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Summary 
 
An extensive visual and acoustic dataset on harbour porpoises west of Scotland, 
collected between 2003 and 2008, was used as a test bed for investigating the 
effectiveness of various analytical methods to provide information on habitat use. 
Methods used were geospatial analysis (kriging), presence-only analysis (MAXENT), 
Generalised Linear Modelling (GLM), Generalised Additive Modelling (GAM) and 
Generalised Estimating Equations (GEEs). The full dataset (visual and acoustic) was 
subsetted to generate data that were more sparse and had an uneven spatial 
distribution of effort. 
 
Results showed that GLM, GAM and GEE generated broadly similar results but with 
much more variability in the predictions from the smaller subsetted datasets. 
Geospatial analysis generated much more patchy distribution maps and was sensitive 
to the high percentage of zeroes in the data; it was unable to generate results for the 
subsetted datasets. Presence-only analysis generated much coarser distribution maps 
and generally predicted larger areas of high-use habitat. 
 
Overall, the geospatial method worked least well. The presence-only, GLM, GAM and 
GEE methods all generated useable maps. Presence-only methods are subject to bias 
if effort is not distributed representatively across the area of interest and may generate 
misleading results in such cases. In addition, the results were much coarser and may 
not show sufficient detail for conservation and management purposes. The GLM, GAM 
and GEE methods incorporate the effects of effort and gave results at a finer scale but 
also with considerable variability, especially for the smaller subsetted data. The results 
from GEE were similar to those from GLM and GAM. 
 
Overall, effort-based methods of analysis (particularly GLM or GAM) should be 
preferred to reduce bias and provide a greater level of detail.  However, it is important 
that measures of precision are also used to inform what inferences can be made from 
the results. 
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1 Introduction 
 
Article 11 of the Habitats Directive places an obligation for Member States to undertake 
surveillance on the conservation status of all cetacean species occurring in their waters 
and to report on this every six years. The aim of the Habitats Directive is that listed 
species and habitats achieve and maintain a favourable conservation status (FCS). 
The FCS, as defined by the Habitats Directive, is measured primarily by assessing 
changes in three elements: natural range, population size and habitat. 
 
Understanding how cetaceans utilize the biotic and abiotic resources that are 
potentially available to them (their habitat) is complex, partly because of the complexity 
of the usage itself. An individual cetacean must find suitable resources for various 
aspects of reproduction, feeding and avoiding predators/competition; the habitat 
requirements for these functions may be quite different. The distribution and habitat 
use of species with complex ecology are likely to be influenced by characteristics of the 
animals themselves, such as reproductive status and foraging strategies, as well as by 
abiotic and biotic features of the marine environment. 
 
Describing species-habitat relationships is also complex because the study of cetacean 
ecology poses particular problems of access and scale. Individuals spend a substantial 
majority of their time underwater but are typically available to the researcher in only two 
dimensions at the surface, although the development of towed hydrophone arrays is 
proving very useful for the study of some species of odontocete (Gillespie et al 2008).  
Populations of many species (e.g. harbour porpoise, large whales, oceanic delphinids) 
may be large and range over wide areas making data collection logistically and 
financially challenging (SCANS-II 2008; CODA 2009). Conversely, some populations 
are small (e.g. coastal bottlenose dolphins; vaquita) and this presents problems of 
obtaining sufficient data for analysis (Wilson et al 1999; Jaramillo-Legorreta et al 2007).  
It is these small populations that are often the most threatened and thus in need of 
good information to guide conservation efforts. 
 
In the 2007 FCS assessments, the habitat element was incompletely reported on 
because of the acknowledged difficulties associated with defining habitat for cetaceans. 
Where assessments were made, the judgement of Favourable was based on the 
relatively high spatial and temporal variability in the behaviour and ecology of all 
cetaceans. Additionally, where range and/or population is considered to be in a 
Favourable condition, it has been assumed that habitat must also be considered to be 
Favourable.  Relatively recent and ongoing developments in analytical techniques (e.g. 
Redfern et al 2006; Matthiopoulos & Aarts 2010) as well as the availability of additional 
datasets (e.g. SCANS-II 2008; CODA 2009; Marubini et al 2009; Embling et al 2010) 
mean that at the next FCS reporting round in 2013, improved assessments of the 
habitat element of FCS should be possible. 
 
Member States are required to report on the FCS of all cetacean species. As a test 
case, this project uses harbour porpoise datasets to compare different statistical 
methods for modelling distribution patterns: geospatial, presence only, Generalised 
Linear Models (GLMs), Generalised Additive Models (GAMs) and Generalised 
Estimating Equations (GEEs). The aim of this work was to investigate the spatial 
predictions generated by each statistical method. The species-habitat relationships 
underlying those distributions, while interesting, were not the primary focus of this 
work. How each statistical method performed under a range of effort scenarios 
(extensive vs relatively sparse effort; evenly spread vs uneven effort) was investigated. 
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The aim here was that these effort scenarios would provide some indication of how the 
models coped with relatively small, large, even and uneven-spread effort. However, 
some datasets for other species are much smaller and further work is required to 
explore the extent to which statistical modelling can help describe the habitat use of 
such species.  The intention here is that the findings of this pilot study will provide the 
first stage in informing the distribution/habitat modelling of cetacean species in UK 
waters, to build towards providing the best information for FCS reporting in 2013. 
 
