

JNCC Report No. 657

A Population Viability Analysis Modelling Tool for Seabird Species
– Tool Testing

Report for methodology and results for testing of tool

Butler, A., Searle, K., Mobbs, D.C. & Daunt, F.

September 2020

ISSN 0963 - 8091

For further information please contact:

Joint Nature Conservation Committee
Monkstone House
City Road
Peterborough PE1 1JY
https://jncc.gov.uk/

This document should be cited as:

Butler, A., Searle, K., Mobbs, D.C. & Daunt, F. 2020. A Population Viability Analysis
Modelling Tool for Seabird Species – Tool Testing: Report for methodology and results
for testing of tool, JNCC Report No. 657, JNCC, Peterborough, ISSN 0963-8091.

JNCC EQA Statement:

This document is compliant with JNCC’s Evidence Quality Assurance Policy
https://jncc.gov.uk/about-jncc/corporate-information/evidence-quality-assurance/

https://jncc.gov.uk/
https://jncc.gov.uk/about-jncc/corporate-information/evidence-quality-assurance/

Contents
1 Automated Testing of the R package ... 1

1.1 Overview ... 1

1.2 Batch 1 – Valid Inputs ... 1

1.2.1 Methods ... 1

1.2.2 Results ... 1

1.3 Batch 2 – Invalid Inputs ... 3

1.3.1 Methods ... 3

1.3.2 Results ... 3

1.4 Batch 3 – Consistency of Inputs .. 3

1.4.1 Methods ... 3

1.4.2 Results ... 4

1.5 Conclusions .. 5

2 Review of R code ... 7

2.1 Summary ... 7

3 Comparison of output between R package and Shiny tool 8

3.1 Summary ... 8

4 Biological plausibility of Shiny outputs ... 9

4.1 Overview ... 9

4.2 Results and Conclusions ... 9

5 References ..12

6 Acknowledgements ..13

7 Appendix A: Simulating a random set of valid inputs ..14

8 Appendix B: Simulating a random set of invalid inputs ..16

9 Appendix C: Generating inputs to use for testing internal consistency.................19

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

1

1 Automated Testing of the R package

1.1 Overview

We conducted a range of automated tests to identify whether there are any situations in
which errors or inconsistencies arise when running the R package which underpins the PVA
Shiny tool. These tests included independent checking of the underlying R code, automated
testing of the R package, comparison of R package and Shiny tool outputs, and biological
plausibility of outputs. Note that we focus only on testing the components of the R package
that are also used within the Shiny tool. Elements that were solely included in the R package
to provide futureproofing against possible future developments (inclusion of skipped
breeding, and inclusion of correlations between demographic rates) were not included within
the testing. Global sensitivity analysis was only subject to very limited testing, since this is
the most computationally intensive part of the code.

The focus of this component of the testing process is only on testing the R package (not the
Shiny tool), and that it is solely designed to detect bugs (i.e. situations where the R package
operates in a way that differs from the way it is intended, and documented, to operate) and
potential areas for improvement in the way that code works, rather than to assess biological
plausibility. If the process revealed any apparent bugs, the cause of these was investigated;
where these were revealed to be genuine bugs, and could be fixed easily, the bugs were
fixed and the testing process was re-run.

The R code that was used for automated testing of the R package has now been
incorporated into the R package itself, as an additional set of files, to enable the testing to
easily be repeated if the R package is updated in future.

We ran three separate batches of automated tests. The results of the automated testing that
we report here are for Version 4.12 of the R package (the only differences between Version
4.12 and Version 4.13 relate to the presentation of outputs, and so are not relevant to the
testing).

1.2 Batch 1 – Valid Inputs

1.2.1 Methods

The first batch involved running the R package using a large numbers of sets of inputs in
which the code should run successfully - i.e. where the inputs have the correct format,
dimension and naming, and contain logically valid values. In these situations, testing involves
(a) checking that the code does run successfully, and (b) checking that it produces outputs
that are of the correct dimension and format and contain logically valid values.

We achieved this by producing an R function that is able to simulate a random set of valid
inputs for the tool, for each of the four main ways of running the tool (simulation, validation,
local sensitivity analysis, global sensitivity analysis). A detailed description of how random
valid inputs are generated is given in Appendix A. We generate a large number of sets of
random inputs for each of these four variants (200 for the former two variants, 100 for the
latter two variants which are more computationally intensive), to run the tool using each set
of inputs, and to check the outputs produced.

