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Executive Summary 
 
A Removals Limit Algorithm (RLA) is developed to set limits to anthropogenic mortality of 
small cetacean populations that allow specified conservation objectives to be met. The RLA 
is similar in concept to the Catch Limit Algorithm (CLA) of the IWC’s Revised Management 
Procedure. The RLA comprises a simple one-line population model which is fitted to a time 
series of estimates of abundance to estimate population growth rate and depletion, which 
are then used in a removals calculation. The RLA is tuned through computer simulation to 
set limits to anthropogenic mortality that allow the specified conservation objectives to be 
met. The robustness of the RLA is determined by assessing its performance in a range of 
computer simulation tests describing uncertainty in our knowledge of population dynamics, 
the data and the wider environment. The RLA developed here is illustrated in an example 
implementation for harbour porpoise in the North Sea using estimates of abundance from 
the three SCANS surveys with initial depletion determined using a time series of historical 
bycatch estimates constructed by making a number of strong assumptions about effort for 
most fleets and appropriate bycatch rates. The RLA developed here is entirely dependent on 
the conservation objectives assumed; the work would need to be repeated if the 
conservation objectives were different. 
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1 Introduction 
 
Fisheries bycatch has been identified as the greatest source of mortality for small cetaceans 
worldwide (Read et al. 2006); in European Atlantic waters the harbour porpoise and common 
dolphin are particularly susceptible (e.g. ICES 2016, 2017; Vinther & Larsen 2004; Tregenza 
et al. 1997a, 1997b). Mechanisms for how limits can be set for marine mammal bycatch and 
other anthropogenic mortality have been discussed for many years. In the USA, the Potential 
Biological Removal (PBR) equation (Wade 1998) is used to assess when anthropogenic 
mortality is too high and management action is required. The procedure for implementing 
PBR within the US government Marine Mammal Protection Act is described in full in MMPA 
(2018). The International Whaling Commission has developed a Revised Management 
Procedure (RMP) for setting limits to catches of baleen whales (IWC 2012). 
 
In Europe, these issues were considered at a joint ASCOBANS/IWC workshop (IWC 2000). 
At that workshop, a very simple population dynamics model of a nominal harbour porpoise 
population, with a maximum rate of increase of 4% per annum, was used to determine that a 
mortality rate of 1.7% of population size would allow a population to reach and be 
maintained at 80% of carrying capacity over a very long time-period.  
 
This figure of 1.7% has since been adopted by ASCOBANS, OSPAR and the European 
Commission (see ICES 2012) but it is a very blunt instrument for setting limits to 
anthropogenic mortality. At an ASCOBANS workshop (ASCOBANS, 2015), it was generally 
agreed that limits for bycatch were useful but the appropriateness of the 1.7% limit should be 
reviewed. 
 
With this in mind, the primary aim of this work was to develop a “management procedure” for 
setting robust limits to anthropogenic mortality of small cetaceans, the main source of which 
is fisheries bycatch. This work revisits previous work conducted as part of the SCANS-II and 
CODA projects that had a focus on bycatch of harbour porpoise and common dolphin, 
respectively (SCANS-II 2008; CODA 2009; Winship et al. 2006, 2009; Winship 2009). The 
development of the procedure has been reconsidered from scratch but uses the previous 
work as a reference and there are thus strong parallels to previous work.  
 
The procedure developed here to set limits to anthropogenic mortality of small cetacean 
populations is named the Removals Limit Algorithm (RLA). It is similar in concept to the 
Catch Limit Algorithm (CLA) that lies at the centre of the IWC’s Revised Management 
Procedure (RMP, IWC 2012). The major difference is that the overall purpose of the RMP is 
to manage commercial whaling and its objectives are thus not only to ensure a low risk of 
population depletion as a top priority but secondarily to maximise catches and minimise 
variation in catch limits. These secondary objectives are not relevant to the RLA (see section 
2.3), although fishery-related objectives could in principle be included. Another difference is 
that while the primary source of removals data used by the CLA are the assumed known 
catches of baleen whales, the RLA uses estimates of bycatch or other incidental 
anthropogenic mortality, which are both uncertain and potentially biased. 
 
Note that both the CLA and the RLA set limits to all anthropogenic mortality, whatever the 
cause.  
 
The basic idea is to use survey estimates of abundance to estimate the level of depletion of 
a population (expressed as a proportion of its carrying capacity, i.e. unimpacted abundance), 
and to use a simple algorithm to set limits to removals that will ensure that the population 
ultimately meets conservation objectives specified in terms of its depletion. These objectives 
must be quantitatively defined so that the ability of the procedure under development to meet 
them can be assessed.  
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The robustness of the RLA is determined by testing it through computer simulation using a 
realistic population model that is deemed to serve as “truth”. The simulations test how the 
population responds, under management of anthropogenic mortality using the RLA, against 
a range of plausible uncertainties in knowledge of population dynamics, the wider 
environment and the data used. 
 
A secondary aspect of this work was to implement the developed procedure in a real 
example: harbour porpoise in the North Sea subject to fisheries bycatch. The availability of 
new abundance estimates from the SCANS-III surveys (Hammond et al. 2017) and 
somewhat improved series of estimates of bycatch mortality for this species in this region 
mean that this example implementation is informative. However, the bycatch limits 
calculated are entirely dependent on the conservation objectives chosen (see section 2.3), 
the simulation tests (see section 2.5) and how the results of the simulation tests are 
interpreted (see sections 3.4 and 4).  
 
It is important to state that the RLA calculates limits to anthropogenic mortality, not targets, 
somewhat analogous to speed restrictions for traffic on roads. The restriction is an upper 
limit; actual mortality/speed can be lower depending on circumstances. The purpose here is 
to provide managers with information on levels of mortality that should not be exceeded if 
specified conservation objectives are to be met. How these upper limits are used for 
management purposes is a policy matter. 
 