2 Methods 
 
2.1 Data collection 
 
The data used in analysis were visual and acoustic detections of the harbour porpoise 
(Phocoena phocoena) recorded during systematic line transect surveys carried out 
from the Hebridean Whale and Dolphin Trust’s (HWDT) 18m motor-sailer vessel 
Silurian. Surveys were conducted off the west coast of Scotland (55° 10' - 58° 40' N, 5° 
0' - 8° 35' W; Figure 1), between April and September (inclusive) during daylight hours. 
Visual surveys were carried out from 2003 to 2008 and towed-hydrophone acoustic 
surveys were conducted simultaneously during the 2004 to 2008 seasons. 
 
Visual observations were carried out by teams of two trained observers, from the front 
deck of the vessel, (2m above water level) surveying one side each. When cetaceans 
were sighted, species, group size and other data were entered into the data recording 
software Logger 2000 (Gillespie et al in press) which ran continuously, logging GPS 
positional and NMEA feed data, and stored in a Microsoft Access database in real-time. 
Passive acoustic monitoring (PAM) was conducted using a towed hydrophone array 
from 2004 to 2008 in all sea conditions during daylight hours in waters >10m depth. 
The hydrophone array consisted of two high frequency elements with highest 
sensitivity at 150kHz and a near flat frequency response between 2-140kHz. Elements 
were housed in a streamlined sensor section consisting of 10m of 35 mm diameter 
polyurethane tubes filled with ISOPAR-M oil, which was towed 100 m behind the boat 
attached by Kevlar-strengthened cable.  
 
The signal was fed into porpoise detection software Porpoise Detector (2004-2005) or 
Rainbow Click (2006-2008) (Gillespie & Chappell 2002; Gillespie et al in prep.). These 
programs automatically classified sounds detected on the hydrophone array, identified 
detections of harbour porpoises and calculated a bearing (no left/right discrimination) to 
the source based on the difference in arrival time at each element allowing for 
estimation of the number of animals echolocating in each detection event. Encounters 
were identified and the porpoise clicks in each click train were marked and porpoise 
clicks were arranged into ‘groups’ with an estimated number of porpoises in each 
event. Each porpoise group was linked to a GPS position from Logger 2000 using a 
pre-written macro (Gillespie, pers. comm). 
 
2.2 Data Processing and Analysis 
 
The visual and acoustic datasets collected were investigated using five analytical 
methods: geospatial models (Kriging), presence-only (MAXENT) models, Generalised 
Linear Models (GLMs), Generalised Additive Models (GAMs) and Generalised 
Estimating Equations (GEEs).  
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In the absence of explanatory covariate data, a geospatial density-estimation based 
method can be used to estimate spatial distribution (Matthiopoulos & Aarts 2010). The 
most rigorous of these interpolation methods is Kriging (Isaaks & Srivastava 1990). 
 
Presence-only models exist as an alternative to presence-absence methods in 
situations where reliable sampling (searching) effort data do not exist and it is not 
possible to determine absences. There are a wide range of presence-only models (see 
Pearson 2007 for a summary) and one commonly used presence-only approach is 
Maximum Entropy (MAXENT) (Elith et al 2011). Another presence-only method that 
has been used to describe species distributions is Ecological Niche Factor Analysis 
(ENFA) (Fernandez et al 2009; MacLeod et al 2008; Praca & Gannier 2008; Skov et al 
2008). MAXENT can be considered a more robust approach and we use it here.  
 
GLMs and GAMs have been used in a number of cetacean modelling studies (e.g. 
Bailey & Thompson 2009; Cañadas & Hammond 2008; Cañadas et al 2005; Embling et 
al 2010).  One issue in the modelling of survey data, such as those used here, is that 
data collected close together in time and space may lead to autocorrelation.  Not 
accounting for autocorrelation in modelling can result in standard errors of fitted 
coefficients being underestimated and more variables than necessary being retained in 
models. This is known as over-fitting and can lead to potentially misleading models 
(Lennon 2000). 
 
One way to deal with spatial and temporal autocorrelation is to include autocorrelation 
structure in the model itself, such as in Generalised Linear Mixed Models (GLMMs), 
Generalised Additive Mixed Models (GAMMs) and Generalised Estimating Equations 
(GEEs) (e.g. Ballinger 2004; Hardin & Hilbe 2002). One study of cetacean distribution 
has shown an improvement in model selection over a GAM unadjusted for 
autocorrelation (Panigada et al 2008). These models have also been used to study 
harbour porpoise habitat preferences and distribution (Booth 2010). In this study we 
chose to use GLMs and GAMs with no autocorrelation structure and to investigate the 
effect of incorporating autocorrelation using GEEs. 
 
In the construction of these models, a range of potential explanatory covariates  
(Table 1) was used to try to explain harbour porpoise distribution. When constructing 
the presence-only (MAXENT) models, only the spatially-varying covariates (i.e. seabed 
depth, seabed slope, distance from land, maximum spring tidal range and the 
percentage of sand, mud and gravel in the sediment) were included. 
 