1.2.2 Results

In Table 1 we summarize the results of this batch of testing. We regard there as being five
“acceptable” outputs:

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

2

A. The run completes fully, without an error message.
B. The run only partially completes – e.g. reached a point where calculations are

impossible – but produces partial output, and no error message.
C. The run aborts with error message E1:

Error in leslie.update(demobase.ests = demobase.ests[j; ;]; nbyage.prev =

nbyage.prev; : Population size explosion - will lead to numerical overflow

D. The run aborts with error message E2:

Error in inits.burned(nbyage.burned = nbyage.burned; inipop.totals =

inipop.totals): Error! Zero values during burn-in...

E. The run completes with error message E3:

Error in leslie.update(demobase.ests = demobase.ests[j; ;]; nbyage.prev =

nbyage.prev; : Invalid survival/productivity probabilities simulated!

These three error messages are regarded as “acceptable” because they represent issues
with the output, rather than bugs, and represent situations in which it would currently be
impossible for the calculations to continue.

Table 1.

Status

Number of simulations

“simulation”
mode “validation” “local

sensitivity”
“global

sensitivity”
Completed fully without error
message 50 82 20

54 Completed partially without
error message 37 30 28

Completed with error message
E1 18 9 24 16

Completed with error message
E2 37 14 17 13

Completed with error message
E3 58 65 11 17

Completed with other error
messages 0 0 0 0

In all cases, the code completed either fully or partially, or exited with one of these three error
messages. It may seem surprising that the code exits so frequently with error messages, or
only completed partially, but it should be remembered that we are running the PVAs with
inputs that are logically valid but otherwise random – there is no guarantee that these are
biologically plausible, and in most cases they will not be. Leslie matrix models are fairly
sensitive to slight variations in the demographic rates, so running PVAs with randomly
generated inputs will lead to populations that explode (leading to error message E1) to
become extremely large or else rapidly become extinct (leading to error message E2, or
partial completion) in a very high proportion of cases.

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

3

1.3 Batch 2 – Invalid Inputs

1.3.1 Methods

The second batch of testing involves running a large number of scenarios in which the code
should fail. These include situations in which inputs have incorrect format, incorrect
dimension or incorrect naming, or inputs have values that are logically invalid (such as
negative survival rates). The testing involves (a) checking that the code does indeed crash in
these situations, and (b) checking that it produces clear and accurate error messages when it
does so.

We conducted these tests by producing an R function that is able to introduce pre-specified
errors into a set of valid inputs. We use the function from Batch 1 to generate a set of valid
inputs, and then used this function to generate 20 sets of invalid inputs associated with this,
by introducing 20 different possible errors. The set of possible errors that we considered is
outlined in Appendix B. We repeated this for a number of different sets of valid inputs (e.g.
200 or 100 sets for each mode of running, as in Batch 1).

1.3.2 Results

Detailed results are given in Appendix B. The results suggest that the error messages that
are produced do not always enable users to uniquely identify the issue that led the code to
fail; in future versions of the R package we recommend improving the utility of the error
messages.

Under scenarios 2-7, 11-17 and 19-20 the code always reported an error message. Under
scenarios 1, 8, 9, 10 and 18 the code failed to report an error message in 26%, 64%, 8%,
39% and 32% of simulations, respectively. The explanation for this is that four of the
underlying errors (A, H, I and J) did not always yield an error message. In the context of error
A, this is because the value of “mbs” is not always used in the calculations (e.g. if
“model.prodmax = FALSE”), so it is legitimate that the failure to provide this will not lead to
an error in these situations. In the context of error H, negative values of “nburn” are
interpreted by the code as corresponding to “no burn in” (i.e. nburn = 0); it future versions of
the code it may be worth explicitly introducing an error message if users specify negative
burn-in periods. In the context of error I, these appear to be situations where the inputs were
actually valid (since the final value of “demobase.survadult” can be negative in models with
density dependence), so it is correct that no error message is produced. In the context of
error J, it appears that if the size of “npop” is larger than that required for the calculations this
does not lead to an error message; whilst this is not a bug as such (the additional values are
simply ignored), it may be desirable to introduce an error message in this situation, as the
fact users have specified an input of incorrect size suggests they have misunderstood the
format of the input, and so may have structured the inputs incorrectly.