In this report, we first describe the framework for developing the RLA in general terms 
(section 2) and then go on to describe the development of the population model used for 
simulation, the form of the RLA itself, the simulation testing framework, the range of 
simulation tests performed, and the performance metrics used to determine the robustness 
of the RLA under simulation (section 3).  Section 4 describes the results of the simulation 
testing to determine robustness. In section 5, we present an example implementation of the 
RLA using data for the abundance and bycatch of harbour porpoise in the North Sea. A brief 
discussion of the work is given in section 6. 
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2 Framework for RLA development  
 

2.1 Population model  
 
The first task is to construct a model of the dynamics of a small cetacean population to be 
treated as “truth” during simulation testing.  The model should be based on realistic values of 
population parameters from first principles, the literature and elsewhere (see section 3.1). 
The intention is that it mimics the dynamics of a real population sufficiently well to serve as 
an appropriate framework to test the performance of the Removals Limit Algorithm (RLA, 
see section 3.2)) against a range of uncertainties in our knowledge (see section 3.4). The 
model does not need to be the best possible description of any particular population. 
 
During simulations, the population model is used to generate survey estimates of population 
size, with a given level of uncertainty (CV), that are used in the fitting of the RLA.  The fitted 
RLA is then used to calculate the limit to the number of animals that could be removed as a 
result of human activities (from any source) in subsequent years.  Estimates of the number 
of animals actually removed are subtracted from the population each year.  
 
Here we use the harbour porpoise in the North Sea as a basis for the population model but, 
because the model is largely generic, it is readily modified to mimic the dynamics of any 
small cetacean species, for example the common dolphin, or species of pinniped, which may 
be under pressure from fisheries bycatch or other forms of human activity, such as shooting 
seals around fishing nets. 
 

2.2 Removals Limit Algorithm  
 
The procedure that sets limits to anthropogenic mortality that will allow the conservation 
objectives (see section 2.3) to be met is here called the Removals Limit Algorithm (RLA); this 
procedure is equivalent to the Catch Limit Algorithm (CLA) of the IWC’s RMP. The RLA is 
fitted to a time series of estimates of abundance from surveys and the resulting estimate of 
depletion (the population expressed as a proportion of its carrying capacity, i.e. unimpacted 
abundance) is used to set a nominal removals limit through a simple calculation (see section 
3.2).  
 

2.3 Conservation objectives  
 
An RLA can only be developed if there are quantitatively defined conservation objectives 
against which its performance can be tested. Previous work on the development of 
procedures to set limits to anthropogenic mortality of small cetaceans (SCANS-II 2008; 
CODA 2009; Winship et al. 2006, 2009; Winship 2009) used the ASCOBANS interim 
conservation objective as a basis - to allow populations to recover to and/or maintain 80% of 
carrying capacity in the long term. Converting this into a quantitative objective that can be 
used to assess the performance of an RLA requires some interpretation about the probability 
that a population achieves 80% of carrying capacity and the meaning of “long term”. This 
has previously been discussed at the ICES Working Group on Marine Mammal Ecology 
(ICES 2013). 
 
In the absence of alternative policy guidance, and with the agreement of JNCC, the 
quantitative conservation objective used here was that a population should recover to or be 
maintained at 80% of carrying capacity, on average, within a 100-year period. In simulation 
tests (see below), this equates to the median population level being at 80% of carrying 
capacity. Discussion of other conservation objectives is included in section 6. 
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2.4 Simulation testing framework  
 
An RLA must be robust to uncertainties in our knowledge yet still allow conservation 
objectives to be met; the only practical way to test and determine this is through computer 
simulation. Therefore, a simulation testing framework is needed to determine whether or not 
a candidate RLA is able to set removal limits that allow conservation objectives to be met 
under scenarios encompassing a plausible range of uncertainty (see section 3.3).  
 

2.5 Simulation tests 
 
In the context of development of a procedure to set limits to anthropogenic mortality of small 
cetaceans, uncertainty is equivalent to failures of the assumptions made in the population 
model about the dynamics of real populations (see section 3.1), about the properties of the 
abundance or bycatch data provided to the RLA (see section 3.2) or about the wider 
environment supporting the populations. Sources and plausible levels of uncertainty to which 
the RLA should be subjected need to be specified and implemented in a series of simulation 
tests (see section 3.4). How well the RLA meets the conservation objectives after a 
simulation test should be determined by a set of performance metrics (see section 3.5).  
 
Before testing robustness to uncertainty, initial simulations need to be done to “tune” the 
RLA so that the limits to anthropogenic mortality calculated allow the population to meet the 
specified conservation objectives. This can be achieved by defining a “base case” simulation 
that represents a realistic appraisal of the true situation and running it with a range of values 
of a tuning parameter, γ. The largest value of γ that allows conservation objectives to be met 
is then used in subsequent robustness simulations. Note that γ will be different for different 
assumed levels of maximum net productivity (see section 3.4). 
 

2.6 Assessment of Removal Limit Algorithm 
 
The end point of the simulation testing is to determine the robustness to plausible 
uncertainties of the RLA, as defined, to meet the specified conservation objectives. A 
decision can then be taken on whether or not the tested RLA is robust or whether additional 
development and/or simulation testing is required to modify or tune the RLA further.   
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3 Development of the RLA 
 

3.1 Population model 
 
The population model is based on the harbour porpoise in the North Sea. It is age-
structured, with a maximum life span of 22 years.  A Pella-Tomlinson like density 
dependence is used to adjust birth rates  

𝑏𝑖𝑟𝑡ℎ 𝑟𝑎𝑡𝑒 = 𝑏𝐾 + (𝑏𝑚𝑎𝑥 − 𝑏𝐾) {1 − (
𝑁

𝐾
)

𝑧

} 

 
where bK is birth rate at carrying capacity K, bmax is maximum birth rate, N is population size, 
and the exponent z sets the population level at which maximum productivity occurs. N/K is 
the depletion level of the population, also referred to as D. 
 
Birth rate, br, is calculated every year and the number of new born individuals is then 
calculated as: 

𝑛𝑒𝑤𝑏𝑜𝑟𝑛𝑠 = ∑ 𝑏𝑟𝑁𝑎𝑀𝑎 

 
where Na is the number of animals at age a, and Ma is the estimated proportion of the 
population that is mature at age a. Sex ratio is assumed to be 1 to 1. 
 
Data on age at sexual maturity from harbour porpoises that stranded along the North Sea 
coasts of the UK and Denmark were taken from Winship (2009). The proportion mature at 
age, Ma, was estimated from these data using logistic regression and kept fixed for all 
simulations. 
 
