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Executive summary 
 
Earth Observation (EO) has been extensively used to provide a synoptic view of land use, 
cover and change at a variety of scales. In 2017 Natural England published the methodology 
for a satellite-based habitat mapping project, building on proposals and lessons learnt in the 
Making Earth Observation Work for UK Biodiversity (MEOW) programme. The resulting 
project and methodology were called Living Maps (Kilcoyne et al. 2017). Subsequently this 
methodology has been employed by organisations across the public and commercial sector 
(e.g. Colson & Robinson 2019; Jones et al. 2019; Kilcoyne et al. 2019). An integral part of 
Living Maps is a reliable spatial framework, referred to as a segmentation, to act as the basis 
of the classification.  
 
Traditionally EO analysis and classifications have been performed on a per-pixel basis. 
However, accuracy improves when spatially and spectrally homogeneous units are identified 
and then grouped, classifying areas of similar properties; a segmentation. This method is 
referred to as object-based image analysis (OBIA). Comparisons between OBIA methods 
have been explored in academic settings, however this has not been applied extensively in 
an operational public sector environment where there are often different constraints.  
 
This paper outlines the process of deriving OBIA from open-source and proprietary 
packages currently available. Three packages have been explored; OrfeoToolBox (OTB), 
Geographic Resources Analysis Support System (GRASS) Geographic information System 
(GIS) and eCognition.  
 
Sentinel-2 imagery was processed by JNCC for an area around Kelso, Scotland, where 
there was an existing spatial framework with a high degree of accuracy that could be used 
for object validation. This area contains a reasonably large variety of upland and lowland 
land cover types within a small area. Processed imagery was then segmented into objects 
using the three software packages.  
 
Results were compared with field validation polygons. Discrepancies in the detail, statistical 
and visual accuracy of the polygons were assessed. eCognition produced fewer, larger 
segments than the other software with the input parameters. In comparison, the OTB and 
GRASS GIS outputs produced smaller segments using as similar parameters as possible. 
This indicates that while eCognition is flexible and suitable for both broad and fine scale 
segmentations, including combining both in a nested hierarchy, OTB and GRASS GIS are 
more suited for smaller input images. These two pieces of software have less user-friendly 
control over the number of outputted segments. Their algorithms can be scaled up for use 
with larger input images and mosaics, but their processing times increase considerably; in 
order to reduce this, powerful CPUs are needed. eCognition is a more flexible piece of 
software given the current constraints.  
 
This study has demonstrated that each software package is suitable for generating 
acceptable segmentations; each package performed well. However, some tools are 
optimised for certain applications given computational restraints. Recommendations and 
future directions are outlined.  
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1 Introduction 
 
Earth Observation (EO) has been extensively used to provide a synoptic view of land use, cover 
and change at a variety of scales. New sensors are being developed and launched at an 
increasing rate, with some missions making data openly accessible (such as the Copernicus 
Programme’s Sentinel data). EO is a valuable resource even when no other data are available but 
is most powerful when combined with field data and a variety of other data sources to create 
products that provide critical information, particularly for decision making. 
 
Approaches to analyse the imagery into distinct classes are perhaps the most frequently used 
methods employed to extract this important information from EO data (Gitas et al. 2009). Various 
methods of classification are available, traditionally these were pixel-based unsupervised and 
supervised methods. Unsupervised classification involves statistical clustering of data to identify 
natural groupings of pixels or objects, the number of groups being specified in advance by the 
analyst. In a supervised classification, the analyst defines the classes, then assigns objects to 
those classes using classification rules or machine learning (Foody 2002).  
 
There has been a recent move towards object-based classifications (Blaschke 2010), in which the 
data products are presented as polygons representing individual features of the landscape, such 
as fields or forestry blocks. Object-based image analysis (OBIA) has been advocated as a suitable 
approach to creating maps from EO (Gitas et al. 2009; Shepherd et al. 2019; Stoian 2019), with 
many researchers reporting that it improves classification accuracy (Blaschke 2010). The principal 
of OBIA is to group spectrally similar pixels together to form objects, and then classify these 
objects based on their spectral and geometric properties, relationship to other objects and/or to 
contextual data (Blaschke 2010; Teodoro & Araujo 2016; Torres-Sánchez et al. 2015).  
 
OBIA has several advantages over per-pixel classification for habitat and land cover mapping. It 
avoids the ‘salt-and-pepper’ or ‘speckle’ effect, reduces within-class spectral variability, generates 
a vast number of features which can be used in classification, and enables analysts to use their 
ecological knowledge and contextual data in the classification process (Blaschke 2010; Blaschke 
et al. 2014; De Luca et al. 2019; Gitas et al. 2009). 
 
The aim of image segmentation is to create objects which represent real-world geographic or 
ecological features; these objects should be as large as possible to reduce computer processing 
time, but as small as necessary to be ecologically meaningful. To optimise segmentation, the 
analyst must decide which imagery layers or derived products to use, what weighting to accord to 
each layer, and then define parameters of scale and homogeneity. Current projects that use this 
technique in the United Kingdom are Natural England’s Living England (habitat map of England), 
the crop map of Scotland (Scottish Government & Edinburgh University 2019) and the Habitat Map 
of Northern Ireland (produced by JNCC and the Northern Ireland Environment Agency).  
 
1.1 Software  
 
The need for image segmentation has resulted in the production of several toolboxes and software 
solutions. Currently, the most widely used software for segmentation is eCognition (Witharana et 
al. 2014; Baraldi et al. 2018). However, the software is proprietary, and the annual licence cost is 
about £12,000 making it a considerable barrier to its use. There are also several open-source 
alternatives available, including OrfeoToolBox (Teodoro & Araujo 2016; Grizonnet et al. 2017) and 
GRASS (Lennert et al. 2019). The aim of this piece of work was to investigate these two free-to-
use alternatives and compare them to the market leader, eCognition.  
 
1.1.1 eCognition 9.2.1 
 
eCognition is a suite of software tools and algorithms for image analysis and classification 
developed by Trimble Geospatial Inc. It focuses on object-based analysis and data fusion and 
integrated analyses. (Trimble Geospatial Inc. 2020). It includes eleven different segmentation 
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algorithms. The algorithm used for this project was the Multiresolution Segmentation algorithm 
(Trimble Germany GmbH 2016). The Multiresolution Segmentation algorithm is a region growing 
algorithm which creates objects by starting with a single pixel, known as a ‘seed’ pixel, and 
merging it with neighbouring pixels until a threshold value of maximum heterogeneity is reached. 
This algorithm was chosen because it works well with multiband images, e.g. optical satellite 
images such as those produced by Copernicus Sentinel-2.  
 
