTIC DETAILS OF VEGETATION TYPES	24
ANNEX	6	TARGET NOTES	28
ANNEX	7	QUADRAT DATA	29
ANNEX	8	AREAS OF VEGETATION TYPES	31
VNNEA	, a	STTR BIBI.TOGRAPHY	32

1. BACKGROUND AND OBJECTIVES

Port-Eynon to Horton was surveyed as part of the Sand Dune Survey of Great Britain. This project is one of a series of strategic surveys of coastal habitats currently being undertaken by the Nature Conservancy Council. The Survey has two aims:

- i. To produce a vegetation map and description for each sand dune system which will be useful to those involved directly in its conservation;
- ii. To produce a national inventory of the range and extent of sand dune habitats in Great Britain. Such an inventory will then allow the interest of any particular site or group of sites to be placed in its national context.

This contract (HF3-03-434) involved a survey of dunes in South Wales. The specification involved the production of a vegetation map(s) and a botanical survey report for **each** of the following sites or site sets:

- i. Pembrey Coast
- ii. Whiteford Burrows
- iii. Hillend-Llangennith-Broughton-Delvid-Hills Tor Burrows
 - iv. Port-Eynon to Horton
 - v. Oxwich-Nicholaston-Penmaen-Pennard Burrows
 - vi. Black Pill to Bryn Mill
- vii. Crymlyn Burrows

This document is one of the above site reports. In addition, the overall information is synthesized in a Regional Report which reviews the following points: dune distribution, type, size, vegetation communities and relationships, management and special characteristics. This report should be read in conjunction with the regional document if Port-Eynon to Horton is to be considered in a broader geographical and ecological context.

2. METHODS

Port-Eynon to Horton was surveyed using the standard techniques of the Sand Dune Survey of Great Britain. Collecting data in a consistent manner will thus enable valid comparisons to be made between sites on a national basis.

The field survey technique and subsequent analysis of the data were carried out using methods similar to those of the National Vegetation Classification (NVC).

Further details of the field techniques, data analysis and vegetation mapping are included in Annex 1. The quadrat data set (in coded format) is presented in Annex 7. Quadrat membership of vegetation types is given in Annex 4.

3. SITE DESCRIPTION

Location, conservation status and land ownership

Port-Eynon to Horton (Swansea, West Glamorgan) is located in South Gower (Fig. 1). It is not an SSSI but forms part of the more extensive South Gower Coast site of national nature conservation and is within the Gower AONB. The dunes are owned by Swansea City Council and permission for access was sought from Mr TM Osborne, Director of Development, Swansea City Council.

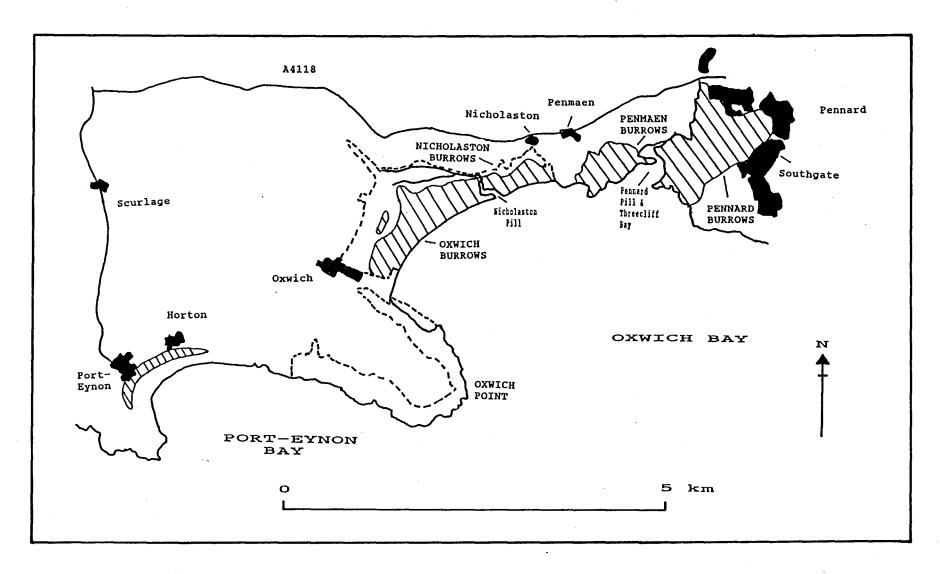


Figure 1 Survey and SSSI boundaries for South Gower study area

Dashed lines are Oxwich Bay SSSI boundaries Hatching denotes surveyed dune areas

Geomorphology

Port-Eynon to Horton represents a bay dune system developed on top of shingle.

Dune sand is derived from Devensian till and outwash materials deposited in Swansea Bay and south of the Gower peninsula by piedmont glaciers fed from high land further east. A submerged offshore shingle bar was probably created by a rising Flandrian sea level and this migrated landward. A slight fall in sea level and tidal exposure then probably led to coverage by sand which was then vegetated.

When close to shore this barrier beach may have created a poorly-drained depression to landward but organic deposits in this were probably overrun by sand once the beach reached shore.

In March 1978 the west coast of Wales suffered severe damage from storms and at Port-Eynon the village was filled with sand (Cole 1985). Damage to the dunes by visitor pressure might have been a contributory factor. Roads were filled with several feet of sand, some properties were buried and drains became blocked. Restoration work was started immediately to prevent landward movement of the dunes and the loss of the barrier beach as a coastal defence. The entire dune frontage was divided into nine separate compartments bordered by stock-proof fencing. Long lines of plastic mesh ('Monomesh') were set in the dunes to trap sand (these are visible on the 1979 survey photographs), marram grass was planted, and wooden boardwalk or concrete slab was put down on lines of access to the beach. There has been an excellent recovery, though intense visitor pressure severely limits further natural development of the area as a geomorphological system.

Soils

All soils sampled were young and probably very calcareous (pH range 7.4 - 8.1). These results reflect the impact of blown beach sand and inadequate time for leaching to have effect on a stable surface.

Management

The dunes between Port-Eynon and Horton are an important recreational resource for the local population and large numbers of visitors using the large car parks and very many static caravans positioned immediately behind the dunes. The fencing and pathways keep the majority of people off sensitive and recovering dune areas. Up to 20,000 people per day on a good summer bank holiday can use the beach (Cole 1985) and the resulting litter and organic debris are scraped clear by tractor on a regular basis. This, plus trampling, probably destroys embryo foredunes. All management is carried out by Swansea City Council.

4. VEGETATION OF PORT-EYNON TO HORTON

This section contains a general description of the vegetation of Port-Eynon to Horton. The charactersitic species composition of each community is outlined and the mapping legend number and equivalent NVC code(s) are included in brackets. An explanation of the NVC codes can be found in Annex 3 together with further information on the NVC communities, local variations and non-NVC vegetation types. The vegetation map(s) is provided at the end of the report and area data for vegetation types is given in Annex 8.

Strandline

There is no strandline - beach scraping by tractor removes material left by tidal deposition.

Foredune

There are no foredunes - beach scraping by tractor removes material left by tidal deposition and prevents sand burial which is essential for foredune construction.

Dune grassland

A restricted variety of young grassland types is present. These are related to various stages of recolonisation and shelter conditions established after the massive erosion in 1978. There is a broad zonation going northwest and inland from the beach.

There are mobile dunes forming the dune front and these contain a mosaic of two types: Marram (Ammophila arenaria) with few other species (4 - NVC SD6d) on the highest and most exposed sites, and a mix of Marram and Red Fescue (Festuca rubra) in more sheltered locations behind the outer dune ridge (5 - NVC SD6e).

Two types of semi-fixed dune community are found. Gentle slopes or areas with recent trampling have a turf (6 - NVC SD7c) of Marram, Red Fescue and Common Restharrow (Ononis repens). On steeper slopes there is a sparser cover of Marram and Red Fescue, with much moss (Tortula ruralis ssp. ruraliformis). Annual species grow between Marram tufts: Sand Cat's-tail (Phleum arenarium), Thyme-leaved Sandwort (Arenaria serpyllifolia), Sea Mouse-ear Chickweed (Cerastium diffusum diffusum) and the grass Vulpia fasciculata. This is mapped as 7, NVC code SD7d.

The dominant vegetation type in young Port-Eynon to Horton dunes, and the most distant from the beach, is a fixed grassland (8, NVC code SD8) with much Red Fescue and some Lady's Bedstraw (Galium verum). It is quite rank and often forms a mosaic with Type 7 grassland. At the rear of the dunes, close to paths used for dog-walking, there are pockets of tall rank grassland with False-oat Grass (Arrhenatherum elatius) and Cock's-foot Grass (Dactylis glomerata), suggesting enrichment from excreta.

Woodland and scrub

There is little scrub at Port-Eynon to Horton. It has no Sea Buckthorn (Hippophae rhamnoides). There is some Blackthorn scrub (Prunus spinosa, Type 26 NVC W22) and Bracken (Pteridium aquilinum) is invading in a small area (29 - NVC W25). There are occasional bushes of Privet (Ligustrum vulgare) present in the outer and inner dunes but never in enough quantity to warrant mapping.

A small area of young Sycamore (Acer pseudoplatanus) is growing on the edge of Port-Eynon village.

Other habitats

No other vegetation types were recorded at Port-Eynon to Horton. There are no dune slacks or dune heath.

Recent changes in vegetation

No air photos other than those used in survey (1979) are available to examine change. The overall impression gained during survey is that much re-vegetation has, and is continuing, to take place. It is also probable that there has been a long-term reduction in grazing pressure upon the dune grasslands, leading to formation of a rank turf in many places and allowing some shrub invasion.

5. RARE PLANTS

No rare species were found but in the southwest of the dune system a few individuals of the local Sea Stock (Matthiola sinuata) were found, plus Rock Samphire (Crithmum maritimum) growing on sand.

6. SITE ASSESSMENT

Port-Eynon to Horton is limited in interest. A young set of grasslands is present and much is the direct result of artificial dune stabilisation and continued close management. There is no accretion at the dune front. The range of community types is not large and the area of dune is small. It has an important educational role as an example of successful revegetation. There is a very high degree of impact but given the number of visitors to the area it is kept in good condition.