Natural and anthropogenic mortality are included using instantaneous survival rates. Base 
natural survival rates were fixed for each age as 0.85 for age 0, 0.87 for age 1 and 0.91 for 
age 2+ (Winship 2009) but see also below. Anthropogenic mortality rates vary from year to 
year depending on population size and the total number of removals observed/predicted for 
that year. Vulnerability to removals was set to be 50% higher for age 0 and age 1 than for all 
other ages based on results from population models fitted to data on harbour porpoise in the 
North Sea (Winship et al. 2007). 
 
Within a time-step (year), the population dynamics processes were applied as follows: 
 

1. Births: the number of new born animals was calculated using the population size at 
the beginning of the year; 

 
2. Mortality: natural and anthropogenic mortality was applied to all age classes. 
 
3. Aging: the age of the population was increased by one year and the new born 

animals (calculated in step 1) were aggregated into an age 0 age class. 
 
4. Survey: simulated survey estimates were drawn (every 6 years in the base case), 

following the approach described in IWC (2004). 
 
During simulation testing of the RLA (see section 4) the population model was tuned to 
realise different maximum net productivity (MNP) rates by modifying the density dependent 
and survival parameters of the model. 
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3.2 Removals Limit Algorithm 
 
The RLA is a simple population dynamics model describing a population with density 
dependent growth and subject to anthropogenic removals. The RLA is fitted to time series of 
data on abundance (population size) and accounts for the number of removals, each with 
associated uncertainty. Survey estimates are assumed independent among years. 
The dynamics of the RLA are determined by a population growth parameter, μ, that, 
dependent on the depletion of the population, D, determines the number of new individuals 
added to the population 

𝑁𝑡+1 = 𝑁𝑡 − 𝑐𝑡 + 1.4184 𝜇 𝑁𝑡{1 − 𝐷𝑡
2} 

 
where Nt is the population size at the beginning of year t, ct is the number of animals 
removed during year t, μ is the growth parameter and Dt is population depletion at time t, that 
is Nt /K, where K is carrying capacity. 
 
Bayesian methods were used to fit the model, which required prior distributions to be 
assigned to the unknown parameters to be estimated. The parameter μ was assigned a 
uniform distribution between 0 and 0.05, which, when multiplied by the constant 1.4184, 
allows population growth up to 7% per annum. This encompasses the value of 4% found in 
an analysis of harbour porpoise growth rates in the Bay of Fundy and the Gulf of Maine 
(Woodley & Read 2011) but is restricted compared to the uncertainty analysis conducted by 
Caswell et al. (1998), which found rates of around 10% were more plausible. The other 
estimable parameter of the RLA, depletion, was assigned a uniform prior distribution 
between 0 and 1. 
 
The IWC’s CLA also includes a bias parameter that is multiplied by the survey abundance 
estimate, Nt. The purpose of the bias parameter in the CLA is to reduce the variance of the 
remaining parameters, otherwise removal limits can change markedly each time a new 
survey estimate is added and the algorithm is re-fitted (Cooke 1999). In our simulation trials, 
inclusion of a bias parameter led to poor fitting of the RLA and it was thus omitted. 
 
Another feature of the IWC’s CLA is the down-weighting of the log likelihood during model 
fitting, a departure from the Bayesian paradigm. This down-weighting was found to improve 
the fit of the CLA to the data and improve performance. In the RLA, we also use the down-
weighting of w = 1/16 used in the CLA. Other down-weightings of the log likelihood were not 
explored. 
 

3.2.1 RLA model fitting 
 
The RLA was fitted to the input data on abundance using Markov chain Monte Carlo 
(MCMC) methods. This involved using five different functions to (a) find the likelihood of the 
proposed parameters in the prior distributions, (b) find the likelihood of the observed 
simulated abundance data given the parameters (c) bind these two likelihoods to give the 
posterior distribution, (d) generate a new set of parameters and (e) implement the Metropolis 
Hastings algorithm. The R code to implement the RLA, which shows these functions, is 
given in Appendix 2. 
 

3.2.2 Setting limits to removals 
 
Based on the posterior distribution of the fitted parameters, the RLA sets limits to removals 
with reference to an Internal Protection Level (IPL) using the following removals calculation: 
 

• If estimated depletion is less than the IPL, removal limit = 0; 
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• Otherwise, removal limit = γ * μ * Nt * (Dt - IPL) 
 

 where γ is a tuning parameter set to ensure that the conservation objectives are met, 
and IPL is set to a depletion of 0.54, the same level as used in the IWC’s CLA. 
The removal limit is taken to be the median of the posterior distribution of the nominal limit 
based on the fitted values of μ and Dt. 
 
If the IPL parameter were changed, this would result in a different value of the tuning 
parameter γ to ensure that the conservation objectives were met. An alternative way to 
implement tuning would be to use a different value of the posterior distribution. For example, 
in the CLA, the equivalent catch control law replaces γ with a constant and uses the 40.2th 
percentile of the posterior distribution of the nominal limit. The use of the 40.2th percentile 
also means that tighter posterior distributions resulting from more precise abundance 
estimates will give larger removals limits, and vice versa. This aspect of the CLA was not 
included in the RLA. 
 

3.3 Simulation testing framework 
 
To initiate each simulation, the initial age structure of the population must be determined. 
The initial number of animals in each age group, needed to initiate the simulation, was set 
according to the exponential distribution that most resembled the observed frequency of 
bycaught animals in Danish and UK fisheries (see Figure 1).  The age structure of the 
population changes through the simulation, depending on the birth and survival rate 
parameters of the population model (see section 3.1). 
 
 

 
Figure 1. (a) Observed bycatch age distribution (from data used by Winship 2009); (b) derived initial 
population structure presented as a proportion of the population at each annual age class. 

  

In order to start every simulation at carrying capacity and with a stable population structure, 
for each set of population parameters the population was simulated over a 400-year training 
period. 
 
Then, each simulation proceeded according to the following steps: 
 

1. The population model was run for 30 years using historical removal (bycatch) data, 
with age-specific vulnerabilities as stated above, to deplete the population to a 
specified level. The actual number of animals removed each year was drawn 
randomly from the data (zero-truncated normal distribution) with a specified CV. 