1.1.2 Orfeo ToolBox (OTB) 6.6.1 
 
OTB is a library designed for remote sensing image processing, which was created by the French 
space agency (CNES) in 2006 and continues to be developed. The software is available to 
download from the OTB website1. OTB can be accessed via the command line, a graphical 
interface, Python and as a QGIS plugin. The toolbox provides several algorithms for satellite image 
processing and a segmentation tool that offers two different segmentation algorithms. The first is a 
watershed algorithm and the second is the mean shift algorithm.  The mean shift algorithm was 
used as it is more versatile than the watershed algorithm allowing more user defined thresholds. In 
addition, the availability of the same algorithm from GRASS GIS provides a good opportunity for 
comparative evaluation.  
 
1.1.3 GRASS 7.6.1 GIS 
 
Geographic Resources Analysis Support System (GRASS), version 7.6.1, Geographic Information 
System (GIS), commonly referred to as GRASS, is a suite of software used for geospatial data 
management and analysis, image processing, graphics and maps production, spatial modelling, 
and visualisation. Initially released in 1982 by the U.S Government, it has been further developed 
by a team of researchers and scientists. The software is available as a standalone application from 
the GRASS GIS2 website however it is more commonly used from within QGIS, where the software 
is in the standard QGIS core3. The software provides a tool called i.segment which uses two 
algorithms, the mean shift algorithm and the region growing algorithm, to perform segmentation of 
images (Fukunaga & Hostetler 1975). The mean shift algorithm was used as it provided a clearer 
comparison with OTB.  
 
  

 
1 https://www.orfeo-toolbox.org/CookBook-6.6.1/Installation.html 
2 https://grass.osgeo.org/ 
3 https://docs.qgis.org/3.10/en/docs/user_manual/grass_integration/grass_integration.html 

https://www.orfeo-toolbox.org/CookBook-6.6.1/Installation.html
https://grass.osgeo.org/
https://docs.qgis.org/3.10/en/docs/user_manual/grass_integration/grass_integration.html
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2 Methods  
 
2.1 Input data 
 
In order to obtain an accurate comparison of outputs from the different software suites the input 
data used was the same 10-band Sentinel-2 satellite image from the European Space Agency 
(ESA European Space Agency 2019) Copernicus programme.  
 
Sentinel-2 is a high-resolution, multi-spectral imaging mission. The mission consists of twin 
satellites that are flying in the same orbit but phased at 180° which enables a high re-visit 
frequency of five days at the equator. At higher latitudes, the revisit time is more frequent. Both 
satellites carry optical instruments that can sample 13 spectral bands at different resolutions. There 
are four bands at 10m, six bands at 20m and three bands at 60m spatial resolution. Sentinel-2 
products are provided in granules of fixed size within a single orbit, with each granule 100km x 
100km. Table 1 indicates the data products that are available to users.  
 
Table 1. Sentinel-2 product types (ESA European Space Agency 2019). 

Name High Level Description Production and 
Distribution Data Volume 

Level-1C Top-Of-Atmosphere reflectance in 
cartographic geometry 

Systematic generation and 
online distribution 

~600 MB (each 
100km x 100km) 

Level-2A Bottom-Of-Atmosphere reflectance in 
cartographic geometry 

Systematic and on-user side 
(Sentinel-2 Toolbox) 

~800 MB (each 
100km x 100km) 

 
Working with Defra’s Earth Observation Centre of Excellence and liaising with other devolved 
governments across the UK, JNCC has defined and agreed a standard set of processing steps for 
the raw data from the EU Copernicus satellites Sentinel-1 and Sentinel-2 which would underpin 
most of the potential uses within the natural environment sector (Jones et al. 2017; Minchella 
2018). To fully exploit the valuable information contained within Copernicus data, users are 
required to undertake a series of complex pre-processing steps to turn the data from a ‘raw’ 
unprocessed format into a state that can be analysed.  
 
To enable wider use and exploitation of EO data, JNCC are promoting the systematic and regular 
provision of Analysis Ready Data (ARD). This aligns with the Committee on Earth Observation 
Satellites’ (CEOS) work on facilitating access to satellite data through the international CEOS 
Analysis Ready Data for Land (CARD4L) project. This notion of accepted standards is recognised 
by JNCC, the devolved governments and the wider CEOS community as a vital step for repeatable 
and comparable analytical work. Availability of ARD allows end users to use data immediately for 
visualisation or analysis, without needing to carry out complex pre-processing themselves. The 
transformations include geo-positioning the data, removing the effects of the atmosphere on the 
signals detected by the satellite sensors and masking out clouds (Jones et al. 2017). Data created 
using this standard for the project are ARD products generated specifically for the UK using higher 
resolution elevation data than is used in the ESA products. They have been processed to surface 
reflectance using the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI) 
software, v3.1.64 and reprojected using GDAL v2.2.4 using a singularity image based on docker 
image jncc/s2-ard-processor:0.0.0.45 produced by JNCC. 
 
  

 
4 http://www.rsgislib.org/arcsi 

http://www.rsgislib.org/arcsi
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2.2 Study area 
 
The study area for this project was Kelso in South East Scotland (Figure 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This area was chosen because it contains a large variety of land cover types within a relatively 
small area, and because ground truth data were available to evaluate the segmentation outputs.  
The ground truth polygons were provided by the Rural and Environmental Science and Analytical 
Services (RESAS) in the Scottish Government (Figure 2). This dataset is produced by the annual 
land survey of agricultural fields conducted by RESAS to quantify agricultural use in Scotland.  The 
measurements of these fields are extremely accurate; they are surveyed using high accuracy GPS 
devices and then often snapped to Ordnance Survey MasterMap boundaries. 
 
  

Figure 1. Map of the area of interest (highlighted red). Contains OS data © 
Crown copyright and database right 2019. 
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Figure 2. Field boundaries used as ground truth data in the northern agricultural lowland area of the AOI. 
 
The Sentinel-2 granule used in the work is shown in Figure 3. The imagery was captured on 24 
June 2018. It was processed by JNCC to ARD as described above (file name 
S2B_20180624_lat55lon213_T30UWG_ORB037_utm30n_osgb). The image was cropped to the 
test area using GDAL, a translator library for raster and vector geospatial data formats.  
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2.3 Segmentation parameters 
 
Each piece of software enables the user to influence the output by setting segmentation 
parameters.  However, because the two open source tools use a different type of algorithm to 
eCognition, they offer a different set of user-defined parameters.  The choice of parameters offered 
by each software are shown in Appendix 1. 
 
To ensure a fair comparison, attempts were made to use parameter settings which were as similar 
as possible within each of the three pieces of software.  The chosen parameters were based on 
those used for the creation of Natural England’s Living England project using eCognition (Kilcoyne 
et al. 2019).  Some experimentation was therefore required to identify the parameter settings which 
most closely resembled those used in the Living Maps method.  The OTB mean shift algorithm was 
run with 29 different sets of parameters to identify those which produced the most similar results to 
the Living England segmentation.  As GRASS GIS utilises the same algorithm as OTB the 
parameters identified for use in OTB were also used in GRASS.  The parameters used in each 
piece of software for this study are provided in more detail below. 
 