1.4 Batch 3 – Consistency of Inputs

1.4.1 Methods

The final batch involves checking the internal consistency of outputs generated by the R
package. This involves checking that the same results are obtained by specifying identical
inputs to the tool, but in different ways, and is the most sophisticated and complex part of
the automated testing – it is designed to detect general bugs in the code, and also (for
models that include stochasticity) to check whether matching works correctly when inputs are
specified in different format (i.e. that identical results are obtained for PVAs with the same
format and specification, but generated using inputs in different formats).

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

4

We checked whether:

a. the same results are obtained by running a deterministic PVA or by running a
stochastic PVA with zero stochasticity;

b. the same results are obtained by running a density independent model or by running
a density dependent model with zero magnitude of density dependence;

c. the same results are obtained by specifying baseline demographic rates as being
common to subpopulations or separate for different subpopulations, in situations
where the rates used are actually the same for all subpopulations;

d. the same results are obtained by specifying baseline demographic rates as being
common to immatures and adults, or separate for immatures and adults, in situations
where the rates used are actually the same for immatures and adults;

e. the same results are obtained by specifying impacts as being common to
subpopulations or separate for different subpopulations, in situations where the
impacts are actually the same for all subpopulations;

f. the same results are obtained by specifying impacts as being common to immatures
and adults, or separate for immatures and adults, in situations where impacts are
actually the same for immatures and adults;

g. the same results are obtained by running a model without uncertainty in impacts, or
by running a model with uncertainty, in a situation where the standard errors are
actually equal to zero

We achieved this by repeatedly simulating a relevant set of valid inputs, specified in a
specific way (Appendix C), and then creating 128 = 27 sets of inputs that are all designed to
represent the same model, but specify it in a different way for each of these 7 decisions.

We focused here solely upon the “simulation” mode for running the tool, as these aspects of
model specification either act in the same way for other modes of running the tool or are not
relevant for those models (e.g. “impacts” are not included when running in validation mode).

We compared the estimated final population sizes (from individual simulation runs)
generated by using the 128 different ways of specifying the same set of inputs. We do this
using a range of different numbers of simulations (sim.n) – if there are genuine discrepancies
between the different specifications these will persist even as the number of simulations
becomes large, but if the discrepancies arise solely from a failure to match random seeds
when specifying the model in different ways (which is a known limitation of the tool) these
discrepancies will reduce towards zero as the number of simulations becomes large.

We used a set of 20 random initial sets of inputs which will give a total of 20 * 128 = 2560
sets of inputs to consider – but, for computational reasons, we only chose to use a small
number of simulations (10) within each input set.

1.4.2 Results

We found that identical results are (for all combinations, and all sets of simulations) always
obtained:

- by running a density independent model or by running a density dependent model with
zero magnitude of density dependence (b);

- by specifying baseline demographic rates as being common to subpopulations or
separate for different subpopulations, in situations where the rates used are actually
the same for all subpopulations (c);

- by specifying baseline demographic rates as being common to immatures and adults,
or separate for immatures and adults, in situations where the rates used are actually
the same for immatures and adults (d).

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

5

The results suggest, however, that different projections can be obtained in at least some
situations when:

- by running a deterministic PVA or by running a stochastic PVA with zero stochasticity
(a);

- by specifying impacts as being common to subpopulations or separate for different
subpopulations, in situations where the impacts are actually the same for all
subpopulations (e);

- by running a model without uncertainty in impacts, or by running a model with
uncertainty, in a situation where the standard errors are actually equal to zero (f);

- by specifying impacts as being common to immatures and adults, or separate for
immatures and adults, in situations where impacts are actually the same for immatures
and adults (g).

These results are to be expected: we know that the matching procedure that we use will not
always be effective in matching across different formats for specifying the impacts. The
options where matching sometimes or always fails (a, e, f, g) are the options where the
results of the option determines whether a stochastic simulation is generated or not, whereas
the options where matching works (b, c, d) are those that solely relate to the way that non-
stochastic (deterministic) calculations operate.