 

(a) (b) 
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2. The RLA was fitted to the survey abundance estimates drawn from the population 
model (at the specified interval), starting immediately after the third of the three 
existing estimates of abundance from SCANS surveys (Hammond et al. 2017). 
Survey abundance estimates were generated according to the procedure used for 
implementing the CLA described in IWC (2004). 

 
3. The fitted values of μ and Dt were used in the removals calculation to set the annual 

removal limit for the period until the next survey was due, using a specified value of γ. 
 
4. The number of animals removed each year was drawn randomly from the removal 

limit (zero-truncated normal distribution) with a specified CV. 
 
5. The population model was run for additional years until the next survey abundance 

estimate was due. 
 
6. Steps 2-5 were repeated until the 100-year simulation period was complete. 
 

Each simulation was repeated 100 times. Figure 2 illustrates an example population 
trajectory subject to these simulation steps. 

 
Figure 2. Illustration of the population trajectory on the scale of depletion (Nt /K) subject to a 
simulation over 530 years. The initial training period to achieve carry capacity and a stable age 
structure is 400 years. Depletion as a result of historical bycatch, to 0.8 in this case, occurs over years 
400-430. The RLA is first fitted when there are three survey estimates of abundance available at year 
430 (when the simulation test begins), and then subsequently when a new survey estimate becomes 
available. Assessment of whether the simulation achieves conservation objectives occurs after 100 
years at year 530. To keep the illustration simple, this example does not include any uncertainty in the 
bycatch. 

 

3.4 Simulation tests 
 
As a basis for the simulation testing, a “base case” was established with the following 
conditions: 
 

• Maximum net productivity of either 2% or 4% of population size; 
 

• Initial depletion of 50% K; 
 

• Survey abundance estimates available every 6 years; 
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• Uncertainty in estimates of removals (bycatch) given by a CV of 0.4; 
 

• Constant carrying capacity, K; 
 

• No catastrophic episodic events. 
 

The population model was run under these conditions (two scenarios – one for each value of 
the maximum net productivity) for a range of values of γ (0.5, 1, 1.5, 2, 2.5, 3) to determine 
the greatest value of γ that allowed the conservation objectives to be met, a process known 
as tuning. 
 
Then, using the value of γ determined from the tuning of the base case, a series of 
simulations was conducted to test the performance of the RLA to various sources of 
uncertainty (equivalent to failures of the assumptions made in the base case). These tests 
included: 
 

• A different level of initial depletion at the onset of management (60-90% K) – note that 
these tests are “easier” than the depletion of 50% assumed by the base case; 

 

• A higher level of uncertainty in removals (bycatch) estimates (CV = 0.6); 
 

• Environmental degradation (carrying capacity, K, declining by 50% over 100 years); 
 

• Episodic catastrophic events, such as epizootics, that reduce the population by 50% 
with annual probability of 0.02, i.e. on average every 50 years. This simulation test had 
technical issues and the results are not reported. 

 
The principle is that the RLA should be robust to plausible levels of uncertainty. If the results 
of a simulation test indicate that the variation in performance compared to the base case 
may compromise its robustness, this would need to be taken into account in how the results 
are used. This might include running simulation tests with different values of the tuning 
parameter. 
 

3.5 Performance metrics 
 
Performance metrics used to illustrate results and to determine how well the RLA met 
conservation objectives included: 
 

• Plot of the 100 simulated population trajectories over 100 years; 
 

• Plot of animals removed (as determined by the RLA) over 100 years; 
 

• 5th, 50th (median) and 95th percentiles of final depletion; 
 

• 5th, 50th (median) and 95th percentiles of minimum depletion; 
 

• Average annual number of animals removed in the final 12 years; 
 

• Relative recovery rate (depletion with removals set by the RLA vs depletion with 
removals set to zero). 
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4 Results of Simulation Testing 
 
Performance metrics for the results of the simulation tests are given in Appendix 1. 
 

4.1 Base case simulations 
 
Results of the base case simulations (Appendix 1, sections 1.1 and 2.1) indicated that 
appropriate values of γ were 1.0 if true maximum net productivity (MNP) were 2%, and 2.5 if 
true maximum net productivity were 4%. For these values, the median final depletion after 
100 years of managing bycatch was 80%, as required to meet the conservation objective 
(Appendix 1, sections 1.1.2 and 2.1.3).  However, despite meeting the conservation 
objective, performance of the RLA with MNP = 4% and γ = 2.5 was rather variable (Appendix 
1, section 2.1.3).  A case could perhaps be made that a smaller γ should be selected for 
MNP = 4%. The parameter γ acts as a simple multiplier in the removals calculation (section 
3.2.2). The higher value of γ determined for MNP = 4% than for MNP = 2% allows more 
animals to be removed because a faster growing population can recover from these 
removals more quickly.  
 

4.2 Different starting depletion levels 
 
As expected, the results of the simulation tests for levels of starting depletion that were less 
severe than the base case (60%, 70%, 80% and 90% vs 50% of carrying capacity for the 
base case) showed that the conservation objective was equally or more likely to be met than 
for the base case (Appendix 1, sections 1.2 and 2.2). In the plots for these simulations for 
MNP = 2%, a green line shows the trajectory of the population with no removals, for 
comparison. 
 

4.3 Decrease in carrying capacity 
 
The simulations in which carrying capacity decreased to 50% over the 100-year period of the 
simulation showed slightly better performance than the base case for MNP = 2% (Appendix 
1, section 1.3) and slightly worse performance than the base case for MNP = 4% (Appendix 
1, section 2.3).  The improved performance of the RLA applied to a population with MNP = 
2% (Appendix 1, section 1.3) may be because once a simulated population has recovered 
above 80% of K, it responds relatively slowly to the decline in carrying capacity. For MNP = 
4%, the performance of the RLA was rather variable with a median depletion after 100 years 
of 0.71, somewhat below the conservation objective (Appendix 1, section 2.3). Depending on 
how plausible this modelled scenario is considered to be, this result might warrant further 
consideration, possibly including additional simulations. 
 