2.3.1 eCognition 
 
Users can influence the size of objects by defining a scale parameter which determines the 
maximum allowable heterogeneity of pixel values in an object. The larger the scale parameter, the 
larger the objects. The scale parameter operates in combination with weighting criteria defined by 
the user to determine the degree to which segmentation is influenced by homogeneity of shape 
versus colour, and by object compactness versus smoothness. For example, if a user selects a 

Figure 3. Sentinel-2 input image (acquired 24 June 2018), displayed in 
true colour. Contains OS data © Crown copyright and database right 
2019. 
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shape weighting of 0.2, the colour weighting will be 0.8. A compactness weighting of 0.7 results in 
a smoothness weighting of 0.3. The input parameters available with the multiresolution algorithm of 
eCognition are described in Table 7.1 in Appendix 1.  
 
The scale parameter and weighting criteria can be applied to multiple layers of imagery 
simultaneously. The user can select which bands are used in the segmentation and what weighting 
they should carry in the calculation of heterogeneity of pixel values. 
 
Six segmentations of the Kelso test area were carried out using eCognition. One segmentation 
used a multi-level hierarchical approach adapted from Natural England’s Living Map methodology 
(Kilcoyne et al. 2017). This is potentially a very efficient method because it takes advantage of 
eCognition’s ability to segment different parts of the imagery at different scales, for example using 
a large-scale parameter for large homogeneous objects such as water bodies, and a smaller scale 
parameter for fine-scale patchy habitats such as scrubby grassland. The segmentation was carried 
out in three stages: 
 

1. Identify large homogeneous objects 
Segmentation was carried out using a scale parameter of 100 with shape weighting of 0.2 
and compactness weighting of 0.3 applied to the following bands: Green (weighted 2), NIR 
(weighted 1) and Red (weighted 1). Objects were classified as ‘Large Homogeneous Objects’ 
if they were larger than 50ha and if the standard deviation of NIR values within the object 
was lower than 15. 

 
2. Identify medium homogeneous objects and fields 

Segmentation was then carried out on the remaining unclassified areas of imagery using a 
scale parameter of 75 with shape weighting of 0.1 and compactness weighting of 0.6 using 
the same bands and weightings as above. Objects were classified as ‘Fields’ if they had a 
rectangular fit value greater than 0.8 (an object with a rectangular fit value of 1.0 would be a 
perfect square) and if the standard deviation of NIR values within the object was lower than 
35. Objects were classified as ‘Medium Homogeneous Objects’ if they had a rectangular fit 
value smaller than 0.8 and if the standard deviation of NIR values within the object was lower 
than 30. All remaining objects were classified as ‘Non-Homogeneous Objects’ and copied to 
a new level below. 

 
3. Refine non-homogeneous object segmentation 

Non-Homogeneous Objects were segmented using a scale parameter of 50 with shape 
weighting of 0.1 and compactness weighting of 0.8 applied to the following bands: Blue 
(weighted 1), Green (weighted 1), NIR (weighted 5), Red (weighted 5), Red Edge 5 
(weighted 1), Red Edge 6 (weighted 1), Red Edge 7 (weighted 1), Red Edge 8a (weighted 5), 
Short-Wave Infrared 1 (weighted 2) and Short-Wave Infrared 2 (weighted 2). 

 
The other five segmentations were carried out at a single level, i.e. applying the same set of 
parameters throughout the imagery.  The parameters and layer weightings used in these five 
segmentations are shown in Table 8.1 in Appendix 2. 
 
Segmentations produced by eCognition can be exported as vector shapefiles.  If desired, they can 
be exported with geometric and spectral attribute data selected by the user.  
 
2.3.2 Orfeo ToolBox 
 
The mean shift algorithm is nonparametric and iterative, creating a density gradient estimation 
using a generalized kernel approach to perform segmentation of satellite images (Fukunaga & 
Hostetler 1975). The mean shift approach is a flexible clustering technique that groups similar 
values together; values are represented in a space and through an iterative technique the 
segmentation is achieved. In OTB the segmentation with the mean shift algorithm is performed in 
two steps: 
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1. Dividing 
In this step the input image is divided into tiles and then the mean shift segmentation is 
performed within each tile. This is done by grouping together neighbouring pixels whose 
range distance is below the range parameter and (optionally) spatial distance is below the 
spatial range parameter. 

 
2. Stitching  

In this step the segmentation algorithm stitches together the segmentation generated in the 
previous step. There is also the option not to stitch back together the generated segments at 
the boundaries of the generated tiles. The resulting segmentation is stored as a geospatial 
layer defined by the user.  

 
OTB can be used either from within its own user interface, via command line, as a python library or 
as a plug-in in QGIS. All the parameters and inputs are the same in all the formats. For this project 
the command line interface was used. A description of the input parameters for the mean shift 
algorithm of OTB are described in in Appendix 1. In total 29 segmentations were run in OTB to 
identify the most similar parameters to the Living Maps parameters. The parameter values for each 
of these 29 test runs are shown in Table 8.2 in Appendix 2.  
 
In each segmentation, all 10 bands of the Sentinel-2 ARD were used and given equal weighting. 
 
2.3.3 GRASS GIS  
 
GRASS GIS i.segment tool uses the mean shift algorithm (Fukunaga and Hostetler 1975), and also 
consists of two steps but has a different approach:  
 

1. Anisotrophic filtering  
In this first step new cell values are calculated from all pixels not farther than hs (spatial 
range bandwidth) pixels away from the current pixel of the input image and with a spectral 
difference no larger than hr (spectral range bandwidth). This means that pixels that are 
different from the current pixel in the input image are not taken into consideration in the 
calculation of the new pixel values.  

 
2. Clustering 

In this step, cell values are iteratively recalculated until the maximum number of iterations are 
reached or until the largest shift is smaller than the threshold. The threshold takes values 
between 0 and 1, where 0 merges only identical segments and 1 merges all segments.  

 
The resulting segmentation is stored as a raster image file (.tif). For the purposes of comparison 
with the outputs from the other software this needed to be converted to a vector format. The 
GRASS GIS algorithm r.to.vect was used which first traces the perimeter of each unique area in 
the raster layer and creates vector data to represent it. The cell category values for the raster layer 
are used to create attribute information for the resultant vector area edge data. A true vector 
tracing of the area edges might appear blocky, since the vectors outline the edges of raster data 
that are stored in rectangular cells, so the r.to.vect algorithm also smooths the corners of the vector 
data as they are being extracted. 
 