Survey effort track lines were divided into 2km segments, equivalent to the coarsest 
resolution of the available oceanographic covariates in the models and the total 
number of porpoise detections in each segment was calculated. Prior to segmenting, 
values for covariates were calculated for each GPS data point of track line. Visual and 
acoustic data were analysed separately to allow for differences in data collection 
methods to be incorporated in models and to investigate differences in results. Survey 
effort was limited to data collected in sea conditions Beaufort ≤ 2 for the visual data 
models. For the acoustic survey effort, data collected in all sea conditions were used.  
 
Spatially uneven data collection can result in some areas being surveyed more often 
leading to unrepresentative spatial coverage of the data. This in common in cetacean 
studies and it may therefore be instructive to investigate the effects of small and 
uneven datasets on predicted distributions.  
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To investigate the impact of different effort scenarios on predicted distributions, the full 
visual and acoustic datasets were both subdivided. Two reduced effort scenarios were 
constructed incorporating different levels of effort and spatial unevenness. To generate 
the subsets, effort and detection data were partitioned using the survey day and 
location as the sampling unit. Surveys days were pseudo-randomly selected so that, in 
subset 1, effort collected on days with a low mean latitude (i.e. more southerly) were 
more likely to be retained than on days with a high mean latitude (i.e. more northerly). 
In subset 2, the opposite was the case, with a bias forcing almost all survey effort from 
northerly areas such as the Minch to be included, but very little effort being retained 
from some of the southern regions, e.g. the Sound of Jura.   
 
Co-linearity between explanatory covariates, if unaccounted for, can cause inflated or 
underestimated standard errors and p-values leading to poor model selection and 
affecting the resultant predicted distributions. To avoid this, co-linearity between 
covariates was investigated prior to modelling using ‘generalised variance inflation 
factors’ (GVIF) (Cox & Snell 1989; Fox & Monette 1992) implemented through the vif 
function in the car package in R (R Core Development Team 2009). Only low co-
linearity was found to exist between covariates (all GVIF scores were <5) indicating it 
was reasonable to include them all in the model selection phase of modelling. 
 
2.2.1 Geospatial modelling (kriging) 
 
Kriging generates estimates of a variable that are distance-weighted combinations of 
other observations/measurements. A semi-variogram assesses and quantifies how 
similarity between observations/measurements changes as a function of distance 
between points. 
 
A disadvantage of this method in investigating the spatial distribution of marine 
mammal species, is the assumption that the data are normally distributed, which 
presence/absence or count data usually are not. There are methods of kriging that do 
not require this assumption but these can be computationally expensive (Matthiopoulos 
& Aarts 2010) and we did not implement them. 
 
Kriging was used to model harbour porpoise distribution by interpolating relative 
densities (animals detected per km of effort). Survey effort and detection data were 
partitioned using a 4 x 4km grid in Manifold (Version 8.00. 32-bit, Manifold® Systems) 
and the total survey effort and number of animals detected in each grid cell was 
determined. Detections per unit effort (DPUE, animals per km of survey effort) were 
then calculated for each grid cell. Only grid cells with at least 2km of survey effort were 
included in the analysis. 
 
DPUE values were interpolated in two-dimensions by kriging within Manifold. The 
model used to perform the kriging in each scenario was determined using the 
‘Automatic’ setting, allowing Manifold to choose the best fitting model in each case.  
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2.2.2 Presence-only modelling (MAXENT) 
 
Maximum Entropy (MAXENT) involves using a machine-learning algorithm to compare 
the covariate distribution where a species has been identified (presences) with the 
overall covariate distribution in the study area, thus identifying the types of environment 
where a species is known to occur (Phillips et al 2004, 2006; Elith et al 2011). The 
advantage of this method is that it allows the use of data where it is not possible to 
record absences. However, not incorporating effort data into models can lead to 
misleading conclusions about model results if effort is not representative of the study 
area. If some areas are sampled more regularly than others, this may lead to an over-
exaggeration of the importance of the habitat that has been repeatedly sampled. 
 
To generate presence-only data, effort data were discarded and the study area was 
gridded as with the geospatial model construction. Whether or not a presence was 
recorded in each grid cell was determined. A grid for each of the spatially-varying 
environmental variables was also created and these were fed into the MAXENT 
program. As part of the modelling process, a distribution map based on those presence 
data and the environment was generated. 
 
2.2.3 Statistical inference modelling (GLM, GAM, GEE) 
 
Generalized Linear Modelling (GLM), Generalized Additive Modelling (GAM) and 
Generalized Estimating Equations (GEE) are regression methods that predict a 
response variable as a function of explanatory covariates. 
 
Here, the number of harbour porpoises detected per 2 km segment of survey effort was 
modelled as a function of survey and environmental explanatory covariates.  
 
The statistical package R (64-bit Mac version 2.9.0, R Core Development Team 2009) 
was used for implementation, including the mgcv (GAM) (Wood 2006), splines and 
geepack (GEE) (Halekoh et al 2006) packages.  
 