4.4 Increase in bycatch uncertainty 
 
The simulations in which bycatch uncertainty was increased from a CV of 0.4 to a CV of 0.6, 
showed slightly reduced performance for both MNP = 2% and MNP = 4% (Appendix 1, 
sections 1.4 and 2.4). For MNP=2%, performance was rather consistent with a median final 
depletion of 0.77. For MNP = 4%, performance was much more variable but the median final 
depletion of 0.76 was still close to the conservation objective. 
 

4.5 Summary of simulation results 
 
Overall, the results show that the RLA with γ = 1 is rather robust to the uncertainties included 
in the simulation testing. Results for the RLA with γ = 2.5 were more variable and not as 
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robust.  At present, therefore, a conservative approach could be to consider the RLA with γ = 
1 as an appropriate procedure for implementation. 
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5 Implementation of the RLA 
 
The developed RLA was implemented using a time series of bycatch of harbour porpoise in 
the North Sea (area defined by the ICES North Sea Management Unit [ICES 2013]) and 
estimates of abundance for this area from the three SCANS surveys in 1994, 2005 and 2016  
to estimate depletion at the time of the most recent survey (2016) and the value of the 
growth parameter, μ. 
 
Based on the results of the simulation tests, a value of γ = 1 was used to implement the 
removals calculation.  A value of γ = 2.5 was also used to illustrate the difference in results.  
The R code to implement the RLA is given in Appendix 2. 
 

5.1 Historical bycatch series 
 
The bycatch series used to estimate initial depletion was created from available information 
on fishing effort and bycatch rates from a number of sources. The aim was first to create a 
time series of fishing effort (days at sea) for the fleets of the main countries fishing gear that 
could entangle harbour porpoise (gillnets, drift nets, tangle nets) operating in the North Sea 
(Belgium, Denmark, England, France, Germany, Netherlands and Scotland), and then to use 
typical levels of estimated harbour porpoise bycatch rate to estimate the number of 
porpoises that were bycaught in each year. 
 
The primary source of fishing effort data was a time series from 1966 to 2015 of estimated 
days at sea by English vessels fishing gear that could entangle harbour porpoise - gillnets, 
drift nets, tangle nets (S.P. Northridge pers. comm.). Equivalent data were available for 
Denmark from 1990 to 2000 (S.P. Northridge pers. comm.). 
 
Estimates of days at sea for 2003-2015 for fleets operating in the North Sea other than the 
English fleet were obtained using data from the STECF database 
(https://stecf.jrc.ec.europa.eu/dd/effort). For each of the non-English fleets, in the absence of 
other information, a multiplier relative to the English fleet was calculated for each year and 
applied to the English days at sea. 
 
For 1966-2002 for non-English fleets other than Denmark, days at sea were estimated using 
the mean multiplier from the STECF data for 2003-2015. For 1966-1989 for the Danish fleet, 
days at sea were assumed equal to the English fleet (the average multiplier in the early 
1990s was approximately 1). Multipliers for the Danish fleet for 2001 and 2002 were 
interpolated between 2000 and 2003. 
 
Three overall estimated bycatch rates were used to calculate a plausible range of estimated 
total annual bycatch from total annual estimated days at sea: 1 porpoise every 5 days at sea 
(high); 1 porpoise every 10 days at sea (medium); and 1 porpoise every 20 days at sea 
(low). These overall bycatch rates were based on data from S.P. Northridge (pers. comm.)  
The bycatch series generated for 1966 to 2015 are given in Appendix 3. 
 
In the implementation presented here, the bycatch time series generated from the high 
bycatch rate has been used. 
 

5.2 Estimates of abundance 
 

Estimates of harbour porpoise abundance for the ICES North Sea Assessment Unit area 
were available for 1994, 2005 and 2016 (Hammond et al. 2017). These were: 289,150, 
355,408 and 345,373, with CVs of 0.14, 0.22, and 0.18, respectively. The estimates for 1994 

https://stecf.jrc.ec.europa.eu/dd/effort
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and 2005 result from reanalyses of SCANS and SCANS-II data to ensure consistency with 
the 2016 estimate (see Hammond et al. 2017). 
 

5.3 Results 
 
To ensure representative results, the RLA was implemented 10 times and the average 
values of the estimated parameters taken. 
 
Typical posterior distributions of: estimated depletion at the time of the final survey (2016); 
the carrying capacity derived from this; and the growth parameter, μ are shown in Figure 3. 
The posterior distributions show little support for the population of harbour porpoises in the 
North Sea being heavily depleted or for the current carrying capacity being less than 
350,000 animals. The almost uniform posterior distribution of the growth parameter shows 
that the available data are unable to improve on the assumed prior distribution and the 
estimated value (median) is halfway between the limits placed on the prior. 
 
Median values of the estimated parameters were: 
 

• Depletion in 2016 = 0.76 
 

• Derived carrying capacity in 2016 = 458,000 
 

• Growth parameter = 0.025 
 
With γ = 1 in the removals calculation, the removals limit was 1,856 animals per year for a 
six-year period until a new survey estimate is assumed to become available in 2022, at 
which point the RLA would be implemented again with this estimate and including bycatch 
estimates for 2016-2021. For comparison, with γ = 2.5, the removals limit was 4,641 per 
year. 
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Figure 3. Posterior distributions of: (a) estimated depletion at the time of the final survey (2016); (b) 
the carrying capacity derived from estimated depletion and the final abundance estimate; (c) the 
growth parameter, μ. 

 

a) 

b) 

c) 
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6 Discussion 
 

6.1 Results presented 
 
The work achieved so far on developing a Removals Limit Algorithm and its example 
implementation for harbour porpoises in the North Sea comes with a considerable number of 
assumptions and caveats (see below). Nevertheless, the results provide some indication of 
the level of current depletion of the harbour porpoise population in the North Sea (around 
75% of pre-bycatch population size) and the level of annual anthropogenic mortality that the 
population might be able to sustain and still meet the specified conservation objective 
(around 1,800 animals). The calculated removal level is around half of one percent of current 
population size. This level of annual mortality is similar to that generated by implementations 
of the IWC’s CLA, which is perhaps not surprising given the similarity between the RLA and 
the CLA.  
 