A description of the input parameters for the mean shift algorithm of i.segment are described in 
Table 7.3 in Appendix 1. Four segmentations were run in GRASS GIS to identify the most similar 
parameters to the Living Maps parameters. The parameter values used for each of the four test 
runs are shown in Table 7.3 in Appendix 2.  
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In in the first three segmentations, all 10 bands of the Sentinel-2 ARD were used and given equal 
weighting.  In the fourth segmentation (output name “NDVI”) the only input layer used was an NDVI 
layer created from bands 3 and 7 of the Sentinel-2 ARD using the formula: 
 

𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 
 
2.4 Comparative evaluation 
 
One segmentation output per software was selected for evaluation: 
 

• eCognition multi-level hierarchical segmentation described in Section 2.3.1 
• OTB segmentation produced by the parameters highlighted in Table 8.2 (output 24) 
• GRASS GIS segmentation produced by the parameters highlighted in Table (output 24) 

 
Three methods of evaluation were used to compare these segmentations: (1) visual comparison of 
the segmentation with the input satellite imagery and the ground truth polygons, (2) comparison of 
descriptive statistics derived from the polygon geometry of the segmentation and of the ground 
truth data, and (3) comparison of processing time needed to produce each segmentation.  
 
2.4.1 Visual assessment 
 
Visual assessment provided qualitative evaluation of the segmentation outputs. The segmentation 
vector files were symbolised in QGIS 3.10 so that only the boundaries of the polygons were visible. 
These were then overlain on the original Sentinel-2 imagery, enabling visual assessment of the 
segmentation’s delineation of landscape features visible in the imagery such as woodlands, 
hedgerows, water bodies, roads and built-up areas. Particular attention was paid to features with a 
small area and high spectral contrast, such as small groups of trees surrounded by grassland. 
Discrepancies in the detail and visual accuracy of the polygons were assessed, and checks were 
made for the presence of anomalies, artefacts and edge effects. 
 
The segmentation polygons were then visualised over the ground truth polygons, enabling visual 
assessment of the segmentation’s delineation of agricultural field boundaries.  
 
2.4.2 Polygon statistics 
 
The total number of polygons produced for each segmentation was recorded, as this gives insight 
into the level of landscape detail likely to be captured by the segmentation. The number of 
polygons also influences the processing time required to produce the segmentation, and the time 
required for potential future processing or analytical steps, such as conversion of raster to vector 
outputs or the generation of zonal statistics.    
 
The area of each polygon in hectares was calculated using QGIS ‘field calculator’ tool for the three 
segmentations and the ground truth data. A spatial query was carried out in QGIS to select all 
polygons that intersected the 413 ground truth polygons. The ‘basic statistics for fields’ tool in 
QGIS was used to calculate a set of descriptive statistics from the area in hectares of the ground 
truth polygons and of the polygons in each segmentation that intersected the ground truth data.  
The statistics generated were minimum value, maximum value, range, sum, mean value, median 
value, standard deviation, coefficient of variation, first quartile, third quartile and interquartile range.   
 
The statistics generated from each segmentation were compared with the statistics generated from 
the ground truth data to provide a quantitative evaluation of the segmentation results. 
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2.4.3 Processing speed 
 
All segmentations were carried out on laptop computers with a 1.99GHz Intel i7-855OU CPU and 
16GB of RAM running Windows 10 64-bit operating system. The time taken to complete each 
segmentation of the Kelso test area was recorded. 
 
To test the performance of the software on a larger area, segmentations were carried out using the 
parameters outlined in Section 2.4 above to segment a mosaic of Sentinel-2 imagery covering the 
whole of Scotland. The mosaic imagery was a 14GB raster file in TIF format. The total time taken 
by each piece of software to complete the segmentation was recorded, along with the number of 
polygons produced. 
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3 Results 
 
3.1 Visual assessment 
 
The multi-level segmentation produced by eCognition successfully delineated medium-scale 
landscape features such as fields, hedgerows and woodlands. Figure 4 shows a section of the 
eCognition segmentation visualised over the original Sentinel-2 imagery, demonstrating that the 
segmentation provides a reasonably detailed representation of the landscape.  
 
However, the level of detail was not as high for certain features such as agricultural fields and 
buildings, and in some cases visually distinct areas had been grouped into a single object, as 
exemplified in Figure 5. 
 
Comparison with the ground truth polygons reinforced these findings, showing that the eCognition 
segmentation successfully delineates field boundaries in many cases, but in some cases merges 
adjacent fields into a single polygon (Figure 6). 
 

 
Figure 4. Section of eCognition multi-level segmentation over Sentinel-2 imagery. Image width ca. 6km. 
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Figure 5. Example of failure to separate small but spectrally distinct areas in the eCognition multi-level 
segmentation output. Image width ca. 5.5km. 
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Figure 6. Example of visual comparison between section of eCognition segmentation and ground truth data. 
 
The segmentation produced by OTB was extremely detailed, and often delineated objects based 
on spectral differences within individual fields, for example patches of drier ground. However, in 
many instances its split areas into separate segments where no discernible difference could be 
identified visually. Figure 7 shows a section of the OTB segmentation output visualised over the 
original Sentinel-2 imagery, demonstrating that seemingly homogeneous fields have been 
segmented into several polygons. Visual assessment also showed that linear artefacts are visible 
in the segmentation, having been produced by the stitching process after the area had been tiled 
for processing. These are perfectly straight horizontal or vertical lines intersecting spectrally 
homogeneous areas of the imagery, as exemplified in Figure 8. 
 
Comparison with ground truth polygons also showed the high level of detail of this segmentation, 
with some fields being split into 10 or more polygons in the example shown in Figure 9. Vertical 
stitching artefacts are also visible in Figure 9. 
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Figure 7. Section of OTB segmentation visualised over Sentinel-2 imagery. Image width ca. 6km. 
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Figure 8. Example of linear artefacts produced by stitching of the OTB output. 
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Figure 9. Example of visual comparison between section of OTB segmentation and ground truth data. 
 
The segmentation produced by GRASS GIS was also highly detailed, but less detailed than the 
OTB segmentation. Like the OTB segmentation, it successfully delineated different land uses 
within fields, but also generated multiple polygons in many areas where there was no discernible 
visual difference. Figure 10 shows a section of the GRASS GIS segmentation results visualised 
over the original Sentinel-2 imagery.  
 
Visual comparison with the ground truth data showed that the GRASS GIS segmentation 
successfully delineated the outer boundaries of agricultural fields (Figure 11). Figure 11 also shows 
that although the GRASS segmentation occasionally splits fields into multiple polygons, it does not 
produce as many small within-field polygons as the OTB segmentation. 
 
GRASS does not tile imagery during processing and stitch the output, so it does not produce linear 
artefacts.   
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Figure 10. Section of the GRASS segmentation visualised over Sentinel-2 imagery. Image width ca. 6km. 
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Figure 11. Example of visual comparison between GRASS segmentation and ground truth data. 
 