2.2.3.1. Generalized Linear Models (GLMs) 
 
A GLM is a linear regression that allows for relaxation of the assumption of a normal 
distribution for the error structure of the response variable. GLMs have been used 
extensively to investigate species distribution patterns (e.g. Cañadas et al 2005). GLMs 
have the general form: 
 

   pipii x,...,x))Y(E(g βββ +++= 110  
 
Where E(Yi)  is the expected value of the response variable, g(.) is the function linking 
the response to the fitted functions of the covariates x, β0

  is the intercept and βp is the 
slope of the term xp. Because of over-dispersion in the data, a quasi-Poisson error 
structure was chosen for the response variable (number of porpoises per 2km of 
survey effort) fitted with a log link function. Negative binomial and zero-inflated models 
were also considered but not implemented. 
 
GLMs assume that, when transformed, there is a linear relationship between the 
response and the covariates. Here, polynomial (quadratic) transformations of the 
covariates were used to capture any additional non-linearity in the relationships 
between the response and the explanatory covariates.  Model selection was conducted 
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using a forwards-backwards stepwise selection method. The ‘best’ model is determined 
by moving both forwards (starting from an intercept-only model and adding variables 
that improve the model) and backwards (removing variables from the full model one by 
one) dropping and/or adding covariates through a series of steps until a final model (a 
model where no further changes improve the model) is reached.  
 
2.2.3.2. Generalized Additive Models (GAMs) 
 
GAMs are increasingly being used in modelling marine mammal distributions and 
investigating habitat preferences (Bailey & Thompson 2009; Cañadas & Hammond 
2006: 2008; Embling et al 2010; Marubini et al 2009; SCANS-II 2008; CODA 2009). 
GAMs use combinations of non-linear smooth functions of explanatory covariates to 
predict response variables that are normally or non-normally distributed and have the 
general form: 
 

 
 
where E(Yi) is the expected value of the response variable, g(.) is the function linking 
the response to the non-linear smooth functions sj of the covariates xk and β0 is the 
intercept term. Because of over-dispersion in the data, a quasi-Poisson error structure 
was chosen for the response variable (number of porpoises per 2 km of survey effort) 
fitted with a log link function. Negative binomial and zero-inflated models were also 
considered but not implemented. 
 
One advantage of using GAMs over GLMs is that it is not necessary to specify 
additional explanatory covariates to allow for non-linearity in modelled relationships. 
 
In order to reduce over-fitting of the smooth functions to the data, when constructing 
the models α was set to 1.4 as recommended by Kim and Gu, (2004) (α is a constant 
multiplier which can be used to inflate the model degrees of freedom). By fixing it at 
1.4, the GAM is penalized if it uses too many degrees of freedom (Wood 2006). Thin-
plate regression shrinkage splines were used to govern model selection when 
constructing the GAMs. These splines allow smooth functions to be reduced to zero in 
the models, indicating there is no need for those covariates in the model (Wood 2006). 
Therefore, when constructing the models using these splines, any terms that should 
not be retained in the final model appear as a horizontal line in the residual plots.  Any 
terms appearing in the model selection residual plots as a horizontal line were removed 
from the model and it was run again until no such terms remained in the model. 
 
2.2.3.3. Generalized Estimating Equations (GEEs)  
 
The final statistical method used here was to use Generalized Additive Models (GAMs) 
built within a Generalized Estimating Equations (GEEs) model construct. GEEs can 
perform better than GAMs when data are temporally or spatially autocorrelated 
(Panigada et al 2008; Booth 2010). Such autocorrelation violates the assumption that 
the model errors are independent and, if unaccounted for, can result in covariates 
being wrongly retained in the final model, potentially affecting predicted distributions. 
Here, GEEs were used to generate the standard errors and p-values which are used to 
govern model selection (Liang & Zeger 1986) to investigate whether accounting for 
autocorrelation significantly impacted model predicted distributions.  
 
 

 

g(Ε(Yi )) = β0 + s1(x1i )+ s2 (x2i )+ s3(x3i )+ ...
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The over-dispersion in the data means that GEE model fitting must be based on quasi-
likelihoods, so stepwise model selection was based on the QIC statistic (Ballinger 
2004). Autocorrelation function plots (using acf in R) were used to determine the panel 
size to be used in the models and the models were fitted with an ‘independent’ 
correlation structure. For all models, each covariate was permitted to be present in the 
model as a curve (with a B-spline (deBoor 1978) fitted with knots placed at the mean 
for each covariate), as a linear term or removed from the model. Year and month were 
fitted as factor variables.  
 
The full model was fitted using the geeglm function in the geepack package (Halekoh 
et al 2006) and GEE-based p-values were used to determine if covariates should stay 
in the model. The function anova.geeglm in the geepack package performs stepwise 
selection using QIC but, as this will only add terms sequentially and the model 
selection results depended on the order that covariates were inputted, it was necessary 
to identify a suitable input ordering for the covariates. Reduced models were therefore 
created, each one of which had one covariate omitted. Each of these models was then 
compared to the relevant full model (containing all the covariates) using a simple 
ANOVA (anova.glm) method, to determine if each covariate was important in explaining 
that dataset. The ‘important’ terms were then fitted in order of significance and 
investigated using the sequential anova.geeglm to determine the final ‘best’ model.  
 
2.3. Prediction and Kriging 
 
Once the final model was constructed for each method, predictions were made over 
the same 4 x 4km grid used for kriging. For the GLM, GAM and GEE models, this 
resolution was chosen as it is twice the segment length used in the models as 
recommended by Hedley (2000). 
 