The numeric differences between runs can be large, but this may solely be due to lack of
matching and to the use of a very small number of simulations, so it would be useful in future
to check if the differences persist when using a much larger number of simulations.

1.5 Conclusions

We use a table to summarise the key findings of the automated testing, and to make
recommendations that link to each of these.

Table 2.

Batch Conclusion Recommendations

Batch 1 When run with random but syntactically valid
inputs, the package almost always either
runs without error, or else crashes with one
of three “acceptable” error messages (e.g.
error messages that relate to situations in
which the current version of the code is
designed to fail). The three “acceptable”
error messages correspond to situations in
which (E1) zero abundance is obtained
during the burn-in period, (E2) the simulated
population size explodes to be so large that
numerical instability is likely to become an
issue (and so large that it is entirely
implausible), and (E3) invalid survival or
productivity values are simulated.

Suggested improvements:

Error message E1: in this situation it
should be possible to modify the code
to produce partial output

Error message E3: this error could be
detected at the point that users specify
inputs, because it appears to
essentially arise from the specification
of input values for which calculations
are not actually possible.

Batch 2 The error messages that are produced when
the code fails often do not easily allow a user
to trace the underlying source of the error (in
terms of the specification of invalid inputs)

Suggested improvement:

The error messages should be
improved, so that users can more

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

6

easily identify situations in which errors
have arisen due to specification of
invalid inputs

Batch 3 Matching fails in situations where: the user
changes the form of environmental
stochasticity; the user changes whether
impacts are split between
subpopulations/ages or not; or the user
changes whether standard errors are
specified or not.

Suggested improvement:

Amend the code so that matching
continues to work in these situations –
this is a fairly substantial piece of work,
however, as it requires a restructuring
of the existing code.

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

7

2 Review of R code

2.1 Summary

UKCEH (Kate Searle) spent approximately three days reviewing the R code for the R
package, firstly with BioSS (Adam Butler), and then as an independent review. No major
issues were discovered as a result of this review, and no additional bugs were identified,
other than those identified during the automated testing described above.

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

8

3 Comparison of output between R package and Shiny
tool

3.1 Summary

We ran a suite of tests to generate a range of PVA models and outputs within the R package,
and similarly within the Shiny tool. We tested a range of PVA models within each of the three
Shiny modes – Simulation, Validation and Sensitivity. These tests revealed a number of
bugs, all to do with default settings within Shiny that needed to be updated to match those
within the R package. After these bugs were updated, the Shiny tool produced almost
identical output to the R package under all three modes of use. Very minor discrepancies
between the two sets of output (Shiny versus R) were expected due to differences in seed
matching arising from the automated generation of inputs within the methods used to
generate the R outputs in the testing.

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

9

4 Biological plausibility of Shiny outputs

4.1 Overview

To check the biological plausibility of the tool output, we ran four case studies using data
from the Forth Tay (Table 3). In all four cases, we ran a ‘historical’ PVA where we projected
each population forwards to the current day using known population sizes from the 1980s.
We then generated a future PVA with three impact scenarios of 0.01, 0.025 and 0.05
additional adult mortality.

Table 3. Baseline demographic rates and initial population sizes used in running the Population
Viability Analysis (PVA) for each population (combination of species and SPA). Source: age at first
breeding: Porter and Coulson (1987), Cam et al. (2002), Harris and Wanless (2011), Lahoz-Monfort et
al. (2013), Harris et al. (2016); max brood size: CEH unpublished data; adult and immature survival:
Coulson and White (1959), Breton et al. (2006), Harris et al. (2007), Lavers et al. (2008), Harris and
Wanless (2011); Jitlal et al. (2017); breeding success: Newell et al. (2016); initial population size:
http://archive.jncc.gov.uk/smp/.