3.2 Polygon statistics  
 
As Table 2 shows, OTB produced the largest total number of polygons for the Kelso test area, 
followed by GRASS GIS, with eCognition producing the lowest number. The total number of 
polygons produced by OTB was consistently high for all of the 29 experimental segmentations, 
exceeding 90,000 objects in several of the outputs. The total number of polygons produced by the 
four GRASS GIS i.segment algorithm ranged from 48,705 to 65,093. The five single-level 
segmentations produced by eCognition generated a lower number of objects than the multi-level 
hierarchical segmentation, ranging from 6,978 to 9,490. These segmentations used scale 
parameter 100 or 120, while the multi-level segmentation used sequential scale parameters of 100, 
75 and 50 as outlined in Section 2.3.1. 
 
Table 2. Total number of polygons generated by each piece of software for the test area of Kelso, and 
number of polygons which intersect the ground truth data. 
 Ground truth 

data 
eCognition 
segmentation 

OrfeoToolBox 
segmentation 

GRASS GIS 
segmentation 

Total number of 
polygons n/a 18,494 83,705 54,053 

No. of polygons 
intersecting ground 
truth data 

413 756 2,062 1,381 

 
The polygons from each segmentation which were selected for the generation of descriptive 
statistics are shown in Figure 12. This clearly shows that in each case, the area covered by the 
selected polygons is greater than the area covered by the ground truth polygons. The number of 
polygons intersecting the ground truth data is shown in Table 2 and their total area is shown in 
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Table 3. The eCognition segmentation has the largest total area and smallest number of polygons, 
while the OTB segmentation has the smallest total area and largest number of polygons. The 
spatial query selects all polygons that intersect the ground truth data, including polygons that just 
touch or slightly overlap the boundary of a ground truth polygon. This causes the difference 
between the total area of the ground truth data and that of the overlapping polygons, which is more 
pronounced in the eCognition segmentation because it contains larger polygons.   
 

 
Figure 12. The polygons from each segmentation which were selected due to intersection with the ground 
truth data polygons (top left). 
 
The descriptive statistics derived from the area in hectares of the ground truth data and the 
sections of the three segmentations that intersect the ground truth data are shown in Table 3.  
Mean, median and standard deviation of area in hectares are shown in Figure 13 for each 
segmentation compared with the ground truth data. 
 
The segmentation produced by eCognition had the largest mean value of 11.61ha, which was 
larger than the mean value of the ground truth polygons. The eCognition segmentation also had by 
far the largest standard deviation in area values, indicating a wide range of polygon size produced 
by the three sequential segmentation scales. The median area of the eCognition segmentation is 
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slightly lower than that of the ground truth data, which together with the high standard deviation 
suggests that a few very large polygons are skewing the mean area value.  
 
The segmentation produced by OTB had the smallest mean area of 2.67ha and the lowest 
standard deviation, suggesting a more consistent segmentation. The statistics derived from the 
GRASS GIS segmentation are similar to those derived from the OTB segmentation, but the 
GRASS statistics are closer to those of the ground truth polygons. Of the three segmentations 
evaluated, the GRASS segmentation produced polygons with a mean area and standard deviation 
closest to those of the ground truth data.  
 
These quantitative data are consistent with the qualitative visual assessment, which showed that at 
the scale parameters used, the eCognition segmentation occasionally merged spectrally distinct 
landscape features into single large polygons, while OTB and GRASS tended to split spectrally 
homogeneous features into several small polygons.    
 
Table 3. Statistics derived from area in hectares of each segmentation output and the ground truth data. 

Statistics from 
polygon area (ha) 

Ground truth 
polygons 

eCognition 
polygons 

OrfeoToolBox 
polygons 

GRASS GIS 
polygons 

Minimum  0.51 0.23 0.81 1.01 

Maximum  29.96 171.58 50.09 37.04 

Range  29.45 171.35 49.28 36.03 

Total  3,023 8,779 5,524 6,278 

Mean  7.32 11.61 2.67 4.54 

Median 6.45 5.84 1.87 3.47 

Standard deviation 5.59 18.43 2.86 3.60 

Coefficient of 
variation 0.76 1.587 1.07 0.79 

First quartile 2.69 2.67 1.30 2.34 

Third quartile 10.42 11.79 2.92 5.33 

Interquartile range 7.73 9.02 1.61 2.99 
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3.3 Processing speed 
 
The time taken to produce the three segmentations selected for comparative evaluation, both for 
the Kelso test area and for the whole of Scotland, are shown in Table 4. The eCognition 
segmentation was the quickest to run, taking only three minutes to segment the Kelso test area.  
This produced a smaller number of objects than the GRASS and OTB segmentations, which took 
longer to run, but it should also be noted that the eCognition workflow consisted of three sequential 
segmentations which were all completed in that time. The OTB mean shift algorithm took between 
four and nine minutes to segment the Kelso test area, depending on the parameters used. The 
GRASS GIS i.segment algorithm was the slowest to run, and extra time was needed to convert the 
segmented output from raster to vector format once segmentation was complete.  
 
Table 4. Processing time and number of objects produced by OTB, GRASS and eCognition segmentations 
of the Kelso test area and the whole of Scotland. 
 Kelso test area Scotland  

 Time 
(mins:seconds) 

No. of objects Time  
(to nearest hour) 

No. of objects 

OTB 4:00 to 9:00 83,705 52 3,148,467 

GRASS 
11:49 (segment) 
2:00 (vectorise) 

54,053 
48 (segment) 
5 (vectorise) 

3,957,220 

eCognition 3:00 18,494 8 1,202,110 
 
When applied to the mosaic imagery of Scotland, eCognition again performed the fastest 
segmentation, completing the process without any issues in around 8 hours. In this instance, OTB 
performed slightly slower than GRASS, taking 52 hours (to the nearest hour) due to the very high 
number of polygons generated. GRASS took 48 hours to complete the segmentation, but a further 
five hours to convert the output raster to vector format.  
 
  

Figure 13. Polygon geometry statistics for 
segmentation outputs (white) from:  
a) eCognition  
b) OTB and  
c) GRASS GIS  
compared to field validation statistics (grey) 
Note that the y-axes are not all consistent in 
order to show the values clearly. 
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4 Discussion 
 
4.1 Key findings 
 
Each of the software tools produced a segmentation of the small test area and the mosaic imagery 
of Scotland. However, the tests conducted (visual checks, statistics, processing time) revealed 
several key observations in the outputs discussed below.  
 
Similarity of results produced by OTB and GRASS GIS is unsurprising since they used the same 
segmentation algorithm however certain differences can be explained by the process. Whilst the 
mean-shift segmentation algorithm was employed, the automated steps prior to this are different, 
such as the tiling of the input image. GRASS GIS employs an anisotriphic filtering technique on the 
raster image before creating the segmentation. This highlights the subtle discrepancies noted 
despite the mean-shift segmentation algorithm used in both. 
 
There were observed errors in the stitching of the OTB output (Figure 8). Whilst not consistent 
throughout the image, it was still prevalent and could produce a misclassification in further steps of 
an integrated workflow. This error appears to be due to the tiling instigated at the start of the 
process, where the raster image is divided into a number of tiles. Whilst the stitching option is 
supposed to remove these errors, some are still noticeable and likely due to a non-perfect 
histogram matching used by OTB.  
 