The predicted distributions from each statistical technique (kriging, MAXENT, GLM, 
GAM, GEE) for each dataset (visual and acoustic, full, subset 1 and subset 2) were 
then contoured to facilitate interpretation of the results. To highlight the most important 
regions (areas of highest predicted density), contours were selected to represent the 
50th, 60th, 70th, 80th and 90th percentiles of densities (or habitat suitability in the case of 
MAXENT) from each model and scenario. The area covered by each percentile band 
was calculated in Manifold. 
 
3 Results  
 
3.1 Survey data 
 
In total 38,708 segments were included in analysis (visual: 17,353; acoustic: 21,355) 
corresponding to 34,699km of visual survey effort from 2003-2008 (in Beaufort sea 
state ≤ 3) and 42,653km of acoustic survey effort 2004-2008 (in all sea states). Full 
details are shown below (Table 2). In total, 2,381 harbour porpoises were detected 
visually in Beaufort ≤ 2 (0.069 animals per km) and 4,927 acoustic detections were 
made in all sea conditions (0.12 detections per km). Porpoise detections were 
generally most common in regions close to shore (Figure 2 a & d). Data subset 1 
consisted of 2,994km of visual effort and 5,637km of acoustic effort with 238 (0.079 
animals per km) and 786 (0.14 detections per km) detections, respectively (Fig 2 b, e). 
Subset 2 was larger, with 4,487km of visual effort and 6,907km of acoustic effort with 
276 visual sightings (0.062 animals per km) and 859 acoustic detections (0.12 
detections per km), respectively (Fig 2 c, f). 
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3.2 Full datasets 
 
The full visual and acoustic datasets were modelled using the five statistical techniques 
outlined above. The retained explanatory variables for the final models are shown in 
Table 3(a). The predicted distributions are shown in Figure 3. 
 
3.2.1 Acoustic 
 
The GLM, GAM and GEE models constructed using the full acoustic dataset predicted 
very similar distribution patterns. The GAM explained about 10% of the variability in the 
data. All of the models predicted a strongly inshore distribution for harbour porpoises 
throughout the west coast of Scotland. The highest relative densities (> the 80th 
percentile) were predicted in the northern Sound of Jura, northeast Firth of Lorn, within 
the Sound of Mull, around the Isle of Skye and throughout the Small Isles (see Figure 1 
for location names). Additionally, there were high-predicted relative densities along the 
east coast of the Outer Hebrides, throughout the Little Minch (between Skye and the 
Outer Hebrides) and within the more coastal reaches of the Minch. Low relative 
densities were predicted in the southwest part of the study region and to the west of 
the Outer Hebrides. The areas covered by the most important regions were similar for 
each of the modelling techniques (Figure 4 and Table 1 in Appendix 1). Each of these 
techniques had areas including the highest 50% of relative densities covering 21,052 - 
22,729km2. The highest density areas covered 8,909 - 9,580km2 for the three statistical 
inference techniques. 
 
The predicted distribution generated using the geospatial method looked much more 
patchy than those generated using the statistical inference methods, but the highest 
relative densities of harbour porpoises were predicted in some of the same areas. High 
(> the 80th percentile) relative densities were predicted in the Small Isles, Sound of 
Jura and the Little Minch in particular. The area covered by each of the percentiles was 
smaller than all the other modelling techniques used. The 50th percentile area was 
19,953km2 and the highest density area was 2,676km2, which is approximately one 
quarter the area predicted using statistical inference methods.  
 
The presence-only model predicted that most of the west coast of Scotland was 
suitable habitat for harbour porpoises. The regions containing the highest habitat 
suitability were similar to those from the statistical inference methods, however, the 
size of the area was much larger (30,918km2) and almost the entire study area was 
contained within the >50th percentile of values. The highest density >80th percentile 
area was also larger (12,364km2) than predicted using any other method.  
 
3.2.2 Visual 
 
The predicted distributions for the visual models constructed using the GLM, GAM and 
GEE models were very similar to the distribution patterns from the acoustic models. 
The GAM explained about 20% of the variability in the data. These models predicted a 
strongly inshore distribution for harbour porpoises throughout the study region. The 
highest relative densities were predicted in the northern Sound of Jura, northeast Firth 
of Lorn, within the Sound of Mull, around the Isle of Skye and throughout the Small 
Isles. Additionally, there were high predicted relative densities along the east coast of 
the Outer Hebrides, between Skye and the Outer Hebrides and in the coastal mainland 
areas of the Minch. Low relative densities were predicted in the southwest part of the 
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study region and to the west of the Outer Hebrides islands. There appear to be some 
boundary issues (“edge effects”) in the predicted output, with some high predicted 
relative densities apparent at the edge of the study region where there was little effort.  
The areas covered by the highest relative density regions were similar for each of the 
modelling techniques (Figure 5 and Table 1 in Appendix 1). The highest 50% of relative 
densities covered 21,635 - 25,723km2 and the highest density areas (>80th percentile) 
covered 9,016 - 10,010km2. 
 