7. COMMENTS AND SUGGESTIONS

The educational possibilities of the site could be stressed to Swansea City Council if a demonstration of Gower dune types (and their management problems) is required.

METHODS

ABRIAL PHOTOGRAPHY

Air photos were used for field navigation and vegetation mapping in all but one site. The following material was supplied or purchased:

Crymlyn Burrows	Cambridge University RC8K 27 May 1987 Colour (poor quality) c. 1:6000 Prints 88-92, 97-105, 121-125
Black Pill to Bryn Mill	None available - field positioning and mapping done by pacing in relation to features on 1:10000 OS map.
Pennard and Penmaen	Hunting Surveys HSL UK 86 023 19 March 1986 Panchromatic (excellent quality) c. 1:5000 Run 17 Prints 2563-2566 Run 18 Prints 2478-2482
Oxwich and Nicholaston	Cambridge University RC8KW 20 June 1983 Colour (fair quality) c. 1:5000 Prints 201-207, 209-213 (212 missing), 218-222.
Port-Eynon to Horton	Cambridge University RC8DA 26 June 1979 Panchromatic (good quality) c. 1:10000 Prints 268-270
Hillend to Whitford	MAFF/ADAS Hasselblad 7 May 1989 Colour (good quality) c. 1:10000 Run 89-18 Prints 43-51, 66-68 Run 89-27 Prints 08-09
Pembrey Coast	MAFF/ADAS 15 June 1986 Panchromatic (excellent quality) c. 1:11000

FIELD SURVEY

All major types of vegetation at each site were located by a rapid reconnaissance. Each type was then visited and a visually homogeneous stand was picked out. Vegetation was recorded within 2m x 2m (strand, dune grassland, dune slack, dune heath), 5m x 5m (scrub) and 10m x 10m (woodland) quadrats. The quadrat position and number was located precisely on an acetate overlay fixed to air photos.

Film 291 Prints 24-36, 86-98, 157-8

The recommended procedure for the National Vegetation Classification (NVC) was followed as often as possible. Most dune vegetation types in each site were recorded with a minimum of five quadrats. Transitional habitats to saltmarsh, swamp and scrub/woodland were sampled less intensively.

Each quadrat was recorded on a standard record sheet (see Annex 2) which incorporated species and special variable number codes for use in later rapid computer data entry. All vascular plants, bryophytes and lichens in a quadrat were recorded on the Domin cover/abundance scale, together with community structure data (strata height and cover). Occasional soil samples (0-10 cm) were collected for most vegetation types and were then air dried prior to pH analysis.

Target notes (see Annex 6) were used for several purposes:

- a. To note particular features;
- b. To comment on land use;
- c. To supplement quadrat records.

Target note positions were also marked in the field upon air photo overlays. Less emphasis was placed on these notes than in other National Sand Dune Survey studies because quadrat data was more intensive in this case.

A total of 640 quadrats was achieved for all sites, numbered as follows:

Crymlyn Burrows	1 -	146
Black Pill to Bryn Mill	147 -	169
Tywyn (Pembrey Coast)	170 -	271
Pembrey Burrows	272 -	347
Pembrey Country Park and Pembrey Forest	348 - 627 -	354, 640
Port-Eynon to Horton	355 -	390
Whiteford Burrows	391 -	468
Nicholaston Burrows	469 -	495
Penmaen Burrows	496 -	522
Oxwich Burrows	523 -	565
Pennard Burrows	566 -	596
Hillend and Llangennith Burrows	597 -	626

Access problems prevented any quadrat collection from Broughton, Delvid and Hills Tor Burrows. In traversing sites obvious vegetation boundaries were marked on air photo overlays and simple codes were marked for vegetation types, both to aid later photo-interpretation. Survey took place in two phases: June/early July and August/early September.

ANALYSIS

Quadrat records were entered into an IBM-XT compatible microcomputer using the RECORD program in the VESPAN2 suite devised by Andrew Malloch of Lancaster University.

An initial classification of all quadrats using the TWINSPAN program enabled the clear separation of samples into three subsets: strand, dry dune and transitions; wet dune and transitions; scrub, woodland and transitions. Each subset of quadrats was then classified by TWINSPAN to produce end groups of samples. Each end group was listed in full using the TABLE program to detail all quadrats and species.

These tables enabled a comparison with the keys, tables and descriptions of vegetation types in the various NVC chapters. In many cases there was a direct correspondence with an NVC community, but often not to sub-community level. Some non-NVC groups were found and required separate description. More importantly, the classifications were not perfect and several NVC vegetation types (notably swamp, scrub and woodland transitions represented by low quadrat totals) were scattered amongst other end groups. Once recognised these community samples were aggregated using the SELECT program in VESPAN2.

Several dune vegetation types with large quadrat totals had distinct non-NVC sub-goups and these were described as variants of the NVC community. This important scale of variability is covered under PROBLEMS (see below).

MAP PREPARATION

Following analysis and the recognition of vegetation types, a set of mapping units was created (see vegetation legend sheet in map pocket). For Black Pill to Bryn Mill those mapping units present were marked with approximate boundaries upon a 1:10000 OS map, given that air photos were not available. For all other sites fresh acetate overlays were mounted over field overlays and air photos. The mapping units were then marked on the top overlay using an Old Delft Scanning Mirror Stereoscope to position boundaries. In areas of small-scale rapid transition between communities (usually due to microtopography in slacks and around old small blowouts) the communities were mapped as a mosaic.

Features marked on 1:10000 OS maps were also accurately marked. The top overlay was then removed and OS map features were used to reproduce the photo-map at c. 1:7500 using a Zeiss Sketchmaster. All 1:7500 maps were then mosaiced and drawn as a final vegetation map on Permatrace at c. 1:7500 scale. This was then reduced to 1:10000 on an accurate zoom photocopier for reproduction on A3 paper.

A total of 14 final maps was involved. The legend was too lengthy to reproduce on each map and it is presented separately on A4 sheets in the map pocket of site reports.

AREA MEASUREMENT

One copy of each vegetation map was carefully dissected by cutting around vegetation boundaries with fine scissors. Excised polygons were aggregated into map units and weighed on an accurate balance. The weights were converted to area (hectares) using the known paper weight of a 1 km square (100 ha). Mosaic types had the area allocated equally between component types.

GENERAL INFORMATION

Additional information on sites was obtained from SSSI site descriptions (if an SSSI), discussions with regional staff of NCC and the National Trust, and by consulting reports held at the Oxwich Information Centre.

PROBLEMS

- 1. Access No permission was sought for the Broughton area due to local difficulties. This led to no quadrat recording but the area was visited by public footpaths and reasonable mapping was achieved.
- 2. Photo availability Stereoscopic cover of several sites was not available during survey. Additional cover was purchased for the Pembrey Coast and Pennard-Penmaen. Some cover for Oxwich-Nicholaston was out on loan and was returned late despite repeated requests from local NCC staff. This lack of stereoscopy prevented more emphasis on field boundary identification and slowed down accurate field navigation.
- 3. Nomenclature NVC dune community types and nomenclature changed in the course of survey. Details of the revision (new nomenclature and floristic tables, but no information on slacks) were received between the two field survey periods and required some revision of the first phase results, plus a little re-survey. Detailed descriptions (but only nomenclature and floristic tables for slack types) were received as an NVC strand/dune chapter in November 1989. wholesale revision of slack types had taken place, to the extent that field mapping could not in most cases be accurately assigned to new units. To make matters worse, the computer groupings of slack communities in this survey did not closely agree with new or old types. All mapping of slack communities should therefore be regarded as very approximate.

4. NVC Community variability Several dune communities, notably Festuca rubra - Galium verum dune grassland and most slack types, were thoroughly sampled with a large number of quadrats. Classification produced distinct sub-types but these were not readily assigned to NVC sub-communities. The problem lies in continuous variation which is dissected in a parsimonious manner by TWINSPAN analysis, both for this quadrat data set and for the more comprehensive set (in a geographical sense) on which NVC types are based.

The solution (i.e. extraction of readily-recognised and spatially recurrent vegetation types) can probably only come from a more rigorous analysis using ordination (to handle continuity) and sound interpretative methods to link continuous variation in several dimensions (succession, habitat gradients, geographical trends), e.g. seriation or canonical correspondence analysis. This was beyond the scope of this study but would be a very desirable feature of the complete national survey.

FIELD RECORDING SHEET

The sheet below is a reduced-size version of that used in the field. Space at the top and bottom was used for the field notes and listing of species not covered in the printed table. The NVC codes for species and special variables are present to aid rapid computer entry after fieldwork.