Use of greater weighting on the SWIR band was successfully used in eCognition to distinguish 
woodland and grassland objects, this concurs with Kilcoyne et al. (2019) and Colson and Robinson 
(2019). This demonstrates the importance of the ability to give additional weighting given to bands 
used in the segmentation. Limitations of this for open-source software are discussed in Section 4.2 
as it is not easily integrated for all users when compared to eCognition.  
 
Including brightness and NDVI alongside other bands improved segmentation in eCognition but 
using NDVI instead of other bands decreased segmentation accuracy in GRASS. There is not a 
comparative way to seamlessly integrate brightness and NDVI in OTB and GRASS GIS. 
Limitations of this for open-source software are discussed in Section 4.2. Where eCognition allows 
for this via the software, if users wanted to achieve a similar workflow in OTB or GRASS GIS 
additional geospatial manipulation steps would be required. Some users may not feel confident 
utilising different packages and steps to achieve the same process that is readily available in 
eCognition.  
 
The field validation data is intended to show field boundaries for agricultural purposes and 
delineation of crop type. This dataset is not designed to pick out within field features, such as dry 
patches or lone trees that have been picked up in some areas of each of the segmentations. 
Therefore, it is to be expected that the image segmentations will have more polygons than the 
ground truth data. 
 
There is a trade-off between processing time and detail in the outputs. For an ideal segmentation, 
objects need to be as large as possible but as small as necessary; they must be suitable for the 
application. For OTB, the parameters of the best run were chosen. This was because although it 
took more processing time to complete, the result was more detailed, and the segments were more 
accurate in relation to the features in the input satellite and the field validation polygons. Runs of 
OTB that produced less detailed results were quicker, but the resulting objects were less detailed 
in comparison; the algorithm merged areas into large polygons that were not representative of the 
reality and of no practical use. Where landscape- or catchment-level of detail is required, OTB 
does not appear to be optimal. This indicates that OTB is better suited for finer mapping, either 
over large or small input areas of varying resolutions, to capture more subtle and nuanced features 
with less user manipulation.   
 



Review of image segmentation algorithms for analysing Sentinel-2 data over large geographical areas 

23 

4.2 Limitations of study 
 
Living England (Kilcoyne et al. 2019) used summer and winter imagery in combination, while this 
study used only one summer image. In eCognition this approach of using imagery in combination 
is easily achieved through adding multiple images to a single “project” and running the 
segmentation on this. Image weightings can also be assigned. To replicate this in OTB and 
GRASS GIS, raster manipulation is required. There is no option to run a segmentation on multiple 
images, therefore an image stack needs to be produced. In this instance, a summer and winter 20 
band raster dataset would need to be generated. To assign weightings to the assorted image 
layers in eCognition requires a user to input a figure, for example assigning an image weighting of 
1 to the red band and 5 to the SWIR1 band.  As stated in Section 4.1, increased weighting of the 
SWIR band is useful for distinguishing woodland and grassland objects. If the user wanted to 
assign weightings to an OTB or GRASS GIS segmentation, additional layers would need to be 
added to the raster stack. In the same example, a single red band would be included in the stack, 
however five copies of the SWIR1 band would be included. This greatly increases computational 
storage for running the same process in OTB/GRASS GIS, without guaranteeing the same level of 
results are generated. 
 
The differences in processing speeds observed are due to different number of polygons created in 
the different segmentation scales. It should be noted that of the experimental segmentations for 
OTB that created fewer objects the processing time was much quicker and closer to that of 
eCognition. However, these segmentations did not visually or statistically compare to the best 
segmentation that was selected for comparative evaluation.  
 
It was expected that the number of objects would differ between the segmentation outputs and the 
ground truth polygons as these are generated using different methods: the ground truth polygons 
were created from field measurements, i.e. they are based on the physical boundaries of the fields 
rather than the spectral difference as per the segmentations. For comparison only those 
segmented polygons that overlapped with the ground truth polygons were selected for the 
statistical analysis. The higher the number of objects generated the more detailed the resulting 
segmentation output. 
 
4.3 Implications 
 
There was difficulty in replicating segmentation parameters across the three software packages, 
and therefore it was not a perfectly fair test. Whilst this was attempted to the best of the authors’ 
abilities, there is no known direct translation available within the literature. Visual assessment 
showed that eCognition produced mixed objects, but a smaller segmentation scale would have 
reduced this. 
 
eCognition is an image processing software that has been designed for OBIA; a complete system 
that has a consistent interface requiring a single installation for the program. The software can be 
installed on multiple machines with a single licence (as demonstrated by NE/JNCC colleagues), 
however only one instance of the program can be open at a time. Trimble state requirements for 
eCognition are a minimum 4GB RAM to run, with 16GB recommended. Optimal performance 
comes from machines with 32GB or more. Whilst machines with this specification are becoming 
more prevalent, they are not widely used in the public sector. Traditionally only available for 
machines running Windows OS, eCognition has recently been made available for machines 
running Linux OS.  
 
In contrast, OTB and GRASS GIS do not require a licence to operate and are available across 
machines running Windows, Linux and Mac OS X binaries. Installation is available via a number of 
routes; standalone installers, integration with QGIS or compiling from source code. There are no 
specific requirements regarding memory listed for installing this software, however when executing 
processes (after installation) a message states there is a minimum requirement of 128MB to 
perform the task. There is no clear indication of requirements for a non-specialist user. Regarding 
processor optimisation, OTB is designed to natively tile scenes then stitch the tiles at the end of the 
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process. If multiple cores are available on a machine, OTB will instinctively make use of this. 
eCognition is also able to utilise multiple cores for processing by tiling images, however Trimble 
state the minimum requirement for cores is a dual-core CPU with recommendations for a quad-
core CPU. The software requirements demonstrate that each piece of software is deployable on 
local machines or via cloud-based virtual machines (VMs). This has been demonstrated by Natural 
England deploying eCognition on an Amazon Web Services (AWS) Windows-10 VM (Kilycoyne et 
al. 2019) and through JNCC operating OTB via AWS UNIX VMs and OTB/GRASS GIS via QGIS 
on a JASMIN VM5. 
 
All three pieces of software offer the ability to be operated from a Graphical User Interface (GUI), 
however eCognition is the only software designed to be operated instinctively from a GUI. As such, 
it uses the concept of "projects" as the file structure to open between machines if the workflow is to 
be shared. Although many of the functions in OTB and GRASS GIS are available through a GUI, 
through Monteverdi for OTB or QGIS for OTB and GRASS GIS, using a GUI is not required and 
the features described can be accessed through a command line interface or Python bindings. This 
presents its own opportunities and challenges. Whilst working in a GUI and being able to visually 
see workflows might fit their specific requirements better, some users may find there are a number 
of advantages to a workflow based on Python scripts. Working through Python scripts allows for 
easier sharing between colleagues if there is only a single commercial licence. For integrated 
workflows, OTB can be called via the command line or executed via Python. Through packages, 
such as Reticulate (Ushey et al. 2020), OTB can be integrated into R workflows.  
 