However, it is much smaller than the 1.7% of population size currently adopted by 
ASCOBANS, OSPAR and the European Commission. The disparity is partly because the 
RLA calculates more “conservative” removal limits to ensure that it is robust to the 
uncertainties tested through simulation. It is also partly because the tuning level chosen 
represented a maximum net productivity (MNP) of 2% per year (γ = 1), rather than the 4% 
used to generate the 1.7% bycatch limit. If the RLA were used with a tuning level 
representing MNP = 4% (γ = 2.5), our results give an annual bycatch of around 1.3% of 
population size, although results of the simulation tests were less than satisfactory for this 
level of tuning. A MNP of at least 4% is likely for harbour porpoise populations (Woodley & 
Read 2011; Caswell et al. 2008), so it may be useful to rerun the simulation trials using a 
tuning of γ = 1.5 or 2 to see if RLA performance improves over using γ = 2.5. 
 

6.2 Data requirements 
 
The RLA is initiated with a starting depletion level and at least one estimate of abundance. 
The starting depletion level could be estimated using historical removals data (as in our 
simulations and example implementation) or a value could be provided.  Subsequently, 
minimum data requirements are estimates of annual removals (bycatch in our example 
implementation) and estimates of abundance every 6 years. 
 
Estimation of bycatch is challenging. It requires data on fishing effort from relevant fleets and 
on bycatch rates per unit of fishing effort. As described above (section 5.1), fishing effort 
information is incomplete and while that remains the case, any estimates of bycatch from 
available data will likely be negatively biased. Estimates of bycatch rates are available but, 
as also described above, they come from a limited number of studies that generated highly 
variable results. 
 
In our example implementation of the RLA, for harbour porpoise in the North Sea, we 
generated an annual removals limit applicable to the next six years. In a real implementation, 
after six years, another estimate of abundance would be available, estimates of bycatch 
would be provided for the six previous years, and the RLA would be refitted. If the estimates 
of bycatch are negatively biased, the RLA would tend to over-estimate depletion (i.e. 
estimate it as a higher proportion of carry capacity than it should be) and to set removals 
limits that were too high. Over time this would be somewhat compensated by estimates of 
abundance that reflected true population size, but the overall effect would remain. If true 
bycatch were greater than the removals limits but negatively biased estimates provided were 
smaller than the limits, conservation objectives would likely not be achieved.  
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Future work could explore incorporation of the impact on RLA performance of bias in 
estimates of future bycatch leading to the determination of an alternative level of tuning. The 
challenge would be to select levels of bias that were plausible. A practical solution could be 
to determine appropriate tunings for a range of assumed bias in bycatch estimates, with a 
view to deciding which level of bias was realistic for a real implementation. This could 
include consideration of biases in fishing effort data and in estimates of bycatch rate, 
separately. Results from these simulation tests could also be used to put demands on the 
quality of bycatch data acceptable for implementation. 
 

6.3 Additional assumptions 
 
Our results are dependent on the appropriateness of the population model as a suitable test 
bed, the definition of the base case simulation and the simulations to test the performance of 
the RLA to violations in the assumptions made in the base case. All of these could be 
formulated differently, which would alter the results. If any factors that had not been 
considered in simulation tests were of particular concern in a proposed implementation, 
these would need to be considered as additional simulation trials to ensure robustness of the 
RLA. 
 

6.4 Population structure 
 
The IWC’s RMP includes additional “multi-stock rules”, which determine how catch limits 
generated by the CLA are to be distributed spatially based on knowledge of population 
structuring. This is because if there is population structure (incomplete mixing of animals 
between different areas) and anthropogenic activities are managed without taking this into 
account so that removals may be concentrated in particular areas, there is a potential 
danger of depletion of “local” populations.  
 
The current advice from ICES is that there is a single “Management Unit” (MU) for harbour 
porpoise in the North Sea (ICES 2013). However, there has been considerable discussion 
about whether genetic differences among animals in this area might warrant the delineation 
of more than one MU (e.g. Evans & Teilmann 2009; ICES 2012).  ICES (2013) 
recommended that this be explored as part of work to develop models to set limits to bycatch 
to meet specified conservation objectives. This was explored to some extent by Winship 
(2009) but there has been insufficient time in the current project to pursue this. Adding 
population structure to the current RLA will therefore require additional development.  
 

6.5 Conservation objectives and management 
 
All our results are also entirely dependent on the quantitative definition of the conservation 
objective used. If a different conservation objective were selected, a new set of simulations 
would be required to ensure that the developed RLA generated removal limits that met the 
new conservation objective. For example, an alternative way to define the ASCOBANS 
interim objective could be that a population should recover to or be maintained at 80% of 
carrying capacity within a given period, 95% of the time (Winship 2009; ICES 2013). This 
would result in smaller bycatch limits and the population being maintained at a higher 
percentage of carrying capacity on average; 85-90% based on previous equivalent work 
(Winship 2009). For comparison, the PBR procedure (Wade 1998) was developed to 
achieve the conservation objective that a population should recover to or be maintained at 
50% of carrying capacity within 100 years, 95% of the time. 
 
More generally, managers would need to determine how the results of any RLA 
implementation are used in practice. For example, the aim of ASCOBANS is ultimately to 
reduce bycatch to zero, or at least levels approaching zero, but current mitigation is unable 
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to guarantee near-zero bycatch in fishing gear and it is possible that this might always be the 
case. The RLA is intended as a tool to provide useful information in this context. 
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Appendix 1: Results of the simulation tests of RLA 
performance 

Results are given for: 

1.  Base case simulations to determine the appropriate value of the tuning parameter, γ; 

The base case is defined as: 

• Maximum net productivity (MNP) = 2% or 4%; 

• Initial depletion of 50% of K; 

• Survey abundance estimates available every 6 years; 

• Uncertainty in bycatch estimates given by a CV of 0.4; 

• Carrying capacity assumed not to change; 

• No catastrophic episodic events. 

For the selected value of γ for each of MNP = 2% and MNP = 4%: 

2.  Simulations with different levels of starting depletion (60%, 70%, 80%, 90% of K); 

3. A simulation with carrying capacity decreasing to 50% over 100 years; 

4.  A simulation with bycatch uncertainty given by a CV of 0.6. 

The simulation with a catastrophic event occurring at an annual probability of 0.02 with the 

effect of reducing population size by 50% had technical problems and could not be 

implemented. 