Species
Age at
first
breeding

Max
brood size

Adult
survival
(mean,SD)

SPA
Breeding
success
(mean,SD)

Immature
survival
(mean,
SE)

Initial
population
size (year)

Kittiwake 4 2 0.857
(0.067)

Forth
Islands 0.55 (0.35) 0.697

(0.054) 4206 (2019)

Guillemot 6 1 0.926
(0.044)

Forth
Islands 0.725 (0.108) 0.796

(0.012)
21812
(2019)

Razorbill 5 1 0.909
(0.057)

Forth
Islands 0.63 (0.078) 0.838

(0.021)
4855

(2019))

Puffin 5 1 0.906
(0.059)

Forth
Islands 0.691 (0.133) 0.921

(0.019)
49210
(2017)

4.2 Results and Conclusions

The results for black-legged kittiwakes, common guillemots, razorbills and Atlantic puffins are
presented in Figures 1-4 respectively. The results accord closely with recent population
modelling of these species at this SPA (Freeman et al. 2014; Jitlal et al. 2017), both with
respect to retrospective predictions of past population change and forecasting of future
population change. Specifically, the results accord with past work showing that kittiwakes
have shown a marked decline since the 1980s, which is predicted to continue in the future.
Similarly, as shown in past work, guillemots and razorbills have shown a moderate increase
since the 1980s and, therefore, are predicted to increase further in future. Finally, again as
shown in past work, puffins have shown a marked exponential increase since the 1980s that
is predicted to continue in future resulting in very large predicted population sizes at the end
of the forecast period. Population counts of puffins are carried out approximately every five
years, in contrast to the other species that are counted annually. As a result, there have only
been nine counts since 1984, and this limited data together with the sharp past increase
results in erratic future predictions that are markedly in excess of previous observations and
of doubtful realism (see Freeman et al. 2014, for a full discussion on this).

The three impact scenarios imposed expected changes in future predictions, with the largest
divergence from the baseline in the scenario of 0.05 additional adult mortality, smallest
divergence in the 0.01 scenario and intermediate divergence for the 0.025 scenario.

http://archive.jncc.gov.uk/smp/

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

10

In conclusion, we consider that the models and scenarios produced biologically plausible
results for kittiwakes, guillemots and razorbills. For puffins, the lack of realism was a result of
the limited availability of count data coupled with the exponential past increase in population
size, a set of circumstances that has proved challenging for multiple population modelling
exercises to date, and therefore does not reflect the methods employed or, in this case, the
performance of the Shiny tool.

Figure 1. Historical population projection (left panel) and future PVA (right panel) for black-legged
kittiwakes breeding at the Forth Islands SPA. Impact scenarios for future PVA are scen1: 0.01
reduction in adult survival; scen2: 0.025 reduction in adult survival; scen3: 0.05 reduction in adult
survival.

Figure 2. Historical population projection (left panel) and future PVA (right panel) for common
guillemots breeding at the Forth Islands SPA. Impact scenarios for future PVA are scen1: 0.01
reduction in adult survival; scen2: 0.025 reduction in adult survival; scen3: 0.05 reduction in adult
survival.

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

11

Figure 3. Historical population projection (left panel) and future PVA (right panel) for razorbills
breeding at the Forth Islands SPA. Impact scenarios for future PVA are scen1: 0.01 reduction in adult
survival; scen2: 0.025 reduction in adult survival; scen3: 0.05 reduction in adult survival.

Figure 4. Historical population projection (left panel) and future PVA (right panel) for Atlantic puffins
breeding at the Forth Islands SPA. Impact scenarios for future PVA are scen1: 0.01 reduction in adult
survival; scen2: 0.025 reduction in adult survival; scen3: 0.05 reduction in adult survival.

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

12

5 References

Breton, A.R., Diamond, A.W. & Kress, S.W. (2006). Encounter, survival, and movement
probabilities from an Atlantic puffin Fratercula arctica metapopulation. Ecological
Monographs, 76, 133–149.

Cam, E., Cadiou, B., Hines, J.E. & Monnat, J.-Y. (2002) Influence of behavioural tactics on
recruitment and reproductive trajectory in the kittiwake. Journal of Applied Statistics 29: 163–
185.

Coulson, J.C. & White, E. 1959. The post-fledging mortality of the kittiwake. Bird Study, 6,
97–102.

Freeman, S., Searle, K., Bogdanova, M., Wanless, S. & Daunt, F. (2014) Population
dynamics of Forth & Tay breeding seabirds: review of available models and modelling of key
breeding populations (MSQ – 0006). Contract report to Marine Scotland Science
http://www.gov.scot/Resource/0044/00449072.pdf

Harris, M.P. & Wanless, S. (2011) The Puffin. T & AD Poyser, London.