SITE

DUNE SURVEY SHEET

9 L				40	· •						_	_	
Tree hi			hite			hite	11		hite	12	Bare	acuq	22
Tree co	ovr 1	ง จกรษ	COAL	14 1	nero	COAL	15	noss	COAL	16			
Achi ai	ill 19	. Achi	ptar	105	lore	capi	123	lore	stol	122	4i		124
Aira pr						offi			aren			Cary Pyra	160
Anag te			odor			vuln			Serp				195
Arrh el			hast			laci	218		patu			mari prat	655
Aven pu						vulg			Bari'			vulg	278
Caly so						prat	295		aren			flac	323
Care ni			pani			vulg			eryt			diff	381
Cera fo	-					acve	415		vula			dani	425
Coch of			cane 3			capi			Bari			SCOP	
Dact gi		· · · · · · · · · · · · · · · · · · ·				Baja			decu			care	475
Desc ce						palu	509		farc			PYCH	117
Elys re						palu	531		arve	532	· -	hyen	534
Equi pa						acer	543		lati	547		cicu	549
Erop ve						offi	568	Euph		565		port	567
Fest ov						ulsa	583		apar	605		palu	609
Gali ve			ulig 3			flav	635		Bari	636		spho	661
Hier pi			o rhem			lana	680		pepl			petr	686
Hydr vu						radi	706		pseu			acut	720
June ar						bulb	726		gera	732		mari	734
June so				-		auty	768		tara	770		lati	
Line bi		=		-		loes			corn	800		ulig	802
Luzu ca						euro			sari			sinu	841
Medi lu		-•				mini			arve			lach	911
Oeno bi						apif	918		mine	928		palu	946
Phle ar	ren 958					COFO	972	Plan	lanc	973		Bari	
Poa pr						0175	1010		vulg	995		trem	
Pote an	nse 1043	Prun	vulg 1			aqui			dyse	1069		rotu	
Ranu ac	cri 1081	Ranu	flam 1	089 8	unal	repe	1095	Rhin	mino	1106	Rubu	frut	1136
Ruse ac	et 1139	Rune	cris 1	143 F	luse	ella	1140	Rune	Bari	1146	Sagi	proc	1158
Sali re	epe 1179	5als	kali 1	184 5	amb	nigr	1187	Samo	vale	1189	Scir	aari	1213
Scir se	eta 1214	Sedu .	acre 1	225 5	ene	jaco	1239	Sene	vulg	1243	Sile	coni	3235
Sile vu	ulg 1259	5ola	dulc 1	268 5	oli	virg	1270	Sono	arve	1271	Sone	aspe	1272
Stel ac	di 1298	i Tara	offi 2	982 1	ces	nudi	1320	Teuc	scor	1321	Thym	prae	1333
Trif ca	omp 1342	! Trif	dubi 1	343 1	rif	prat	1349	Trif	repe	1350	Trig	pari	1353
Trig pa	alu 1354	Ulex	euro 1	363 V	ero	chas	1396	Yero	offi	1401	Vici	sati	2707
Yiol ca	oni 1422	! Viol	rivi 1	429 Y	iol	tric	1432	Yulp	fasc	1434			
Brac al	I bi 1510	Brac	ruta 1	519	ryu	al 90	1545	Bryu	SP.	2807	Call	cusp	1445
Camp st			purp 1			arbu			furc			rang	
Clim de	nd 1593	Corn	acul 2			SCOP		Eury			Hosa	lute	1562
Hypn cu	pr 1766	Нуро Нуро	phys 2	416 L	oph	bide	2167	Pelt	cani	2486	Plag	undu	1807
Poly pi	111 1897	' Pseu	puru 1	914 R	hyt	squa	1940	Rhyt	triq	1941	Tort	rura	2023

VEGETATION TYPES

This section contains a description of each vegetation type (NVC and non-NVC) found in this survey of South Wales dunes. Some types may not be present in this site - see Annex 4 and the vegetation map(s) for details of community presence. The account includes variants of NVC dune communities which do not correspond with NVC sub-community types. Particular features of sites are given in some descriptions.

The account is partly based on the relevant chapters of the NVC written by John Rodwell. The codes mainly relate to the different NVC chapters as follows:

SD Shingle, strandline and sand-dune communities

S Swamps and tall-herb fens

SM Saltmarsh communities

W Woodland and scrubs

H Heaths

X Non-NVC or transition types identified in this survey.

One other chapter, mesotrophic grasslands (MG), was not consulted and cases were only mapped in terms of principal dominant (Arrhenatherum elatius or Lolium perenne).

Most emphasis is placed on SD communities and other vegetation descriptions are abbreviated, reflecting less-intensive quadrat sampling.

1 X1 Dry foredune/saltmarsh/strandline transition community

Strandline vegetation is normally found at the extreme high water mark where washed-up debris becomes buried by blown sand. The normal strandline community within the NVC (SD2 Honkenya peploides - Cakile maritima strandline) was not found in this survey.

Instead, on exposed shores, the strandline is rapidly buried and a foredune environment persists (see 2 SD4 Elymus farctus foredune community). In sheltered environments, to leeward of cuspate spits, there is this distinct species-rich strandline transition. The species combination involves a mix of foredune (Elymus farctus), saltmarsh (Festuca rubra, Agrostis stolonifera, Limonium binervosum) and strandline (Honkenya peploides, Atriplex prostrata) indicators. Cakile maritima is rare in this environment. Unlike SD2 it is dominated by perennials and it is probably more persistent and less variable than the usual strandline community.

It grades upwards in wet areas to young salt-influenced slacks (see 12(a) SD14c Salix repens - Campylium stellatum dune slack, Bryum pseudotriquetrum - Aneura pinguis sub-community) and to a variety of dune grassland types in dry zonations. Downslope it usually grades into SM24 Elymus pycnanthus saltmarsh.

As a community type it perhaps deserves recognition in any revised NVC classification of strandline environments. In this survey it was repeatedly found in suitable locations at Crymlyn Burrows, Tywyn (Pembrey Coast) and Pembrey Burrows.

2 SD4 Elymus farctus foredune community

Elymus farctus normally dominates this community which is species-poor. Strandline species (notably Salsola kali, Atriplex prostrata, Cakile maritima and Honkenya peploides) are also frequent and suggest that in many localities these low dunes are ephemeral summer features forming on the drift line, usually extending by movement a short distance upslope. They are probably destroyed in autumn and winter storms.

In more sheltered locations, particularly at Crymlyn and Pembrey Burrows, the community is persistent and forms the initial phase of sand colonisation which then leads on to a rapid classic psammosere via SD6 Ammophila arenaria dune. At Pembrey Burrows there has been a recent increase in sand supply (probably from dune erosion in the centre of the Pembrey Coast system) and there has been a very large increase in this community since aerial photography in 1986. The foredunes even extend well downslope into saltmarsh and can include Puccinellia maritima and other saline indicators in the species list, though these are rare.

3 SD6a Ammophila arenaria mobile dune community Elymus farctus sub-community

This type of mobile dune community normally occurs closest to the sea. It is very open (70% bare sand) and usually has only Ammophila arenaria and Elymus farctus as dominants. Two variants (3v1, 3v2) were recognised after analysis. These show gradation within the the sub-community which itself grades downbeach into SD4 and, upwards, into SD6d Ammophila arenaria mobile dune, Typical sub-community.

3v1 variant This is usually located above the position of the strandline and often contains Eryngium maritimum and Euphorbia paralias.

3v2 variant This is usually located on the position of the strandline and often contains strand indicators (Salsola kali, Cakile maritima, Rumex crispus and Beta vulgaris maritima). It is more species-rich than 3v1.

SD6d Ammophila arenaria mobile dune community Typical sub-community

This community has a high cover of Ammophila arenaria (Marram) and occurs in areas that have a very high rate of sand deposition, in part the effect of the grass itself in modifying windflow to induce sand burial through which it then grows, often in profusion. Areas recently planted with Marram look very similar to this natural community.

In many British systems the community is very species-poor but in this survey there are reasonable numbers of additional species in most samples. Only one monodominant sample (quadrat 270 at Tywyn) was recorded. This enhanced diversity suggests that sand accumulation rates in the South Wales area are lower than normal, allowing invasion by annuals and suitable perennials.

5 SD6e Ammophila arenaria mobile dune community Festuca rubra sub-community

Festuca rubra normally forms an open understorey beneath Marram in this sub-community. Sand accumulation is low but still significant, producing vegetation which is still species-poor.

As a mapping unit this community is not very extensive and is best developed on dunes with heavy recreational impact, as at Crymlyn, Black Pill, Port-Eynon and Hillend/Broughton. Trampling, sand burial and litter may make this type more nitrogen-rich than usual, allowing enhanced species diversity compared to the NVC description.

Floristic composition suggests that this vegetation is part of a gradation from SD6a and SD6d to SD7c Ammophila arenaria - Festuca rubra semi-fixed dune community (Ononis repens subcommunity). Shrubs can invade (notably Rubus caesius) and, at Black Pill. Populus tremula.

6 SD7c

Ammophila arenaria - Festuca rubra semi-fixed dune community
Ononis repens sub-community

These dunes are usually dominated in Britain by Marram, plus substantial amounts of *Festuca rubra* and *Ononis repens*. Reduced sand deposition compared to other communities to seaward enables high vegetation cover and the start of dune stabilisation.

This vegetation type is very extensive in the dunes of this study and it is possible to recognise four variants (6v1-4).

6v1 variant Ononis repens is less common (frequency class III) and is often replaced by an alternative legume (Anthyllis vulneraria or Lotus corniculatus). Small gaps in the turf are frequent and these are often occupied by winter annuals (Phleum arenarium, Sedum acre, Arenaria serpyllifolia). This is the dominant type at Crymlyn Burrows and is transitional from SD6c to SD7d (Tortula ruralis ssp. ruraliformis sub-community).

6v2 variant Ononis repens is very common and achieves a reasonable cover. Other species suggest this is a community of damper ground (hollows and slack margins, especially at Crymlyn), with Holcus lanatus and Agrostis stolonifers the main moisture indicators. Mesic conditions in some stands may be created by shading from Rubus fruticosus agg..

6v3 variant This is the most typical form found, with high cover and a tall sward being invaded by Rubus caesius, R. fruticosus agg. or Arrhenatherum elatius. These successional transitions to shrub or mesotrophic grassland seem in part due to a lack of grazing in most large dune systems.

6v4 variant This is a small quadrat set which is difficult to interpret and may represent rather heterogeneous conditions. It is species-rich and this vegetation is either trampled dune being invaded by Rubus caesius (at Oxwich and Hillend), or is developed on thin sand over limestone on cliffs at Pennard.

The extensive quantities of type 6-SD7c vegetation reflect in part the rapid stabilisation of mobile dunes (and perhaps even foredunes at Crymlyn and Pembrey Burrows) which tend to be low in height and inextensive. In addition their extent shows stabilisation of dune systems with extensive parabolic dune blowouts which were recently mobile (Oxwich, Whiteford).

7 SD7d

Ammophila arenaria - Festuca rubra semi-fixed dune community
Tortula ruralis ssp. ruraliformis sub-community

The usual characteristics of this community in Britain are similar to 6-SD7c: abundant Marram and frequent Festuca rubra and Ononis repens. It is normally distinguished from SD7c by common Hieracium pilosella agg., several species of annual, and often an abundant moss carpet of Tortula ruralis ssp. ruraliformis. Many of these features are found in South Wales dunes but there are local differences because Festuca rubra is comparatively rare and H. pilosella has a very weak presence. Winter annuals are a prominent component, especially Phleum arenarium, Arenaria serpyllifolia, Cerastium diffusum diffusum, Vulpia fasciculata, Sedum acre and Aira praecox. More rarely Viola tricolor, Cerastium semidecandrum, Arabis hirsuta and Desmazeria rigida can be found.