1. Maximum net productivity = 2% 

1.1 Base case simulations with varying tuning parameter γ 

1.1.1 γ = 0.5 
 

  

 

MNP = 2%;  γ = 0.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.85 0.89 0.92 

Minimum observed depletion 0.45 0.52 0.59 

Average annual removals over final 12 
years 

592 1,744 2,937 
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1.1.2 γ = 1.0 
 

  

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.68 0.80 0.88 

Minimum observed depletion 0.47 0.53 0.60 

Average annual removals over final 12 
years 

1,108 3,319 5,051 

 
1.1.3 γ = 1.5 
 

  
 
 

MNP = 2%;  γ = 1.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.21 0.67 0.85 

Minimum observed depletion 0.16 0.49 0.56 

Average annual removals over final 12 
years 

1,226 4,403 6,815 
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1.2 Simulations with different initial depletions; γ = 1.0 
Initial depletion = 60% of K 
 

  

The green curve is the population trajectory with zero bycatch. 
 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.69 0.82 0.88 

Minimum observed depletion 0.49 0.58 0.63 

Average annual removals over final 12 
years 

255 3,201 4,908 

 
Initial depletion = 70% of K 
 

  

The green curve is the population trajectory with zero bycatch. 
 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.73 0.81 0.88 

Minimum observed depletion 0.58 0.67 0.73 

Average annual removals over final 12 
years 

1,534 3,349 5,102 
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Initial depletion = 80% of K 
 

  

The green curve is the population trajectory with zero bycatch. 
 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.76 0.82 0.87 

Minimum observed depletion 0.64 0.73 0.79 

Average annual removals over final 12 
years 

1,856 3,464 5,041 

 
Initial depletion = 90% of K 
 

  

The green curve is the population trajectory with zero bycatch. 
 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.73 0.82 0.86 

Minimum observed depletion 0.55 0.75 0.81 

Average annual removals over final 12 
years 

1,685 3,434 5,011 
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1.3 Carrying capacity decreasing to 50% over 100 years; γ = 1.0 
 

 
 

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.74 0.89 1.04 

Minimum observed depletion 0.43 0.53 0.59 

Average annual removals over final 12 
years 

280 3,310 5,038 

 

1.4 Bycatch uncertainty CV = 0.6; γ = 1.0 
 

 
 

 

MNP = 2%;  γ = 1.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.62 0.77 0.89 

Minimum observed depletion 0.43 0.51 0.59 

Average annual removals over final 12 
years 

197 3,697 5,704 
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2. Maximum net productivity = 4% 

2.1 Base case simulations with varying tuning parameter γ 
 
2.1.1 γ = 1.5 
 

  
 

MNP = 4%;  γ = 1.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.72 0.87  0.96 

Minimum observed depletion 0.33  0.47  0.57 

Average annual removals over final 12 
years 

576  6,047  9,429 

 

2.1.2 γ = 2.0 
 

  
 

MNP = 4%;  γ = 2.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.34  0.82  0.97 

Minimum observed depletion 0.10  0.45  0.56 

Average annual removals over final 12 
years 

0 6,863  11,652 
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2.1.3 γ = 2.5 
 

  
 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.02  0.80  0.95th 

Minimum observed depletion 0 0.46  0.55 

Average annual removals over final 12 
years 

0   7,278  13,052 

 
2.1.4 γ = 3.0 
 

  
 

MNP = 4%;  γ = 3.0 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0 0.75  0.92 

Minimum observed depletion 0 0.43  0.53 

Average annual removals over final 12 
years 

0   7,051 14,845 
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2.2 Simulations with different initial depletions; γ = 2.5 
 
2.2.1 Initial depletion = 60% of K 
 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.089 0.82 0.93 

Minimum observed depletion 0.01 0.55 0.63 

Average annual removals over final 12 
years 

0 7,251 12,575 

 
2.2.2 Initial depletion = 70% of K 
 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.65 0.84 0.94 

Minimum observed depletion 0.35 0.66 0.72 

Average annual removals over final 12 
years 

2,379 6,511 11,471 
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2.2.3 Initial depletion = 80% of K 
 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.59 0.84 0.93 

Minimum observed depletion 0.39 0.70 0.80 

Average annual removals over final 12 
years 

2,258 6,977 11,526 

 
2.2.4 Initial depletion = 90% of K 
 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.69 0.85 0.94 

Minimum observed depletion 0.40 0.70 0.87 

Average annual removals over final 12 
years 

2,677 7,057 11,900 
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2.3 Carrying capacity decreasing to 50% over 100 years; γ = 2.5 
 

 

 

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0.03 0.71 1.04 

Minimum observed depletion 0 0.53 0.91 

Average annual removals over final 12 
years 

0 4,363 13,561 

 

2.4 Bycatch uncertainty CV = 0.6; γ = 2.5 
 

  

 

MNP = 4%;  γ = 2.5 5th %-ile Median 95th %-ile 

Final depletion after 100 years 0 0.76 0.95th 

Minimum observed depletion 0 0.35 0.56 

Average annual removals over final 12 
years 

0 6,716 13,350 
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Appendix 2: R code used to implement the RLA 
 
###### Code to implement the RLA for harbour porpoise in the North Sea ####### 
#########################################################################
##### 
# 
require(truncnorm) 
# 
## Input data 
# 
obs = c(289150,355408,345373) ## SCANS survey abundance estimates 
CVs = c(0.14,0.22,0.18) ## SCANS survey CV estimates 
# 
byc.series = read.csv(file.choose(), header=TRUE) 
byc.series = byc.series[byc.series$year<2016,] 
bycatch.years = 1966:byc.series[length(byc.series$year),1] 
byc = c(byc.series$hi) ## select bycatch series to use 
name.byc = "high bycatch" 
# 
#bycatch.years = 1966:2015 
#byc = rep(0,50) 
#name.byc = "zero bycatch" 
# 
idx = c(which(bycatch.years%in%c(1994,2005)),length(bycatch.years)+1) ## index of 
bycatch years where we have a survey 
# 
## Transform for lognormal likelihood 
# 
sd_scale=sqrt(log((CVs)^2+1)) 
mean_scale=log(obs)-.5*log((CVs)^2+1) 
# 
################################################ 
###### Functions to fit the Bayesian RLA ####### 
################################################ 
# 
Fit.RLA <- function(parame){ 
  DT = parame[1] 
  mu = parame[2] 
  #bias = parame[3] 
  bias=1 
  carry=obs[length(obs)]/DT # the population begins at carrying capacity 
  est=rep(NA,length(byc)+1)  
  est[1]=carry 
  for(i in 2:length(byc)){ 
    est[i]=max(est[i-1]-byc[i-1]+1.4184*mu*est[i-1]*(1-(est[i-1]/carry)^2),0.1,na.rm=T) 
  } 
  