Harris, M.P., Albon, S.A. & Wanless, S. (2016) Age-related effects on breeding phenology
and success of Common Guillemots Uria aalge at a North Sea colony. Bird Study 63:565-
565.

Harris, M.P. Frederiksen, M. & Wanless, S. 2007. Within- and between-year variation in the
juvenile survival of common guillemots Uria aalge. Ibis, 149, 472–481.

Jitlal, M., Burthe, S. Freeman, S. & Daunt, F. (2017) Testing and validating metrics of change
produced by Population Viability Analysis (PVA) (Ref CR/2014/16). Scottish Marine and
Freshwater Science Vol 8 No 23
https://data.marine.gov.scot/sites/default/files//SMFS%200823.pdf

Lahoz-Monfort, J.J., Morgan, B.J.T., Harris, M.P., Daunt, F., Wanless, S. & Freeman, S.N.
(2013) Breeding together: modelling synchrony in productivity in a seabird community.
Ecology, 94, 1, 3-10.

Lavers, J.L., Jones, I.L. & Diamond, A.W. 2007. Natal and Breeding Dispersal of razorbills
Alca torda in Eastern North America. Waterbirds, 30, 588–594.

Newell, M., Harris, M., Wanless, S., Burthe, S., Bogdanova, M., Gunn, C. & Daunt, F. (2016).
The Isle of May long-term study (IMLOTS) seabird annual breeding success 1982-2016.
NERC Environmental Information Data Centre. https://doi.org/10.5285/02c98a4f-8e20-4c48-
8167-1cd5044c4afe

Porter, J.M. & Coulson, J.C. (1987) Long-term changes in recruitment to the breeding group,
and the quality of recruits at a kittiwake Rissa tridactyla colony. Journal of Animal Ecology
56: 675–689.

http://www.gov.scot/Resource/0044/00449072.pdf
https://data.marine.gov.scot/sites/default/files/SMFS%200823.pdf
https://doi.org/10.5285/02c98a4f-8e20-4c48-8167-1cd5044c4afe
https://doi.org/10.5285/02c98a4f-8e20-4c48-8167-1cd5044c4afe

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

13

6 Acknowledgements

We thank Sue O’Brien and Mel Kershaw for their guidance and support throughout this
project.

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

14

7 Appendix A: Simulating a random set of valid inputs

The following table outlines the approach taken to simulate a random set of valid inputs for
the PVA tool. The “when” column indicates which run types this input is provided for: blank
indicates all run types (“simplescenario”, “validation”, “sensitivity.local”, “sensitivity.global”).
“MV” indicates “simplescenario” and “validation” only, “M” indicates “simplescenario” only,
“MS” indicates “simplescenario”, “sensitivity.local” or “sensitivity.global”, “V” indicates
validation only, “S” indicates “sensitivity.local” or “sensitivity.global”.

Table 4.

Input When How simulated

Inputs relating to model structure

model.envstoch Random select “betagamma” or “deterministic”

model.demostoch Randomly select TRUE or FALSE

model.dd MV Randomly select “nodd” or “dduloglin”

model.prodmax Randomly select TRUE or FALSE

mbs Randomly select 1, 2, 3 or 4

afb Randomly select 1, 2, 3, 4, 5 or 6

npop Randomly select 1, 2, 3, 4 or 5

nscen Randomly select 1, 2 or 3

nburn Randomly select a whole number between 0 and 10

sim.n Randomly select a whole number between 1 and 10

sim.seed Randomly select a whole number between 1 and 10000

Inputs relating to baseline demography

demobase.specify.as.params MV Fix to be FALSE

demobase.splitpops M Randomly select TRUE or FALSE

demobase.splitimmat MV Randomly select TRUE or FALSE

demobase.prod To get mean values: select independent random
numbers simulate uniformly between 0.2 and 0.9, and
multiply by “mbs”. To get SEs: multiply mean values by
independent random numbers simulated uniformly
between 0.01 and 0.2. For get density dependence
magnitude (if model.dd = “dduloglin”): simulate
independently from N(0,0.1) distributions

demobase.survadult As for demobase.prod, but without multiplying by “mbs”

demobase.survimmat MV As for demobase.prod, but without multiplying by “mbs”