Stitching artefacts were most prevalent in the OTB segmentation, followed by the GRASS GIS 
i.segment segmentation. If this segmentation is to be used in an OBIA classification and the 
objects are classified as the same habitat and subsequently merged, the artefact will disappear. 
However, if these segments are assigned a different target classification it will highlight 
discrepancies and users will not be confident in the output. A hierarchical approach may therefore 
be more suitable, but this would need to be optimised to the imagery.  
 
Whilst multi-level and hierarchical segmentations are widely utilised in eCognition, for example the 
Living England method of identifying large homogeneous objects first, there is no like-for-like 
process available via OTB or GRASS GIS to a non-specialist user. The advantage of a multi-level 
approach is that it has the benefit of reducing processing time, as the fine scale segmentation only 
needs to be applied to the areas of imagery which require it. As mentioned, eCognition is an image 
processing software designed for OBIA and has this functionality readily available for multi-level 
segmentation. If a user wanted to undertake the same type of workflow in OTB or GRASS GIS, it 
would require a strong geospatial background and confidence in the toolsets available. The 
process would be less refined than in eCognition. The user would be required to run a 
segmentation across the whole image and mask out areas of a certain size iteratively through 
merging and masking tools, re-running segmentations on objects of certain sizes within the raster 
dataset and then merging the results from the various outputs at the end. Whilst this approach is 
valid, it would not necessarily be as efficient and could introduce a number of errors; a multi-level 
segmentation would be possible however it is not as straightforward or instinctively available as in 
eCognition.  
 
Segmentations produced by OTB were judged likely to be too detailed for many uses due to the 
large number of objects created. From visual inspection of the outputs, subtle objects were noted, 
such as within field dryness. This is suitable for precision agriculture decisions being made at a 
sub-field level. Whilst this could be considered suitable for Site of Special Scientific Interest (SSSI) 
management and monitoring at a 'unit' level, other conservation decisions made at landscape or 
catchment scale do not require this level of detail. This level of detail would lead to slower 
processing time in later steps of a classification process, such as the Living Map method (Kilcoyne 
et al. 2017) where the assignment of each segment to the target land cover classification is 
achieved using a random forest machine learning algorithm.  
 

 
5 http://www.jasmin.ac.uk/services/jasmin-analysis-platform/ 

http://www.jasmin.ac.uk/services/jasmin-analysis-platform/
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4.4 Future research 
 
Further research is recommended to explore the differences in outputs between GRASS GIS and 
OTB, despite the same parameters being utilised. Discrepancies are likely due to the tiling and 
stitching process where OTB tiles the image into a number of subsets before mosaicking at the 
end of the process to produce a seamless output. The i.segment tool in GRASS GIS executes a 
similar but not exact process, producing a smaller number of image subsets before mosaicking at 
the end.  An additional step is the anisotrophic filtering used by GRASS GIS. This is a step 
performed to filter the raster image before creating the segmentation. In OTB, the dividing and 
mosaicking step produced a higher number of stitching errors despite the finer segmentation. The 
noted discrepancies are likely due to this process however this warrants further research to help 
understand the intricacies of the process and raised an area of interest for future avenues of 
research.  
 
The possibility of a hierarchical segmentation in the OS tools is feasible however would take more 
time than the same approach in eCognition, even with a geospatially confident user. An 
investigation into this approach is recommended.  
 
Future studies should also evaluate ways to produce more quantitative assessments of the 
accuracy of segmentation outputs than the methods used in this study, such as the AssessSeg 
command line tool (Novelli et al. 2017). 
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5 Conclusions 
 
In conclusion, all the software tools performed well and generated acceptable segmentations. 
However, there are some differences between the tools that must be considered: 
 
eCognition performed well, producing fewer, larger segments than the other software which was 
closer to the overall number of objects in the ground truth data. This, coupled with the fast 
processing times, make it ideal for segmenting large input images or mosaics at broader scales. 
The larger objects produced by scale parameters 100-120 missed some in-field detail, so a smaller 
scale parameter, or a hierarchical combination of scale parameters, would be needed to produce a 
reliable segmentation of an area with fine-scale habitat heterogeneity. It should be noted that the 
high cost of acquiring a working licence of eCognition makes it a less viable solution for projects 
with limited budgets.  
 
OTB also performed well producing more highly detailed segmentations and was able to process 
large input images and mosaics relatively well, although the processing time was slower and on 
occasions, the second part of the algorithm (“stitching”) failed to complete or created errors (note 
that it is possible to deactivate this second part and run without, but another method to stitch the 
polygons would be required). The outputs were ideal for small-scale, highly detailed segmentation 
at no monetary cost. OTB is available through an independent GUI and a GUI from within QGIS. 
For integrated workflows, OTB can be called via the command line or executed via Python. 
Through packages, such as Reticulate (Ushey et al. 2020), OTB can be integrated into R 
workflows.  
 
GRASS GIS identified the different objects well and produced a segmentation with a reasonable 
number of objects; more than eCognition and the ground truth data but a lot fewer than OTB. 
Overall, despite using the same algorithm as OTB, the visual and statistical results of the GRASS 
GIS output were closer to those of the ground truth polygons.  Although the lack of stitching 
process was an advantage in terms of reliability and quality of the output the additional manual 
step of converting the resulting raster segmentation into a vector layer added to the processing 
time. Its free-to-use status makes it a useful option. 
 
A hierarchical approach is often preferred when undertaking segmentations. This is easily 
developed in eCognition but presents a more challenging workflow in OTB and GRASS GIS. This 
hierarchical and multi-level approach is better suited to eCognition as it can be done in the 
software without additional geospatial tools. The hierarchical approach is perfectly suited for 
habitat mapping from satellite imagery in the UK where there is a mix of large homogeneous 
habitats and fine scale patchy mosaics. To achieve similar in OTB/GRASS GIS requires either a 
scripting or manually executed toolset requiring more input from the user, as discussed in Section 
4.3. eCognition is much better suited to this commonly used approach. 
 
All the tools performed well and delivered the expected results. eCognition produced fewer, larger 
segments than the other software with the input parameters. In comparison, the OTB and GRASS 
GIS outputs produced smaller segments using as similar parameters as possible. This indicates 
that while eCognition is flexible and suitable for both broad and fine scale segmentations, including 
combining both in a nested hierarchy, OTB and GRASS GIS are more suited for smaller input 
images. These two pieces of software have less user-friendly control over the number of outputted 
segments. Their algorithms can be scaled up for use with larger input images and mosaics, but 
their processing times increase considerably; in order to reduce this, powerful CPUs are needed. 
eCognition is a more flexible piece of software given the current constraints. The eCognition 
Multiresolution Segmentation algorithm performed better with large input images and mosaics 
making it ideal for projects that focus on covering large geographical areas.  
 