The community is very common in several locations, colonising SD6 mobile dunes either near actively extending foreshores (Crymlyn, Nicholaston, Tywyn) or on the steep slopes and flanks of vegetated blowouts (Oxwich, Llangennith/Broughton). It is rare at Pembrey Burrows, suggesting that dune orientation in that system is sheltered, not creating the sand burial rates which favour this community. It is very rare at Penmaen and Pennard, occuring only as very isolated and small coverage on thin sandy rendzinas overlying limestone. It was not mapped in these two latter places.

Festuca rubra - Galium verum fixed dune community
No clear NVC sub-community

This community in Britain usually consists of a closed sward made up of grasses, dicotyledons and mosses. Marram may be only occasional and often lacks vigour. There is very little sand accumulation and the first signs of leaching impact are often found here in terms of indicators of soil acidity.

SD8

There are three potential sub-communities likely to be found in South Wales but none can be proposed with confidence. Instead, five variants can be recognised and related to local succession and moisture conditions. The absence of clear sub-communities is probably the result of no intensive grazing, a finding in studies elsewhere in Britain.

8v1 variant Marram and Festuca rubra are dominant, with appreciable quantities of the moss Homalothecium lutescens in the turf. Ononis repens and Galium verum are fairly common (frequency class III) and the variant is probably an early SD8 type emerging in succession from 7-SD7c.

8v2 variant There is little Marram and most cover is contributed by Festuca rubra and the moss Homalothecium lutescens. There is virtually no Ononis repens, Galium verum is infrequent and early leaching indicators are quite common (the moss Dicranum scoparium and the lichens Cladonia rangiformis and C. impexa). Soil samples had some of the lowest pH values of SD8 samples. It is probably the oldest SD8 grassland type, grading into 10-SD12 Carex arenaria - Festuca ovina - Agrostis capillaris grassland over time.

8v3 variant Both Marram and Festuca rubra are frequent but Galium verum is low (class II) in frequency. There is a high moss cover involving pleurocarps (Homalothecium lutescens and Eurynchium praelongum) and the acrocarp Dicranum scoparium to suggest a trend towards acidity. A large proportion of quadrats also shows shrub invasion by Rubus caesius. The high frequency of Holcus lanatus (class IV) suggests that moisture is an important determinant of the variant.

8v4 variant This is closest to the SD8a Typical subcommunity and many quadrats did show signs of close rabbit
grazing. It has abundant Festuca rubra and Galium verum, with
plentiful Plantago lanceolata. There are, however, significant
quantities of shrubs (notably Rosa pimpinellifolia and Rubus
caesius) and other indicators of shading and invasion (Pteridium
aquilinum, Geranium sanguineum). These suggest a former SD8a
community in early transition towards scrub, probably following
a relaxation in grazing pressure.

8v5 variant This variant is a more extreme form of 8v4. There is a high degree of invasion by Pteridium aquilinum and species typical of early scrub and rank growth: Geranium sanguineum, Rubus caesius and Rosa pimpinellifolia. This community is particularly common between Port-Eynon and Horton where there are a few more nitrophilous species to suggest trampling and dog-walking effects.

9 SD9 Ammophila arenaria - Arrhenatherum elatius dune grassland
No clear NVC sub-community

In Britain this community is found on less-heavily grazed stretches of fixed calcareous dune systems. There is no clear fit with NVC sub-communities because Marram is rare in variant 9v1 and infrequent in 9v2. The species composition of the two variants suggests that the community is seral in character and that it is undergoing rapid change towards scrub development.

9v1 variant Arrhenatherum elatius is relatively infrequent in a rank Festuca rubra and Holcus lanatus sward which contains large quantities of Rubus caesius. There are reasonable quantities of both Onois repens and Galium verum, suggesting that the community has developed rapidly from SD7 and SD8 categories. The high quantity of Holcus lanatus and occasional presence of Salix repens suggest that moist conditions may be a characteristic of sites which have also had a relaxation in grazing.

9v2 variant This variant shows a more advanced stage of scrub development in SD9 communities. There is both a tree and shrub presence in many samples, with quadrats located in a grassland/scrub mosaic at the rear of several systems (notably Crymlyn Burrows, Black Pill, Hillend/Broughton, Pembrey Burrows).

Where both variants occur in a single system, 9v1 tends to be more seaward suggesting the community is currently extending towards younger dune grassland types.

capillaris grassland
No clear NVC sub-community

This grassland is typical of grazed acidic sands in Britain and in systems which are initially calcareous it is found on older dunes where leaching has been effective. The rear of most South Wales dune systems, where such swards are likely, has been highly altered in most cases (often to provide golf courses). Reasonable examples of the community type can be found in the fringes of rough around fairways, notably at Crymlyn and Pennard Burrows (the latter system is also grazed by ponies). Further pony grazing by ponies at Penmaen probably also helps maintain the community. Elsewhere the dune systems are either too young or lack of grazing has allowed SD9 rank near-mesotrophic grassland to develop.

There is no very close agreement with NVC sub-communities but two local variants can be recognised.

10v1 variant This resembles in part the SD12a Anthoxanthum odoratum sub-community but lacks Marram and shows early bracken invasion. There is also floristic evidence of sufficient leaching to allow heath indicators (e.g. Calluna vulgaris) into the sward.

10v2 variant This is bracken-invaded and much more species-poor as a result of shading and litter accumulation. It is restricted to leached acidic sands on the cliff tops at Penmaen and Pennard. As in 9v1 there is strong floristic evidence of a trend towards heath vegetation.

11 H11 Calluna vulgaris - Carex arenaria heath

Some good examples of heath developed on sand were found but in general these were rare. Communities with Calluna vulgaris dominant (and, less commonly, Erica cinerea and Vaccinium myrtillus) are restricted to leached sands banked against the old seacliff at the rear of Crymlyn Burrows, and to the thinner sands deposited on top of cliffs at Penmaen and Pennard. At Crymlyn the community grades into normal H10 Calluna vulgaris - Erica cinerea heath on the top of the cliff as the sand rapidly thins.

SLACK COMMUNITIES

Low-lying areas under the influence of the dune water table (slacks) are usually markedly different from dry dune grasslands. A major revision in NVC slack types took place after field mapping (though description of the new types was not provided). Computer analysis of quadrat data found end groups which did not closely fit old or new NVC classifications (see Annex 1 - Problems). The five quadrat groupings (12a, 12b, 13, 14, 15) are therefore presented as a series with what are probably their closest types in the revised NVC system of November 1989. The fit is far from perfect and all slack classification must be considered approximate.

12a SD14c Salix repens - Campylium stellatum dune slack
Bryum pseudotriquetrum - Aneura pinguis
sub-community

This community probably represents young slacks formed by the enclosure of depressions by spit extension (as at Tywyn) or in deflation hollows left after the passage of a parabolic dune blowout (north Whiteford). There is a slight saline influence at Tywyn shown by the low frequency of Glaux maritima. The community has patches of bare ground and Salix repens often shows a pattern of small circular and coalescing colonies, a feature of early succession. The community is very rich in species.

12b SD15a/b Salix repens - Calliergon cuspidatum dune slack
Carex nigra sub-community (a)
Equisetum variegatum sub-community (b)

There is abundant Salix repens over a carpet of Hydrocotyle vulgaris and the moss Calliergon cuspidatum. Equisetum hyemale is very common in this turf and orchids (commonly Epipactis palustris and Dactylorhiza majalis) are abundant. There is still a saline element in some slacks, shown by Juncus maritimus, J. acutus and Oenanthe lachenalii.

13 SD15c Salix repens - Calliergon cuspidatum dune slack
Carex flacca - Pulicaria dysenterica sub-community

This slack community is one of the most distinctive due to the prominence of tall herbs, with much Juncus maritimus, Pulicaria dysenterica, Eupatorium cannabinum, Filipendula ulmaria, Lotus uliginosus and Lychnis flos-cuculi. It often features the start of slack woodland by Salix cinerea and Alnus glutinosa at Tywyn. At Whiteford it is very extensive on the eastern side, grading into saltmarsh. It seems to prefer steeper slack gradients and may reflect lateral subsurface water flow.

- 14 SD16a/b Salix repens Holcus lanatus dune slack
 Ononis repens sub-community (a)
 Rubus caesius sub-community (b)
- 14 SD16c/d Salix repens Holcus lanatus dune slack
 Prunella vulgaris Equisetum variegatum
 sub-community (c)
 Agrostis stolonifera sub-community (d)

A heterogeneous set of slack and slack transition habitats is represented in this group. The topographic differences within the quadrat set are not clearly distinguished by species composition which overall suggest relatively dry slack conditions. Three main types of topography are involved:

- a. drier slack margins receiving sand input from adjacent dunes (common at Whiteford in western slacks).
- b. clustered large hummocks ('hedgehogs') up to 2m high and 4-5m in diameter, usually with a strong cover of Salix repens. These are believed to be due to dune building controlled by upward growth by Salix in areas suffering sand burial in the past. These are present at Pembrey Burrows and Whiteford.
- c. a transition involving damp grassland at Tywyn which runs for much of the length of the dune system along its eastern side.
- 15 SD17 Potentilla anserina Carex nigra dune slack No clear NVC sub-community

This slack type is the least common in samples and in Britain is believed to be older and less calcareous than others. Carex nigra is usually a prominent feature but only Mentha aquatica is consistently present. Other species offer few clues to more precise habitat or successional relationships.

SALTMARSH

16 SM18b Juncus maritimus saltmarsh
Oenanthe lachenalii sub-community

This is common at Crymlyn, Oxwich (unsampled), Whiteford and Tywyn. It represents the highest saltmarsh community in areas which are also flushed by fresh and brackish water draining from dune slacks. It grades upwards into 13-SD15c dune slack, especially at Whiteford.

17 SM24 Elymus pycnanthus saltmarsh

This was noted (but not accurately mapped in terms of full extent) at Crymlyn, Pennard (very restricted), Oxwich-Nicholaston (not recorded), Whiteford, Pembrey and Tywyn. It represents the highest saltmarsh community in areas which are reasonably dry and uninfluenced by slack water. It also contains strandline indicators.