Initial population size(s)

inipop.years Sample a random whole number between 2000 and
2015 for each subpopulation

inipop.inputformat MV Randomly select “breeding adults”, “breeding pairs” or
“all individuals”

inipop.counts For each subpopulation take 10 to the power of a
random number simulated to lie between 1 and 4

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

15

Impacts

impacts.relative MS Randomly select TRUE or FALSE

impacts.splitpops M Randomly select TRUE or FALSE

impacts.splitimmat M Randomly select TRUE or FALSE

impacts.provideses M Randomly select TRUE or FALSE

impacts.year.start MS Randomly select a whole number between
max(inipop.years)+1 and max(inipop.years)+20

impacts.year.end MS Randomly select a whole number between
impacts.year.start+1 and impacts.year.start+30

impacts.scennames M Fix to be “scen1”, “scen2”, etc.

imacts.matchscens M Randomly select TRUE or FALSE

impacts.prod.mean MS Randomly uniform numbers between 0.2 and 0.9

impacts.survadult.mean MS Randomly uniform numbers between 0.5 and 0.99

impacts.survimmat.mean MS Randomly uniform numbers between 0.5 and 0.99

impacts.prod.se M “impacts.prod.mean” multiplied by a random number
between 0.1 and 0.5

impacts.survadult.se M “impacts.survadult.mean” multiplied by a random number
between 0.1 and 0.5

impacts.survimmat.se M “impacts.survimmat.mean” multiplied by a random
number between 0.1 and 0.5

Outputs

output.agetype MV Randomly select “breeding.adults”, “breeding.pairs” or
“ages.separately”

output.year.end Randomly select a whole number between
max(inipop.years)+30 and max(inipop.years)+60

output.year.start MV Randomly select a whole number between
output.year.end – 30 and output.year.end – 20

output.popsize.target Take 10 to the power of a random number simulated to
lie between 1 and 4

output.popsize.qe Take 10 to the power of a random number simulated to
lie between 0 and 1.5

output.validation.years V See text

output.validation.counts V See text

Sensitivity analysis

sens.pcr S Simulate three uniform random numbers between 0 and
50

sens.npvlocal or
sens.npvglobal

S Simulate a random whole number between 1 and 10

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

16

8 Appendix B: Simulating a random set of invalid inputs

We simulated a set of invalid inputs by simulating a set of valid inputs. We then introduced
one or more errors into these inputs. Twenty possible “error scenarios” were considered,
which involved introducing one or more of fifteen possible errors (A, B, C, D, E, F, G, H, I, J,
K, L, M, N, O).

 A B C D E F G H I J K L M N O
1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X
12 X
13 X
14 X
15 X

16 X X
17 X X
18 X X
19 X X X X
20 X X X X X X X X X

It can be seen that the first fifteen error scenarios involve introducing each of these fifteen
errors in turn. The final five error scenarios involve introducing 2, 2, 2, 4 or 9 errors.

The individual errors are as follows:

Table 5.

Error Description
A Name of “mbs” is wrongly written as “mns”

B “demobase.survadult” is given an incorrect dimension

C “model.envstoch” is given as “bob”

D “model.demostoch” is given as “fred”

E “model.envstoch” is given as FALSE

F “model.envstoch” is given as 3

G “model.envstoch” is given as 7.4467

H “nburn” is given as -1

I “demobase.survadult” contains negative values

J “npop” is inconsistent with the dimension of demographic rates & inputs

K “output.year.end” is equal to min(inipop.years) – 1

L The first entry in inipop.vals is missing (NA)

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

17

M The first entry is inipop.vals in “NaN” (“Not-a-number”)

N The first entry in inipop.vals is infinite

O The length of “inipop.years” does not match that of “inipop.vals”

The choice of specific errors and construction of the scenarios is somewhat arbitrary but is
designed to capture a broad range of potential errors, and combination of errors, that could
conceivably occur. Note that these errors and error scenarios are designed to produce
invalid inputs, not implausible inputs – i.e. the aim is to generate a broad suite of possible
input sets under which the tool should definitely crash and produce an error message.

8.1 Detailed results

The following table lists all of the error messages that were encountered in this stage of
testing, aside from the three “allowable” errors, and records the scenario(s) in which they
occur. It also lists the underlying errors that could have caused the error message (as they
are common to all scenarios).