The predicted distribution generated using the geospatial method looked very different 
to those patterns generated using the statistical inference methods/. Because of the 
large number of zeroes in the visual dataset it was not possible to show the >50th - 
>70th percentiles in the visual geospatial distribution because the 50th, 60th and 70th 
percentiles were equal to 0. Highest (> the 80th percentile) relative densities were 
predicted around the Minch and the Isle of Skye and in patches throughout the Small 
Isles, Sound of Jura and the Little Minch in particular. The area covered by the >80th 
percentile was similar to the statistical inference methods but the >90th percentile areas 
was much smaller (2,694km2) (Figure 5).  
 
As with the acoustic full model, the presence-only (MAXENT) model predicted that 
most of the west coast of Scotland was suitable habitat for harbour porpoises. The 
regions containing the highest habitat suitability were again similar to those from the 
statistical inference methods but again the size of the area was much higher 
(30,918km2) and almost the entire study area was contained within the >50th percentile 
of values.  
 
The subsets of the survey effort were designed to provide smaller datasets upon which 
to construct distribution models. Subset 1 had effort skewed to the south of the study 
area and subset 2 was skewed to have more effort in the north. Because of the small 
sample sizes in both subsets and the large number of segments with effort but no 
detections (zeroes), it was not possible to construct geospatial models for these 
datasets. Only presence-only (MAXENT), GLM, GAM and GEE models were 
constructed. 
 
3.2.3 Subset 1 
 
The retained explanatory variables for the final models are shown in Table 3(b). The 
predicted distributions are shown in Figure 6. For the visual and acoustic subset 1 
models, the GAM explained 28% and 17% of the variability in the data, respectively, 
and there was little consistency between the predicted distributions generated using 
the different statistical methods. However, for each method, the models constructed on 
visual and acoustic subsetted data yielded similar distribution patterns. The presence-
only model predicted a distribution similar to those using from the full dataset presence-
only models. In these, high-suitability areas were predicted throughout the inshore 
regions of the west coast of Scotland.  
 
The visual and acoustic GLMs predicted a very patchy distribution pattern, with the 
highest density areas found in the Little Minch, Small Isles and Sound of Jura. 
However, many regions that were high density in the full models, were low (<50th 
percentile) in the GLMs.  
 
The visual and acoustic GAMs predicted high density areas to be scattered throughout 
the Minch, Small Isles and in the Sound of Jura. GEE models for both visual and 
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acoustic data indicated larger high density areas around the Isle of Skye and in the 
very southern extent of the study region. 
3.2.4 Subset 2  
 
The retained explanatory variables for the final models are shown in Table 3(c). The 
predicted distributions are shown in Figure 7. Data subset 2 had a larger amount of 
effort (and visual and acoustic detections) than subset 1 and the model distribution 
patterns appeared more consistent across the different techniques used here. The 
GAMs explained 34% and 17% of the variability in the visual and acoustic data, 
respectively. The distribution patterns from the GLM, GAM and GEE acoustic models 
appear very similar. High density areas were predicted around the Minch, Little Minch, 
Small Isles, in the northeast of the Firth of Lorn and throughout the Sound of Jura.  
 
Results from the presence only model constructed from the acoustic data were similar 
to those from the full datasets, but there was only a small area of ‘high suitability’ in the 
south of Jura, where there was little effort. 
 
In the visual models, there was more variation between the predicted distributions 
produced using the different techniques. The GLM and GAM model produced similar 
distribution with high density regions around the Isle of Skye, in the Small Isles and in 
the north of the Sound of Jura. The GEE model produced a generally patchy 
distribution pattern with small areas of highest density throughout the study region. 
 
The presence-only visual model predicted the highest density regions to the west of 
Mull, around the Small Isles and in the Little Minch and in the middle of the Minch. This 
differed from all the other models where a more coastal distribution was predicted. This 
model predicted low-medium suitability for the Sound of Jura, which other models 
predicted as higher density. 
 
3.2.5 Areas covered 
 
The area coverage predicted by the four modelling methods showed a consistent 
pattern across all the data subsets. In all cases, the presence-only model predicted a 
larger area than the GLM, GAM and GEE models, which all predicted similar, smaller 
high density areas (Figures 8-11 and Table 1 in Appendix 1). However, the distribution 
patterns for subset 1 appeared quite different. 
 
4 Discussion  
 
The aim of this project was to investigate modelling methods to predict habitat use for 
harbour porpoises as a first step towards considering how such methods could be used 
to inform the assessment of Favourable Conservation Status (FCS) for all cetacean 
species in the UK. A comprehensive harbour porpoise dataset was used because this 
species has a relatively high sighting/acoustic detection rate and consequently a 
relatively high rate of presences in the datasets making the construction of models 
easier than for species that are more rarely encountered.  Subsets of the data were 
used to investigate the effect of using sparser datasets; the results from analyses of 
these data provide some information on the likely performance of the methods for 
modelling habitat use of less dense species. 
 
4.1 Geospatial methods 
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In general, the geospatial methods struggled to generate consistent distribution 
patterns and it was very difficult to glean meaningful information from the maps 
produced. It was only possible to construct models using the full datasets, which had 
many grid cells with detections in them and so fewer zeroes. The subsetted data 
contained a large number grid cells with no detections or effort in them, making it 
difficult for the models to generate results. 
 