SWAMP COMMUNITIES

18 S4a Phragmites australis swamp and reed-beds Phragmites australis sub-community

This tall reed-bed community is present in restricted quantity at Crymlyn Burrows and is abundant at Oxwich. Grazing by ponies at Whiteford has probably excluded it as a component of the wet eastern transition from slack to wet saltmarsh.

19	s4d	Phragmites australis swamp and reed-beds Atriplex hastata sub-community
19	S21b	Scirpus maritimus swamp Atriplex hastata sub-community

The sheltered strandline at Pembrey Burrows above saltmarsh is the only mapped location for a *Phragmites australis - Scirpus maritimus* mosaic (hence the presence of *Atriplex prostratus* and *Elymus pycnanthus*). Discharges from an adjacent sewage outfall pipe probably helps explain the thick growth in this area and the absence of these types from equivalent positions in other parts of the Pembrey Burrows marsh.

20 S12b Typha latifolia swamp
Mentha aquatica sub-community

This is rather restricted. At Whiteford it is found in a concentrated zone of flushing below a large slack on the transition to saltmarsh. At Tywyn it is found in two man-made slacks adjacent to targets, the sand having been excavated to provide a raised surface for the target zone. A reasonable aquatic flora (including *Chara* sp.) is developing in these excavated hollows.

SCRUB AND WOODLAND COMMUNITIES

21 SD18a Hippophae rhamnoides scrub Festuca rubra sub-community

This sub-community did not appear as an end-group in computer analysis and was obtained by selecting all quadrats containing Hippophae rhamnoides and then rejecting those belonging to the 22-SD18b set. This vegetation type represents the early stage of dune scrub invasion, most cases coming from the Pembrey Coast where this process is very frequent. Associated species suggest that 4-SD6d, 5-SD6e and 7-SD7d are the initial invaded communities. This is clear in Pembrey Coast vegetation maps.

22 SD18b Hippophae rhamnoides scrub
Urtica dioica - Arrhenatherum elatius
sub-community

In this community Hippophae rhamnoides is the major dominant. Shading and excreta from birds feeding on berries helps produce a flora characteristic of soils enriched with nitrogen and phosphorus (e.g. Urtica dioica, Galium aparine). Sambucus nigra is occasional and suggests shrub diversification is taking place in larger and older stands. The sub-community is not fully typical of the NVC because Arrhenatherum elatius is rare.

23 W1 Salix cinerea - Galium palustre woodland

This community is dominated by Betula pubescens, with reasonable quantities of Salix cinerea in places. Galium palustre and Iris pseudacorus are consistently present. All small thickets of Salix cinerea were mapped as this category and a reasonable number of quadrats were recorded for this type. However, only seven quadrats formed this clear end-group. A larger number was scattered in various slack end-groups (especially 13), suggesting that such willow scrub is recent and that it has not developed a very distinct flora. Some stands of Salix cinerea showed signs of sand burial, notably at Llangennith and Whiteford.

4 W10c Quercus robur - Pteridium aquilinum Rubus fruticosus agg. woodland
Hedera helix sub-community

This community is dominated by *Quercus robur* and has a scattered tall-shrub understorey of *Crataegus monogyna* over a floor often dominated by *Rubus fruticosus* agg. Shading is effective and there is little *Pteridium aquilinum*. This category was not an end-group in analysis and was obtained by selection of high-cover *Quercus robur* stands. Only five such stands were found, scattered in end-groups representing well-developed scrub.

25 W21a Crataegus monogyna - Hedera helix scrub Hedera helix - Urtica dioica sub-community

This is the commonest form of non-Hippophae scrub quadrat recorded in survey and shows active succession. The tall shrub or tree component rarely forms a continuous canopy and thick Rubus fruticosus agg. is the most consistent woody species present. A mix of trees and tall shrubs is present in the group in addition to Crataegus: Quercus robur, Prunus spinosa, Acer pseudoplatanus, Fraxinus excelsior, Corylus avellana, Pinus nigra. It seems a clear precursor to a variety of woodland types.

26 W22 Prunus spinosa - Rubus fruticosus agg. scrub No clear NVC sub-community

A small number of samples was dominated by Prunus spinosa but these quadrats were scattered amongst scrub end-groups (especially 25-W21a) and were found by selection. One stand on the Pembrey Coast contained dead Hippophae rhamnoides beneath the closed Prunus canopy and this provides some evidence of active succession towards non-dune scrub and woodland types. No clear NVC sub-community can be distinguished within the small quadrat total (9) separated by selection.

27 W23 Ulex europaeus - Rubus fruticosus agg. scrub No clear NVC sub-community

Ulex europaeus is a fairly common scrub type at the rear of the Crymlyn and Pembrey Burrows dune systems, and upon steep cliff slopes at Nicholaston, Penmaen and Pennard. It usually contains sizeable quantities of Rubus fruticosus agg. and sometimes Pteridium aquilinum or Arrhenatherum elatius. In some locations it seems to have developed from a lower scrub cover of Rosa pimpinellifolia. Several stands in cliffed sites showed regeneration after burning, especially at Pennard. This vegetation type did not form an end-group in analysis and had to be selected from other scrub-dominated end-groups.

28 W24 Rubus fruticosus agg. - Holcus lanatus underscrub No clear NVC sub-community

Rubus fruticosus agg. is very widespread in a variety of dune, scrub and woodland communities. In analysis it forms one heterogeneous end-group which has other shrub species patchily present (Rosa pimpinellifolia, Ulex europaeus, Crataegus monogyna). At Black Pill the community contains much Populus tremula and is dominant at the rear of the dune system.

29 W25 Pteridium aquilinum - Rubus fruticosus agg. underscrub No clear NVC sub-community

Bracken-invasion of dune and cliff vegetation is widespread in South Wales and Pteridium aquilinum is usually accompanied by a large cover of Rubus fruticosus agg.. A shaded community results which has woodland elements (e.g. Geranium robertianum, Glechoma hederacea, Silene dioica). Other shrub species are few (Ulex europaeus is rare) and Acer pseudoplatanus is the only (infrequent) tree to be recorded. Seral progression beyond this community stage may not therefore be very active.

30 X2 Alnus glutinosa slack woodland

This community represents the commonest woodland type found in damp habitats. It probably represents the most mature community development in slack conditions. Alnus glutinosa is the usual dominant but Salix cinerea is also present in large quantity. It probably develops from type 23-W1 woodland. There is no close affinity with other NVC alder woodland types.

Iris pseudacorus, Galium palustre and Rubus fruticosus agg. are frequent beneath the canopy, with a scatter of shade-tolerant herbs (notably Oenanthe crocata, Berula erecta, Lycopus europaeus and Carex remota).

In several locations the community is developed adjacent to saltmarsh (at Crymlyn, Oxwich and Whiteford). Young alder thickets are particularly common at Tywyn where rapid scrub succession is taking place. Old inland examples are found as scattered remnants within Pembrey Forest.

31 X3 Pinus nigra/sylvestris woodland

Pembrey Forest and Pembrey Country Park are dominated by very large expanses of *Pinus nigra* plantation, some dating back to the 1930's. Old and thinned stands support a reasonable woodland groundflora with some shrub development (a scatter of *Crataegus monogyna*, *Prunus spinosa* or *Ligustrum vulgare*, occasionally *Hippophae rhamnoides* in well-thinned places). Several small stands are also present at Whiteford where there is some regeneration from seed. In addition there has been removal and thinning at Whiteford designed to improve shaded dune communities beneath.

This category did not form a clear end-group in analysis and had to be selected. Of seventeen samples, twelve are represented here and the remaining five are shaded slacks which were classified correctly and were thus retained in slack classes. Shading effects were, however, very clear in each case.

32 X4 Acer pseudoplatanus woodland

Sycamore woodland did not form a classification end-group but five quadrats could be selected. The vegetation type is found at Whiteford on sand blown on to a hillslope at the south of the survey area, and it is present in small quantity at the Pembrey Coast. Young stands are developing between Port-Eynon and Horton. The community is rather species-poor and lacks much ecological interest.

26 W22 Prunus spinosa - Rubus fruticosus agg. scrub
No clear NVC sub-community

A small number of samples was dominated by Prunus spinosa but these quadrats were scattered amongst scrub end-groups (especially 25-W21a) and were found by selection. One stand on the Pembrey Coast contained dead Hippophae rhampoides beneath the closed Prunus canopy and this provides some evidence of active succession towards non-dune scrub and woodland types. No clear NVC sub-community can be distinguished within the small quadrat total (9) separated by selection.

27 W23 Ulex europaeus - Rubus fruticosus agg. scrub No clear NVC sub-community

Ulex europaeus is a fairly common scrub type at the rear of the Crymlyn and Pembrey Burrows dune systems, and upon steep cliff slopes at Nicholaston, Penmaen and Pennard. It usually contains sizeable quantities of Rubus fruticosus agg. and sometimes Pteridium aquilinum or Arrhenatherum elatius. In some locations it seems to have developed from a lower scrub cover of Rosa pimpinellifolia. Several stands in cliffed sites showed regeneration after burning, especially at Pennard. This vegetation type did not form an end-group in analysis and had to be selected from other scrub-dominated end-groups.

28 W24 Rubus fruticosus agg. - Holcus lanatus underscrub
No clear NVC sub-community

Rubus fruticosus agg. is very widespread in a variety of dune, scrub and woodland communities. In analysis it forms one heterogeneous end-group which has other shrub species patchily present (Rosa pimpinellifolia, Ulex europaeus, Crataegus monogyna). At Black Pill the community contains much Populus tremula and is dominant at the rear of the dune system.

29 W25 Pteridium aquilinum - Rubus fruticosus agg.
underscrub
No clear NVC sub-community

Bracken-invasion of dune and cliff vegetation is widespread in South Wales and Pteridium aguilinum is usually accompanied by a large cover of Rubus fruticosus agg.. A shaded community results which has woodland elements (e.g. Geranium robertianum, Glechoma hederacea, Silene dioica). Other shrub species are few (Ulex europaeus is rare) and Acer pseudoplatanus is the only (infrequent) tree to be recorded. Seral progression beyond this community stage may not therefore be very active.