log.lik.lognorm=sum(dlnorm(x=est[idx]*bias,meanlog=mean_scale,sdlog=sd_scale,log=T),na
.rm=T) 
  return(list(lik=log.lik.lognorm)) 
} 
# 
MCMC_metrop.proposal <- function(start.val, iterations){ 
  chain = array(dim = c(iterations+1,3)) 
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  chain[1,] = start.val 
  for (i in 1:iterations){ 
    propos = proposal(chain[i,]) 
    while(any(c(propos<0 ,propos>c(1,.05,5/3)))){propos = proposal(chain[i,])} # all new 
values must be inside distribution 
    #acceptance.probab = exp(posterior(propos)[1] - posterior(chain[i,])[1]) ## raw likelihood 
    acceptance.probab = exp(posterior(propos)[1]/16 - posterior(chain[i,])[1]/16) ### weighted 
likelihood 
    if (runif(1) < acceptance.probab){chain[i+1,] = c(propos)} 
    else{chain[i+1,] = c(chain[i,])} 
  } 
  return(chain=list(chain=chain)) 
} 
# 
prior.lik <- function(parame){ 
  DT = parame[1] 
  mu = parame[2] 
  bias = parame[3] 
  DT.prior = dunif(DT, min=0.0001, max=1, log = T) ## in log 
  mu.prior = dunif(mu, min = 0.0001, max=.05, log = T) ## in log 
  bias.prior = dunif(bias, min=0, max=5/3, log = T) ## in log 
    return(DT.prior + mu.prior + bias.prior) ## in log 
} 
# 
posterior <- function(parame){return (Fit.RLA(parame)$lik + prior.lik(parame))} 
# 
## To reject any proposals that fall outside distribution 
# 
proposal <- function(parame){ 
  #return(c(rnorm(3,mean = parame, sd= c(0.002,0.0005,.005)))) ###  check sensitivity of 
these transition sd 
  return(c(rtruncnorm(1, a=0, b=1, mean = parame[1], sd = 0.001), ## Depletion 
           rtruncnorm(1, a=0, b=0.05, mean = parame[2], sd = 0.0005), ## mu (grow param) 
           rtruncnorm(1, a=0, b=5/3, mean = parame[3], sd = 0.005))) ## bias parameter 
} 
# 
################################ 
###### Implement the RLA ####### 
################################ 
# 
start.val = c(0.5,0.025,0.5) 
number_of_iterations = 10000000 
burn_in = 1000000 
# 
run = MCMC_metrop.proposal(start.val, number_of_iterations) 
select=seq(burn_in,length(run$chain[,1]),by=number_of_iterations/3000) 
# 
## Plots of posterior distributions 
# 
par(mfrow=c(2,2)) 
hist(obs[length(obs)]/run$chain[,1],main="Carrying capacity",xlab="Population size") 
hist(run$chain[,1],main="Depletion at final survey",xlab="Proportion of carrying capacity") 
hist(run$chain[,2],main="Growth parameter",xlab="mu") 
#hist(run$chain[,3],main="Bias") ## if applicable 
# 
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########################### 
#### Set bycatch limit #### 
########################### 
# 
## Parameters 
# 
depletion = mean(run$chain[,1]) # quantile(run$chain[,1],probs = 0.5) # in case we want a 
quantile instead of mean 
carry = obs[length(obs)]/depletion 
IPL = 0.54 
gamma = 1 ### for MSY=2% 
#gamma = 2.5 ### for MSY=4% 
mu = quantile(run$chain[,2],probs = 0.5)  
#mu = mean(run$chain[,2]) # in case we want mean instead of a quantile 
# 
## Calculate the difference between depletion and the IPL 
# 
dif=obs[length(obs)]/carry-IPL 
dif[which(dif<0)]=0 
# 
## Calculate bycatch limit 
# 
new.byc=rep(gamma*mu*obs[length(obs)]*(dif)) 
# 
# List results 
# 
name.byc 
depletion 
carry 
mu 
gamma 
new.byc 
# 
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Appendix 3: Bycatch time series used to implement the 
RLA 
 

year hi med lo 

1966 2004 1002 501 

1967 1639 820 410 

1968 1199 599 300 

1969 788 394 197 

1970 998 499 249 

1971 791 395 198 

1972 524 262 131 

1973 797 398 199 

1974 922 461 231 

1975 1337 668 334 

1976 2370 1185 592 

1977 2952 1476 738 

1978 4746 2373 1186 

1979 3792 1896 948 

1980 4126 2063 1032 

1981 5175 2587 1294 

1982 6246 3123 1562 

1983 6147 3073 1537 

1984 6352 3176 1588 

1985 6005 3002 1501 

1986 6824 3412 1706 

1987 9960 4980 2490 

1988 10023 5011 2506 

1989 10152 5076 2538 

1990 8336 4168 2084 

1991 9749 4874 2437 

1992 11062 5531 2765 

1993 11356 5678 2839 

1994 12363 6182 3091 

1995 11887 5944 2972 

1996 11060 5530 2765 

1997 11370 5685 2843 

1998 9905 4952 2476 

1999 8512 4256 2128 

2000 7360 3680 1840 

2001 7471 3735 1868 

2002 7632 3816 1908 

2003 7462 3731 1865 

2004 5239 2619 1310 

2005 4435 2217 1109 

2006 4094 2047 1023 

2007 2616 1308 654 
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2008 3013 1507 753 

2009 2882 1441 720 

2010 3109 1554 777 

2011 3505 1752 876 

2012 3207 1603 802 

2013 2733 1366 683 

2014 2804 1402 701 

2015 2552 1276 638 
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