These methods may be more suitable for data from more systematically designed 
surveys, in which the spatial spread of effort data would be more even.  
 
4.2 Presence-only (MAXENT) models 
 
The predicted distributions produced using MAXENT were reasonably consistent 
across the datasets, predicting an inshore distribution pattern across the west coast of 
Scotland. The visual and acoustic full datasets yielded very similar distribution patterns, 
with large, coarse areas of the west coast determined to be highly suitable habitat for 
harbour porpoises. However, while the presence-only models managed to identify 
general patterns satisfactorily, they lacked the detail required to identify smaller areas 
of high habitat use. Identifying such areas may be important for determining where to 
site SACs and how large they should be. 
 
MAXENT (and presence-only models in general) are unable to take into account 
potential biases generated by data collected where search effort is not representative 
of the study area.  Spatially uneven data caused by some areas being visited more 
often than others can lead to bias. This may lead to misleading conclusions being 
drawn regarding a species distribution and habitat use. However, the direction and 
extent of such bias will be unknown and will depend on each dataset. 
 
The results from the presence-only models constructed using data subset 2 may 
provide a good illustration of this.  Using the full datasets, the models were satisfactory 
in generating a general pattern of distribution. In subset 2, however, the effort data 
were skewed strongly so that there was reasonable effort in the Minch region (in the 
north), but only a single transect conducted in the Sound of Jura (in the southern part 
of the study area). For the visual data, the Sound of Jura was much less important than 
in other MAXENT models, most likely because there was little effort and therefore a 
small number of presences there. 
 
In studies, especially smaller scale ones, where data may not be evenly spread across 
an area of interest, presence-only analysis would not usually be the method of choice 
because the results may show where effort was distributed as much as where animals 
are concentrated. Presence-only analysis of datasets in which search effort is focused 
in areas where it is believed likely that animals will be encountered may generate a 
self-fulfilling prophecy, whilst ignoring areas that were not visited. 
 
The disadvantage of presence-only methods, therefore, is that they can be biased by 
where effort has or has not been distributed but the extent of that bias cannot be 
evaluated without the use of effort data. As a general rule, therefore, analyses should 
use effort data in analysis where possible.  If effort data are not available, the strength 
of the inferences that can be made from the results will depend on how well it is 
believed that the effort was representatively or evenly distributed. 
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4.3 Statistical Inference Models 
 
The GLM, GAM and GEE methods all incorporate effort data, which accounts for any 
unevenness in the distribution of survey coverage. The results are therefore unbiased 
in this respect. These methods generated more detailed distribution maps that may be 
useful in the context of assessing habitat use and the placement of SACs. 
 
However, smaller sample sizes will result in results that are subject to higher sampling 
variability. For the full datasets, the models produced generally similar distribution 
patterns, but the results from the subsetted models showed more variability.  Although 
not estimated or presented here for reasons of limited time in this project, it is therefore 
important to consider measures of uncertainty when interpreting the results from these 
methods. For example, these could be in the form of maps of the coefficient of variation 
of predicted density, which would show areas of relatively low or high precision and 
therefore confidence in the results, or in the form of maps of the lower and upper 95% 
confidence limits of predicted density, which would show the “extremes” of the 
predictions. 
 
GLMs and GAMs produced very similar results and the more laborious GEE method of 
dealing with autocorrelation in the data did not markedly change the resulting 
predictions of distribution. In future analyses, it is therefore probably sufficient to limit 
analysis to the use of GLMs and GAMs. Sparse datasets are less likely to be affected 
by autocorrelation. 
 
4.4 Analysis of other datasets 
 
The results of this project illustrate that the method of analysis to provide information 
on habitat use is less important for a large dataset in which effort is well distributed 
over a study area that for smaller, less evenly distributed datasets.  The harbour 
porpoise is by far the most abundant cetacean species in UK waters; datasets for other 
species will all be smaller, in some cases very much smaller.  The implications for 
analysis are two-fold. First, it will be important to use methods that minimise bias, 
which means using methods that incorporate searching effort data.  Second, results will 
be subject to considerable variability, which means that it will be important to show 
prediction errors. The best methods to use will likely be GLMs or GAMs. 
 
For species for which effort-related data are unavailable, presence only methods could 
be used but the value of the results will depend on how well it is believed the data are 
representative of the area in question. 
 
4.5 Further Analysis 
 
There are a number of steps that were outside of the scope of this project that could be 
taken to build on the work presented here. Future analysis of these or other data could 
include: 
 

• Investigations of the coefficients of variation (CVs) associated with the 
predicted relative density values from each of the models. Assessing the 
uncertainty around model predictions is a key step and could provide 
insight into which modelling methods are most efficient in capturing 
distribution patterns. 
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• A cross-validation technique could be used to assess how well the 
models perform in capturing the patterns that generate the data. This 
model evaluation could provide additional information on which 
statistical techniques perform best.  

 
• Techniques exist for the quantitative comparison of statistical models 

(e.g. see Potts & Elith 2006). Future analysis could be expanded to 
include such an analysis.  

 
• This study used a real dataset and it was not possible to ‘ground-truth’ 

results. Future analysis could include the development of more robust 
simulated datasets to act as a ‘truth’ against which model outputs could 
be compared. 