30 X2 Alnus glutinosa slack woodland

This community represents the commonest woodland type found in damp habitats. It probably represents the most mature community development in slack conditions. Alnus glutinosa is the usual dominant but Salix cinerea is also present in large quantity. It probably develops from type 23-W1 woodland. There is no close affinity with other NVC alder woodland types.

Iris pseudacorus, Galium palustre and Rubus fruticosus agg. are frequent beneath the canopy, with a scatter of shade-tolerant herbs (notably Oenanthe crocata, Berula erecta, Lycopus europaeus and Carex remota).

In several locations the community is developed adjacent to saltmarsh (at Crymlyn, Oxwich and Whiteford). Young alder thickets are particularly common at Tywyn where rapid scrub succession is taking place. Old inland examples are found as scattered remnants within Pembrey Forest.

31 X3 Pinus nigra/sylvestris woodland

Pembrey Forest and Pembrey Country Park are dominated by very large expanses of *Pinus nigra* plantation, some dating back to the 1930's. Old and thinned stands support a reasonable woodland groundflora with some shrub development (a scatter of *Crataegus monogyna*, *Prunus spinosa* or *Ligustrum vulgare*, occasionally *Hippophae rhamnoides* in well-thinned places). Several small stands are also present at Whiteford where there is some regeneration from seed. In addition there has been removal and thinning at Whiteford designed to improve shaded dune communities beneath.

This category did not form a clear end-group in analysis and had to be selected. Of seventeen samples, twelve are represented here and the remaining five are shaded slacks which were classified correctly and were thus retained in slack classes. Shading effects were, however, very clear in each case.

32 X4 Acer pseudoplatanus woodland

Sycamore woodland did not form a classification end-group but five quadrats could be selected. The vegetation type is found at Whiteford on sand blown on to a hillslope at the south of the survey area, and it is present in small quantity at the Pembrey Coast. Young stands are developing between Port-Eynon and Horton. The community is rather species-poor and lacks much ecological interest.

QUADRAT MEMBERSHIP OF VEGETATION TYPES

Quadrat membership of vegetation types at this site is listed below. Some quadrats appear in more than one vegetation type. These are transitional samples identified in classification and placed in more than one end group of the three main TWINSPAN hierarchies.

Only mapping unit numbers (plus variant type) are listed against quadrats. For full NVC nomenclature consult Annex 3 and the vegetation legend in the rear map pocket.

The floristic characteristics of each vegetation type are given in Annex 5. Descriptions of each vegetation type, plus notable characteristics of this site, are given in Annex 3.

Q	VT	Q	VT	Q	VT	Q	VT
355	2	356	8v5	357 7		358	8v5
359	4	360	7	361 26		362	4
363	7	364	26	365 8v5		366	8v5
367	8 v 5	368	8v5	369 8 v4		370	8v4
371	8 v 5	372	29	373 8v5	26	374	8v5
375	8 v 4	376	8v4	377 7		378	6v1
379	7 21	380	7 21	381 29	32	382	6v1
383	5	384	7	385 6v3		386	7
387	4	388	8v5	389 6v3		390	8v5

FLORISTIC DETAILS OF VEGETATION TYPES

The following pages include the vegetation types present in the site(s). Community structure data on height and cover are provided, plus information on bare ground, pH and mean species diversity. Species are listed in order of decreasing frequency:

> V = >80% IV = >60% - 80% III = >40% - 60% II = >20% - 40%

Very infrequent species are excluded to restrict table length. Domin values are the most common (i.e. they are modal scores).

MAP VEGETATION UNIT UNIT	MAP VEGETATION UNIT UNIT	MAP VEGETATION UNIT UNIT	MAP VEGETATION UNIT UNIT	MAP VEGETATION UNIT UNIT
2 SD4 Elymus farctus foredume community	4 SD6d Ammophila arenaria mobile dume community Typical sub-community	5 SD6e Ammophila arenaria mobile dune community Festuca rubra sub-community	6 5D7c Ammophila arenaria - Festuca rubra semi-fixed dune community Ornoris repens sub-community	6 SD7c Ammophila arenaria - Festuca rubr semi-fixed dune community Onomis repens sub-community
Tree height (m) -			Variant 1	Variant 3
Shrub/bracken height (m) -	Tree height (m)	Tree height (m) -		
Herb height (cm) 25	Shrub/bracken height (m) -	Shrub/bracken height (m) -	Tree height (m)	Tree height (m) -
Tree cover (%) -	Herb height (cm) 70	Herb height (cm) 50	Shrub/bracken height (m) -	Shrub/bracken height (m) 0.4
Shrub cover (%)	Tree cover (%)	Tree cover (%)	Herb height (cm) 50	Herb height (cm) 40
Herb cover (%) 20	Shrub cover (%) -	Shrub cover (%)	Tree cover (%)	Tree cover (%)
Cryptogam cover (%) -	Herb cover (%) 50	Herb cover (1) 70	Shrub cover (1)	Shrub cover (%) 10
	Cryptogem cover (%)	Cryptogam cover (%) -	Herb cover (%) 70	Herb cover (%) 90
Bare surface (%) 80			Cryptogam cover (%) 20	Cryptogam cover (%) 20
pH 8.1-8.5	Bare surface (%) 50	Bare surface (%) 30		
Mean species per quadrat 5.2	pH 7.8-8.2	pH 7.8	Bare surface (%) 10	Bare surface (%) 5
	Mean species per quadrat 7.1	Mean species per quadrat 9.4	pH 7.6-8.1	pH 6.8-8.1
FREQ- DOMIN			Mean species per quadrat 13.8	Mean species per quadrat 14.0
UENCY VALUE	FREQ- DOMIN	FREQ- DOMIN		
	UENCY VALUE	UENCY VALUE	FREQ- DOMIN	FREG- DOMIN
Elymus farctus V 5			UENCY VALUE	UENCY VALUE
Salsola kali III 4	Ammophila arenaria V 7	Ammophila arenaria V 6		
Atriplex prostrata III 4	Senecio jacobaea III 3	Festuca rubra IV 7	Ammophila arenaria V 5	Festuca rubra V 7
Cekile maritima II 1	Hypochaeris radicata III 3	Hypochaeris radicata IV 2	Festuca rubra V 6	Ammophila arenaria V 5
Honkenya peploides II 3	Eryngium maritimum III 3	Elymus farctus III 3	Hypochaeris radicata IV 3	Carex arenaria IV 4
Beta vulgaris maritima II 3	Sonchus asper III 2	Carex arenaria III 3	Leontodon hispidus III 3	Pom pratensis IV 3
	Euphorbia paralias II 3	Calystegia soldanella II 3	Ononis repens III 4	Holcus lanatus IV 3
	Elymus farctus II 3	Ononis repens II 2	Eryngium maritimum III 2	Ononis repens IV 5
	Cerastium diffusum diffusum II 3	Rubus caesius II 3	Carex arenaria III 3	Eurynchium praelongum III 5
	Oenothera erythrosepala II 2	Senecio jacobaea II 2	Oenothera erythrosepala III 3	Plantago lanceolata III 3
	Arenaria serpyllifolia II 3	Taraxacum sp. II 2	Rubus caesius III 3	Senecio jacobaea III 2
	Rubus caesius II 3	Euphorbia paralias II 2	Anthyllis vulneraria II 4	Lotus corniculatus II 3
			Cerastium diffusum diffusum 11 2	Anthyllis vulneraria II 3
			Senecio jacobaea II 3	Arrhenatherum elatius II 4
			Eurynchium praelongum II 4	Dactylis glomerata II 3
	•		Phleum arenarium II 2	Galium verum II 4
			Brachythecium rutabulum II 3	Hypochoeris radicata II 2
			Sedum acre II 3	Rubus caesius II 5
			Barbula vinealis II 4	Rubus fruticosus agg. II 5
			Arenaria serpyllifolia II 2	Polypodium vulgare II 3
		•	Poa pratensis II 3	Taraxacum sp. II 2
			Brachythecium albicans II 4	Oenothera erythrosepala II 2
			Taraxacum sp. II 3	Hieracium pilosella agg. II 3
			Rhynchosinapis cheiranthos II 2	

MAP VEGETATION			MAP VEGETATION	
UNIT UNIT			UNIT UNIT	
7 SD7d Amer	ophila arenaria - H	estuca rubra	8 SD8 Festuca rui	bra - Galium verum fixed
	-fixed dune commun		dune commu	
	tula ruralis ssp. r	•	No clear Ni	/C sub-community
	-community		Variant 4	
Tree height (m)	_		Tree height (a)	-
Shrub/bracken height (m	0.3	•	Shrub/bracken height (m)	0.4
Herb height (cm)	20		Herb height (cm)	30
Tree cover (%)	-		Tree cover (%)	-
Shrub cover (%)	5		Shrub cover (%)	20
Herb cover (%)	40		Herb cover (%)	90
Cryptogam cover (%)	30		Cryptogem cover (%)	20
Bare surface (%)	30		Bare surface (%)	1
pH	7.3-8.1		ρΗ	7.0-7.4
Mean species per quadra	at 16.2		Mean species per quadrat	15.0
	FREO-	DOMIN		FREQ- DOMIN
	UENCY	VALUE		UENCY VALUE
Phleum arenarium	٧	3	. Festuca rubra	V 7
Ammophila arenaria	IA	5	Galium verum	IV 4
Arenaria serpyllifolia	IV	3	Plantago lanceolata	IV 4
Cerastium diffusum difi	fusum IV	3	Poa pratensis	IV 3
Hypochoeris radicata	IV .	3	Carex arenaria	IV 3
Carex arenaria	IV	3	Dactylis glomerata	III 4
Oenother a erythrosepala		3	Rosa pimpinellifolia	III · 5
Tortul a r u ralis ssp. re	uraliformis III	5	Anthoxanthum odoratum	111 4
Leontodon hispidus	III	3	Agrostis capillaris	III 4
Vulpia fasciculata	III	4	Sanguisorba minor	III 4
Senecio jacobaea	III	2	Holcus lanatus	II 4
Sedum acre	III	3	Rubus caesius	II 5
Ononis repens	111	4	Avenula pubescens	II 4
estuca rubra	II	4	Ononis repens	II 3
Ceratodon purpureus	II	5	Pteridium equilinum	II 5
lolcus lanatus	II	4	Thymus praecox arcticus	II 4
Rubus caesius	II	4	Veronica chammedrys	II 3
Aira praecox	II	3	Achillen millefolium	11 4
			Lotus corniculatus	II 4
			Pseudoscleropodium purum	II 5
			Geranium sanguineum	II 5