Future work in this area should further investigate the segmentation algorithms now available with 
the RSGISLIB python library developed by the Department of Geography and Earth Sciences 
(DGES) at Aberystwyth University (Wales, UK). This library uses the Shepherd Segmentation 
algorithm (Shepherd et al. 2019) which produces a multiband raster segmentation layer. Initial 
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testing and results of which were very promising.  The work reported here reviewed the mean shift 
algorithm in GRASS as it provided a clearer comparison with OTB, but a further test should review 
the region growing algorithm, to compare with eCognition outputs. 
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Appendix 1 
 
Descriptions of each of the input parameters available in each piece of software.  
 
Multiresolution Segmentation algorithm of eCognition.  
 
Table 7.1. eCognition multiresolution algorithm description of parameters. 

Parameter Description  

Image Layer 
Weights 

Image layers can be weighted depending on their importance or suitability for the 
segmentation result. 

Compatibility mode Compatibility mode to previous software versions (eCognition Version 8.64 or 
earlier) 

Thematic Layer 
Usage 

Specify the thematic layers to be candidates for segmentation. Each thematic 
layer that is used for segmentation will lead to additional splitting of image 
objects while enabling consistent access to its thematic information. 

Scale Parameter The Scale Parameter is an abstract term that determines the maximum allowed 
heterogeneity for the resulting image objects.  

Shape The value of the Shape field modifies the relationship between shape and colour 
criteria. 

Compactness The compactness criterion is used to optimize image objects with regard to 
compactness. This criterion should be used when different image objects which 
are rather compact but are separated from non-compact objects only by a 
relatively weak spectral contrast 

 
 
Mean shift segmentation algorithm parameters of OrfeoToolBox 
 
Table 7.2. OrfeoToolBox mean shift algorithm description of parameters 

Parameter Description  

Spatial radius  Spatial radius of the neighbourhood 

Range radius  Range radius defining the radius (expressed in radiometry unit) 
in the multispectral space 

Mode convergence threshold  Algorithm iterative scheme will stop if mean shift vector is below 
this threshold or if iteration number reached maximum number 
of iterations 

Maximum number of iterations  Algorithm iterative scheme will stop if convergence hasn’t been 
reached after the maximum number of iterations 

Minimum region size  Minimum size of a region (in pixel unit) in segmentation. Smaller 
clusters will be merged to the neighbouring cluster with the 
closest radiometry.  
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i.segment mean shift segmentation parameters of GRASS GIS.  
 
Table 7.3. GRASS GIS i.segment description of parameters. 

Parameter Description 

group Name of input imagery group or raster maps 

output Name for output raster map 

band_suffix Suffix for output bands with modified band values 

threshold Difference threshold between 0 and 1 

radius Spatial radius in number of cells 

hr Range (spectral) bandwidth [0, 1] 

method Segmentation method 
Options: region_growing, mean_shift 

similarity Similarity calculation method 
Options: euclidean, manhattan 

minsize Minimum number of cells in a segment 

memory Memory in MB 

iterations Maximum number of iterations 

seeds Name for input raster map with starting seeds 

bounds Name of input bounding/constraining raster map 

goodness Name for output goodness of fit estimate map 
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Appendix 2 
 
Tables showing the values for each parameter used in the input for each of the software suites. 
 
Table 8.1. eCognition values for each input parameter and layer weighting used in the single-level 
segmentations. The settings which produced the best of the single-level segmentations (based on visual 
assessment) are bordered in bold. 

 
  

 Segmentation outputs 

LM_small LM_large Test1 Test2 Test3 

W
ei

gh
tin

g 
of

 la
ye

rs
 u

se
d 

in
 s

eg
m

en
ta

tio
n 

Blue 0 1 1 1 1 

Green 0 1 1 1 1 

Red 1 5 1 1 1 

Red Edge 704 1 1 1 1 1 

Red Edge 740 1 1 1 1 1 

Red Edge 780 1 1 1 1 1 

NIR  2 5 1 1 1 

Narrow NIR 1 5 1 1 1 

SWIR 1 3 2 10 10 10 

SWIR 2 3 2 10 10 10 

NDVI 0 0 5 5 5 

Brightness (RGB) 0 0 10   

Brightness (RE-NIR) 0 0 5   

Brightness (all) 0 0 0 10 10 

Se
gm

en
ta

tio
n 

pa
ra

m
et

er
s 

Scale 120 120 120 120 100 

Shape 0.3 0.1 0.1 0.1 0.1 

Compactness 0.2 0.8 0.5 0.5 0.5 
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Table 8.2. OrfeoToolBox values for each input parameter.  The settings which produced the segmentation 
used in the comparative analysis are bordered in bold. 

Segmentation 
outputs 

Parameters 

Spatial 
Radius 

Range 
Radius 

Mode 
Conv. 
Thresh 

Max no. 
Iterations 

Min. 
Region 
Size 

Stitch 
Polygons 

1 4 200 0.1 100 10 1 

2 4 200 0.1 100 4 1 

3 4 150 0.1 100 4 1 

4 4 175 0.1 100 4 1 

5 4 175 0.1 100 2 1 

6 8 175 0.1 100 2 1 

7 5 175 0.1 100 100 1 

8 5 15 0.1 100 100 1 

9 5 150 0.1 100 100 1 

10 5 125 0.1 100 100 1 

11 5 100 0.1 100 100 1 

12 5 75 12 100 100 1 

13 5 50 0.1 100 100 1 

14 5 25 0.1 100 100 1 

15 5 35 0.1 100 100 1 

16 5 25 0.1 100 10 1 

17 5 25 0.1 100 20 1 

18 5 25 0.1 100 30 1 

19 5 25 0.1 100 40 1 

20 5 25 0.1 100 50 1 

21 5 25 0.1 100 60 1 

22 5 25 0.1 100 70 1 

23 5 25 0.1 100 80 1 

24 5 25 0.1 100 90 1 

25 5 25 0.1 100 100 1 

26 5 25 0.1 100 110 1 

27 5 25 0.1 100 120 1 

28 5 25 0.1 100 130 1 

29 5 25 0.1 100 140 1 
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Table 8.3. GRASS GIS values of each input parameter tested.  The settings which produced the 
segmentation used for comparative analysis are bordered in bold.  

Segmentation  
outputs  

Parameters 

Spatial 
Radius 

Range 
radius 

Mode 
Conv. 
Thresh 

Max no. 
Iterations 

Min. Region 
Size 

No. of 
objects 

23 5 25 0.1 100 80 54,053 

24 5 25 0.1 100 90 60,880 

12 5 75 0.1 100 100 48,705 

NDVI 5 25 0.1 100 80 65,093 
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