 
• Datasets with a varying proportion of zeroes in them, as proxies for 

data-rich (low zeroes) and data-poor (high zeroes) species could be 
simulated to allow investigation of which statistical techniques were 
most appropriate for such species. 
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Table 1. Covariates used in models showing details of temporal/spatial resolution, units and 
sources of data used. UKHO – United Kingdom Hydrographic Office; MESH – Mapping 
European Seabed Habitats; POL – Proudman Oceanographic Laboratory; SAMS – Scottish 
Association for Marine Science. 

 

Covariate Information Resolution Unit Source 

Year/Month Recorded in situ from vessel 
GPS 

every 10 
seconds (≈ 30m) -  

Boat Speed Recorded in situ from vessel 
GPS 

every 10 
seconds (≈ 30m) Knots  

Sea 
Conditions Recorded by Observers every 30 minutes 

(≈ 5.2km) 
Beaufort 
Scale  

Time of Day 
Ratio: Time from Sunrise/Total 
time between sunrise and 
sunset for day 

at every GPS 
location - POLTIPS 

Position 
Relative to 
Tidal Range 

Ratio: (Tidal Range at location 
on day – The minimum tidal 
height at location on day)/ 
Maximum Spring Tidal Range 
for location 

at every GPS 
location - POLTIPS 

Position in 
Daily Tidal 
Cycle 

Ratio: Time since Low water 
for nearest tidal port / Time 
between successive low 
waters for nearest tidal port 

at every GPS 
location - POLTIPS 

Max. Spring 
Tidal Range 

Maximum Spring Tidal Range 
for nearest tidal port 

at every GPS 
location m POLTIPS 

Distance from 
Land Calculated in Manifold at every GPS 

location m - 

Percentage 
Gravel Calculated from RSDB codes Variable % UKHO / MESH 

EUNIS 

Percentage 
Sand Calculated from RSDB codes Variable % UKHO / MESH 

EUNIS 

Percentage 
Mud Calculated from RSDB codes Variable % UKHO / MESH 

EUNIS 

Depth Depth of seabed 0.2km M EDINA 

Slope Slope of seabed 0.2km ° EDINA 

Current 
Speed Maximum current speed 

POL: 1.8km / 
SAMS: 0.1 or 
0.2km 

m / s POLCOMS / 
SAMS 
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Table 2. Survey effort, detections and detection rates for the visual and acoustic datasets 
collected in favourable conditions (visual: sea states 0-2; acoustic: sea state 0-6) in 2003-2008.   

 

  Visual   Acoustic 

  Full 
Subset 
1 Subset 2  Full 

Subset 
1 

Subset 
2 

Total Survey Effort (km) 34,699 2,994 4,487  42,653 5,637 6,907 

Total # of Segments 17,353 1,497 2,244  21,355 2,822 3,457 

# of Segments w/ 
Detections 1,015 101 137  3,367 472 562 

% Segments w/ 
Detections 6% 7% 6%  16% 17% 16% 

Number of Detections 2,381 238 276  4,927 786 859 

Detection Rate (det/km) 0.069 0.079 0.062   0.12 0.14 0.12 

 

 

 
Table 3. Covariates retained in the GLM, GAM and GEE models of the visual and acoustic 
datasets: (a) full dataset, (b) subset 1, (c) subset 2. 
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Acoustic X X   X   X   X X   X X X X X 

GAM Visual X X X X   X   X X X X X X X X 
Acoustic X X   X   X X X X   X   X X X 

GEE 
Visual X X X X       X       X X X X 
Acoustic X X   X               X X X X 
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(b) Subset 1 
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(c) Subset 2 
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Figure 1. Study area and notable regions on the west coast of Scotland. 
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Figure 2. Survey effort tracklines and 2 km segments with detections from (a-c) acoustic 
surveys (2004-2008) and (d-f) visual surveys (2003-2008) and the subsetted datasets. Acoustic 
detections are shown in red and visual detections in light blue. 
  

a) b) c) 

d) e) f) 

Full Subset 1 Subset 2 
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Figure 3. Predicted distributions for the acoustic and full dataset models (key below).

GeoSpatial Presence Only GLM GAM GEE 



 
 

  

 
Figure 4. Area covered by the >50th, >60th, >70th, >80th, and >90th percentiles of relative density (or 
habitat suitability for presence-only) from the predicted distributions for the acoustic full dataset 
models. 

 

 
Figure 5. Area covered by the >50th, >60th, >70th, >80th, and >90th percentiles of relative density (or 
habitat suitability for presence-only) from the predicted distributions for the visual full dataset 
models. 

 
Subsetted Data 
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Figure 6. Predicted distributions for the acoustic and visual subset 1 models. 

 

 

 

 
Figure 7. Predicted distributions for the acoustic and visual subset 2 models. 
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Figure 8. Area covered by the predicted distributions from the acoustic subset 1 models (key at 
base of the page). 

 

 
Figure 9. Area covered by the predicted distributions from the visual subset 1 models  



A comparison of different techniques for mapping cetacean habitats 
 

26 
 

 
Figure 10. Area covered by the predicted distributions from the acoustic subset 2 models. 

 

 
Figure 11. Area covered by the predicted distributions from the visual subset 2 models 
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