MAP VEGETATION UNIT UNIT

8 SD8 Festuca rubra - Galium verum fixed dune community
No clear NVC sub-community
Variant 5

Tree height (m)	-	
Shrub/bracken height (m)	0.6	
Herb height (cm)	60	
Tree cover (%)	-	
Shrub cover (%)	40	
Herb cover (%)	90	
Cryptogam cover (%)	10	
Bare surface (%)	1	
pH	6.9	
Mean species per quadrat	10.2	

	FREO-	DOMIN	
	UENCY	VALUE	
Pteridium equilinum	IV	6	
Carex arenaria	IV	3	
Geranium sanguineum	IV	6	
Rubus caesius	IV	6	
Ammophila arenaria	ĬΑ	5	
Festuca rubra	IV	5	
Rosa pimpinellifolia	111	6	
Convolvulus arvensis	II	3	
Galium verum	II	4	
Holcus lanatus	II	4	
Poa pratensis	II	3	
Sanguisorba minor	H	3	
Brachythecium rutabulum	11	5	
Eurynchium praelongum	II	3	
Dactylis glomerata	11	4	

MAP VEGETATION UNIT UNIT		MAP VEGETATION UNIT UNIT	
	e rhamnoides scrub rubra sub-community		osa - Rubus fruticosus agg. scru C sub-community
		Tree height (m)	•
Tree height (m)	-	Shrub/bracken height (m)	2-5
Shrub/bracken height (m)	0.4-2	Herb height (cm)	30
Herb height (cm)	40	Tree cover (%)	-
Tree cover (%)	-	Shrub cover (*)	60-100
Shrub cover (%)	40	Herb cover (%)	5-80
Herb cover (%)	60	Cryptogam cover (*)	10-40
Cryptogam cover (%)	20		
		Bare surface (%)	-
Bare surface (%)	10	На	7.4
pH	7.4-7.8	Mean species per quadrat	12.6
Mean species per quadrat	14.4		
			FREO- DOMIN
	FREQ- DOMIN		UENCY VALUE
	UENCY VALUE		
Hippophae rhamnoides	V 5	Prunus spinosa	V 8
Ammophila arenaria	IV 5	Eurynchium praelongum	IV 6
Carex arenaria	III 3	Urtica dioica	IV 3
Festuca rubr a	111 6	Crataegus monogyna	III 5
Holcus lanatus	III 5	Dactylis glomerata	III 3
Rubus caesius	III 6	Rosa pimpinellifolia	III 5
Hypochoeris radicata	III 3	Rubus fruticosus agg.	III 4
Senecio jacobaea	III 3	Festuca rubra	11 4
Rubus fruticosus agg.	II 4	Geranium robertianum	II 3
Cerastium diffusum diffusu	m II 3	61echoma hederacea	· II 4
Denothera erythrosepala	11 3	Hedera helix	II 9
igrostis stolonifer a	II 4	Quercus robur	II 4
krenaria serpyllifolia	II 3	Sambucus nigra	II 6
eontodon hispidus.	II 3	Silene dioica	II 3
otus corniculatus	II 4	Arrhenatherum elatius	II 2
		Athyrium filix-femina	II 1
		Brachypodium sylvaticum	II 3
		Carex arenaria	II 3
		Oryopteris filix-mas	11 4
		Epilobium montanum	II 2
		Fraxinus excelsior	· II 4
		Galium verum	II 4
		Phyllitis scolopendrium	II 4
		Plantago lanceolata	11 3
	•	Pteridium aquilinum	II 4
		Rubus caesius	11 4
		Senecia iecohoee	11 2

Senecio jacobaea

Stachys sylvatica Tamus communis

II

II 3 II, 1

MAP VEGETATION		MAP VEGETATION		
UNIT UNIT		UNIT UNIT		
29 W25 Pteridium aqu	rilinum - Rubus fruticosus	32 X7 Acer pseud	oplatanus woodla	nd
agg. underscr	ub			
No clear NVC	sub-community	Tree height (m)	4-16	
		Shrub/bracken height (m)	0-6	
Tree height (m)	-	Herb height (cm)	20-40	
Shrub/bracken height (m)	1-3	Tree cover (%)	60-95	
Herb height (cm)	40-120	Shrub cover (%)	0-50	
Tree cover (%)	_	Herb cover (%)	20-50	
Shrub cover (%)	80-100	Cryptogam cover (%)	10	
Herb cover (%)	30			
Cryptogas cover (%)	-	Bere surface (%)	-	
		pH	6.3	
Bare surface (%)	-	Mean species per quadrat	12.0	
pH	6.8-7.4			
Mean species per quadrat	9.7			HIN
			UENCY VA	LUE
	FREQ- DOMIN			
	UENCY VALUE	Acer pseudoplatanus	-	9
		Rubus fruticosus		Ĺ
Pteridium mquilinum	V 7	Hyacinthoides nonscripta		3
Rubus fruticosus	V 7	Geranium robertianum		3
Urtica dioica	III 4	Hedera helix	111	6
Geranium robertianum	II 4	Arum maculatum	II	1
Glechoma hederacea	II 4	Crataegus monogyna	II .	3
Holcus lanatus	II 4	61echowa hederacea		4
Silene dioica	II 3	Pteridium aquilinum		2
Acer pseudoplatanus	II 4	Rubus caesius		4
Arrhenatherum elatius	II é	Silene dioica		2
Festuca rubra	II 4:	Brachythecium rutabulum	II	í

TARGET NOTES

These are marked on the site map sheet(s) as TNn.

PORT-EYNON TO HORTON

- Local erosion by trampling now controlled by exclosure fencing and controlled beach access along boardwalk or concrete slab pathways.
- 2 Frontal dunes removed (or perhaps eroded) to provide seating and access for tractor to reach beach and scrape litter (plus strandline and foredunes?).
- 3 Large dune area with exclosure fencing.
- 4 Temporary dump for organic material and litter removed by tractor on beach.
- 5 Stream comes through dune front and erosion of dune front at this point protected by sloped gabirons which have only strandline and foredune flora on this site.
- Steep dune front merges into cliff with shingle exposed at base. Scrub developing on dune top also extends on to top of cliff.

QUADRAT DATA (COMPUTER FORMAT)

Full tabulation of all quadrat data as sample-species tables is too costly in terms of space. A reduced version of the data in NVC format for use in the VESPAN2 package is given here. A copy of this data aggregated for all sites has been supplied to the NCC Nominated Officer on floppy diskette. For readers with access to VESPAN2 it is thus possible to obtain the data and display individual quadrats in full format.

The species characteristics of vegetation types are presented in great detail in Annex 5 (apart from infrequent species), based on data from all sites. Particular characteristics of this site are emphasised under descriptions of vegetation types in Annex 3. Quadrat membership of vegetation types is listed in Annex 4. This organisation of information should satisfy most readers.

```
9 0 10 0 11 20 13 0 14 0 15 30 16 0 22 70 116 2 159 1
       217 5 268 31143 11184 22801 3
356
       9 0 10 1 11 40 13 0 14 60 15 50 16 10 22 0 159 4 283 3
       304 3 433 2 465 2 576 3 631 71066 41123 81519 4
357
       9 0 10 0 11 50 13 0 14 0 15100 16 30 22 0 103 1 159 6
357
       283 3 304 3 576 7 613 4 631 6 706 31066 31205 31239 11519 4
      1586 42023 4
        9 0 10 1 11 60 13 0 14 90 15 20 16 0 22 0 159 4 776 9
358
      1066 4
359
       9 0 10 0 11 50 13 0 14 0 15 30 16 0 22 75 159 5 283 3
       555 1 706 31272 1
359
360
       9 0 10 0 11 20 13 0 14 0 15 60 16 50 22 10 159 4 283 2
360
       304 3 706 1 769 3 800 3 913 1 914 4 958 31205 31434 41586 8
      2023 4
361
        9 0 10 2 11 30 13 0 14 70 15 5 16 10 22 20 576 31136 8
361
      1187 81519 4
362
        9 0 10 0 11 60 13 0 14 0 15 80 16 90 22 10 159 9 283 4
362
       706 3 913 21127 41205 31586 81677 4
363
       9 0 10 0 11 20 13 0 14 0 15 70 16 25 22 30 116 4 159 4
363
       381 4 565 2 769 3 841 3 913 2 914 7 958 31205 31586 5
       9 0 10 2 11 20 13 0 14100 15 5 16 10 22 0 465 11136 5
      1187 71677 42936 8
       9 0 10 0 11 60 13 0 14 0 15 90 16 30 22 10 159 8 304 3
365
365
       433 3 585 51239 41519 51677 4
366
       9 0 10 1 11 40 13 0 14 30 15 70 16 0 22 0 159 3 304 3
       433 3 465 4 576 6 631 81053 31123 61127 4
367
       9 0 10 1 11 70 13 0 14 40 15 70 16 50 22 0 304 3 433 3
367
       576 5 613 4 631 61053 31066 71123 71127 41519 51677 6
        9 0 10 0 11100 13 0 14 0 15100 16 0 22 0 433 4 631 4
       680 2 988 2 990 21053 41066 91127 62982 1
369
       9 0 10 0 11 20 13 0 14 0 15 60 16 70 22 0 171 4 202 3
       251 2 304 4 433 2 465 3 576 3 613 4 631 4 656 4 746 3 973 4
369
      1053 41066 41123 41205 31333 41914 8
       9 0 10 1 11 30 13 0 14 20 15 80 16 70 22 0 304 3 433 2
370
       465 3 576 6 613 4 631 5 973 4 988 41053 31066 41123 51333 3
370
      1914 8
371
       9 0 10 1 11 70 13 0 14 30 15 80 16 30 22 0 104 1 197 4
371
       304 4 433 3 465 4 613 3 631 5 988 31053 21066 61123 51127 4
371
      1519 61801 22936 5
372
       9 0 10 3 11 40 13 0 14100 15 10 16 40 22 0 433 2 631 3
372
       637 4 990 31066 41123 51127 21136 91519 41677 51801 41914 4
372
373
        9 0 10 2 11 70 13 0 14 30 15 80 16 15 22 0 304 4 433 3
373
       465 4 576 4 613 4 631 6 973 3 990 41053 31066 71123 51127 4
      1239 21519 52936 6
374
       9 0 10 2 11170 13 0 14 90 15 20 16 5 22 0 103 3 304 3
374
       433 2 631 4 776 9 988 3 990 31066 41123 51677 32936 4
375
       9 0 10 1 11 40 13 0 14 10 15100 16 0 22 0 122 3 304 4
375
       433 3 465 6 613 4 973 4 988 61053 41239 32936 4
376
       9 0 10 1 11 70 13 0 14 15 15100 16 70 22 0 103 3 304 4
376
       433 2 465 4 576 8 613 4 800 3 914 4 973 4 988 41053 41066 5
376
377
       9 0 10 0 11 10 13 0 14 0 15 30 16 70 22 25 194 3 381 3
377
       576 3 706 3 800 3 913 5 958 41205 31239 21434 31510 31586 8
377
       9 0 10 0 11 30 13 0 14 0 15100 16 15 22 0 159 4 304 4
378
378
       576 7 706 3 913 31127 51519 5
379
       9 0 10 1 11 20 13 0 14 20 15 30 16 45 22 50 159 4 194 4
```

```
304 2 381 3 678 5 706 3 800 4 913 4 958 41127 21205 21434 4
379
      1586 7
380
       9 0 10 1 11 40 13 0 14 40 15 50 16 60 22 30 159 5 194 3
380
       283 4 304 3 381 3 576 2 585 1 678 6 706 4 776 5 800 4 913 4
       958 31434 41586 8
381
        9 4 10 0 11 40 13 95 14 0 15 40 16 15 22 0 103 10 151 2
       167 1 197 3 652 61066 21127 51272 21510 31519 51677 3
381
        9 0 10 0 11 40 13 0 14 0 15 95 16 2 22 5 159 5 433 2
       576 9 706 2 913 2 914 6 958 21127 31239 11519 3
        9 0 10 0 11 50 13 0 14 0 15 70 16 60 22 10 104 3 159 7
       283 4 376 4 576 5 585 1 706 31239 21510 41519 81940 4
        9 0 10 0 11 30 13 0 14 0 15 40 16 60 22 20 104 1 159 5
       194 3 304 3 381 2 465 2 565 2 706 3 958 31239 11434 21510 5
      1519 41586 72023 42982 1
385
        9 0 10 0 11 40 13 0 14 0 15100 16 35 22 0 159 5 304 4
       433 3 576 8 585 4 613 4 706 2 914 6 988 41519 51677 6
       9 0 10 0 11 20 13 0 14 0 15 30 16 0 22 70 116 2 159 3
       304 3 555 3 565 1 576 4 706 3 800 5 841 4 913 4 958 31225 3
386
      1239 31434 3
387
       9 0 10 0 11100 13 0 14 0 15100 16 0 22 0 159 10 452 2
387
      1239 3
        9 0 10 1 11100 13 0 14 20 15 80 16 0 22 0 159 2 304 3
388
       433 31066 81123 51127 71187 3
389
        9 0 10 0 11100 13 0 14 0 15100 16 0 22 0 304 4 433 4
389
       465 2 576 8 613 6 706 1 914 5 958 2 988 41239 11272 2
        9 0 10 1 11100 13 0 14 90 15 30 16 0 22 0 159 3 304 3
       433 31066 61123 91127 5
```

AREAS OF VEGETATION TYPES

The table below lists the area (in hectares) of vegetation types at this site(s). Results are based on weighing on a balance accurate to 10mg - small categories may not be fully accurate.

Map Unit	NVC or non-NVC Unit	PORT-EYNON
1 23 45 67 89 01 12 13 14 15 16 7 89 01 12 13 14 15 16 7 89 20 12 22 22 22 22 23 33 33 33 33 33 33 33 33	X1 SD4 SD6a SD6d SD6e SD7c SD7d SD8 SD9 SD12 H11 SD14c-SD15a/b SD15c SD16a/b-SD16c/ SD17 SM18b SM24 S4a S4d-S21b S12b SD18a SD18b W1 W10c W21a W22 W23 W24 W25 X2 X3 X4	_
	<pre>(saltmarsh/ swamp) (scrub/</pre>	12.81 - - 2.43
Other	woodland)	_
Total		15.24

SITE BIBLIOGRAPHY

Very little information on Port-Eynon to Horton is available at the Oxwich Information Centre. One dissertation comparing these dunes with Oxwich NNR is the sum total.

Cole, S.M. (1985) An investigation into the effects of recreation and management on the sand dunes at Oxwich and Port-Eynon Bays, Gower, S. Wales. Undergraduate dissertation, Plymouth Polytechnic.

MAPPING AND VEGETATION UNITS FOR 1989 SOUTH WALES DUNE SURVEY

STRAND, DUNE AND TRANSITIONS

a	b	
1	X1	Dry foredune/saltmarsh/strandline transition community
2	SD4	Elymus farctus foredune community
3	SD6a	Ammophila arenaria mobile dune community Elymus farctus sub-community
4	SD6d	Ammophila arenaria mobile dune community Typical sub-community
5	SD6e	Ammophila arenaria mobile dune community Festuca rubra sub-community
6	SD7c	Ammophila arenaria - Festuca rubra semi-fixed dune community Ononis repens sub-community
7	SD7d	Ammophila arenaria - Festuca rubra semi-fixed dune community Tortula ruralis ssp. ruraliformis sub-community
8	SD8	Festuca rubra - Galium verum fixed dune community No clear NVC sub-community
9	SD9	Ammophila arenaria - Arrhenatherum elatius dune grassland No clear NVC sub-community
10	SD12	Carex arenaria - Festuca ovina - Agrostis capillaris grassland No clear NVC sub-community
11	H11	Calluna vulgaris - Carex arenaria heath

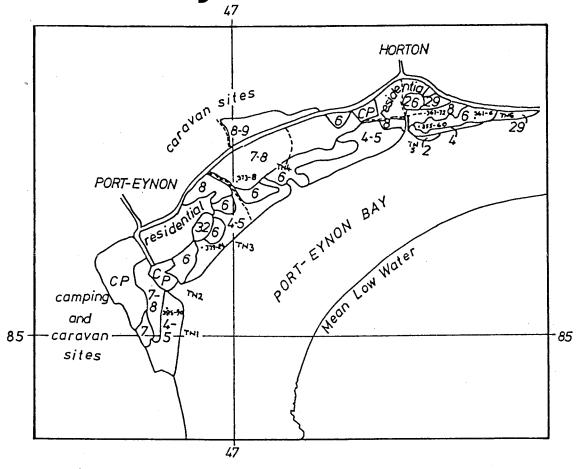
a = mapping unit b = vegetation unit
X = Major non-NVC category or transitional type

MAPPING AND VEGETATION UNITS FOR 1989 SOUTH WALES DUNE SURVEY

SLACK, SALITMARSH AND SWAMP

а	b	Mest, Milliand No Serie
12	SD14c	Salix repens - Campylium stellatum dune slack Bryum pseudotriquetrum - Aneura pinguis sub-community
12	SD15a/b	Salix repens - Calliergon cuspidatum dune slack Carex nigra sub-community (a) Equisetum variegatum sub-community (b)
13	SD15c	Salix repens - Calliergon cuspidatum dune slack Carex flacca - Pulicaria dysenterica sub-community
14	SD16a/b	Salix repens - Holcus lanatus dune slack Ononis repens sub-community (a) Rubus caesius sub-community (b)
14	SD16c/d	Salix repens - Holcus lanatus dune slack Prunella vulgaris - Equisetum variegatum sub-community (c) Agrostis stolonifera sub-community (d)
15	SD17	Potentilla anserina - Carex nigra dune slack No clear NVC sub-community
16	SM1.8b	Juncus maritimus saltmarsh Oenanthe lachenalii sub-community
17	SM24	Elymus pycnanthus saltmarsh
18	S4a	Phragmites australis swamp and reed-beds Phragmites australis sub-community
19	S4d	Phragmites australis swamp and reed-beds Atriplex hastata sub-community
19	S21b	Scirpus maritimus swamp Atriplex hastata sub-community
20	S12b	Typha latifolia swamp Mentha aquatica sub-community

a = mapping unit b = vegetation unit X = Non-NVC category or transitional type


MAPPING AND VEGETATION UNITS FOR 1989 SOUTH WALES DUNE SURVEY

WOODLAND AND SCRUB

a	b	
21	SD18a	Hippophae rhamnoides scrub Festuca rubra sub-community
22	SD18b	Hippophae rhamnoides scrub Urtica dioica - Arrhenatherum elatius sub-community
23	W1	Salix cinerea - Galium palustre woodland
24	W10c	Quercus robur - Pteridium aquilinum - Rubus fruticosus agg. woodland Hedera helix sub-community
25	W21	Crataegus monogyna - Hedera helix scrub Hedera helix - Urtica dioica sub-community
26	W22	Prunus spinosa - Rubus fruticosus agg. scrub No clear NVC sub-community
27	W23	Ulex europaeus - Rubus fruticosus agg. scrub No clear NVC sub-community
28	W24	Rubus fruticosus agg Holcus lanatus underscrub No clear NVC sub-community
29	w25	Pteridium aquilinum - Rubus fruticosus agg. underscrub No clear NVC sub-community
30	X2	Alnus glutinosa slack woodland
31	хз	Pinus nigra/sylvestris woodland
32	X 4	Acer pseudoplatanus woodland
		a - manniag ymit

a = mapping unit b = vegetation unit
X = Non-NVC category or transitional type

•n Quadrat location

TNn Target note location

CP Car park

Vegetation legend on separate sheet

Surveyed 1989 by T.C.D. Dargie

ĭ

500

1000 metres