Table 6.

Error message Scenarios Possible
errors

"Error in !model.demostoch: invalid argument type", 4, 16 D

"Error in demomods$es[[zi]]: attempt to select less than one
element in get1index"

3, 5, 6, 7,19,20 CEFG

"Error in inputs$demobase.prod[i;]: subscript out of bounds" 10 J

"Error in demobase.vals[i; nd;] <-
as.numeric(c(inputs$demobase.survadult)): number of items
to replace is not a multiple of replacement length"

2 B

"Error in demobase.vals[i; j + 1;] <-
as.numeric(c(inputs$demobase.survadult)): number of items
to replace is not a multiple of replacement length"

2 B

"Error in ru.base[j; tt; ; ; drop = FALSE]: subscript out of
bounds",

11 K

"Error in ntot[; ic; ; j; drop = FALSE]: subscript out of
bounds"

11 K

"Error in apply(ntots; 1; getsumy): dim(X) must have a
positive length"

11 K

"Error in '[<-'('*tmp*'; i; j; inipop.relyears[j];" 11 K

"Error in nbyage[i; j; inipop.relyears[j]; ; a] <- inipop.counts[a;
; j]: NAs are not allowed in subscripted assignments"

10, 15 JO

"Error in eigen(mmat): infinite or missing values in 'x'" 10,12,13,14,16,17 JLMN

"Error in if (max(frot) > 1e+08) {: missing value where
TRUE/FALSE needed"

12, 13, 14, 17 LMN

"Error in if (any(nprev < 0)) {: missing value where
TRUE/FALSE needed"

12, 13, 14, 16, 17

"Error in year.first:output.year.end: result would be too long
a vector"

15 O

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

18

"Error in if (tt > inipop.relyears[j]) {: missing value where
TRUE/FALSE needed"

10,15 O

"Error in out[1] <- mbs * fn.pred.con(pars =
as.numeric(c(ests[1;])); : replacement has length zero"

1, 18 A

"Error in out[ids; idp; 1] <- prod: number of items to replace
is not a multiple of replacement length"

10 J

"Error in ests[1; 1:2] <- fn.mom.con(c(prod.mn/mbs;
prod.sd/mbs)): replacement has length zero"

1, 18 A

“….replacement has 11 rows; data has 2” 2, 20 B

“Error in Ops.data.frame(standard.vals; (1 +
(pcchange/100))): '*' only defined for equally-sized data
frames"

2, 20 B

A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing - Report for
methodology and results for testing of tool

19

9 Appendix C: Generating inputs to use for testing
internal consistency

In order to test internal consistency, a random set of valid inputs, with a particular format,
were simulated. 127 alternative ways of representing the same inputs were then constructed.

The random initial set of valid inputs was constructed in the same way as in Appendix A,
except that:

1. The values of “npop” and “nscen” are simulated to be whole numbers between 2 and 5
and between 2 and 3 respectively (whereas in Appendix A they were simulated to be
between 1 and 5 and between 1 and 3 respectively);

2. “model.envstoch” is fixed to be “betagamma”, “model.dd”is fixed to be “dduloglin”, and

“demobase.splitpops”, “demobase.splitimmat”, “impacts.splitpops”, “impacts.splitimmat”
and “impacts.provideses” are all specified to be TRUE;

3. the values of “demobase.prod”, “demobase.survadult”, “demobase.survimmat”,

“impacts.prod.mean”, “impact.survadult.mean”, “impacts.survimmat.mean”,
“impacts.prod.se”, “impact.survadult.se”, “impacts.survimmat.se” are selected in such a
way that the seven arguments just mentioned (“model.envstoch”, etc.) could equally
have been specified in the opposite way. So, for example, the standard deviations for
environmental stochasticity are fixed to be zero, so that it should be equivalent to either
use “model.envstoch = betagamma” or “model.envstoch = deterministic”.

The remaining 127 alternative specifications of these inputs were formed by swapping some
or the seven options being considered (“model.envstoch”, etc.) to have the opposite value,
and then amending the dimensions of the “demobase.” and “impacts.” inputs accordingly.

	JNCC Report No. 657: A Population Viability Analysis Modelling Tool for Seabird Species – Tool Testing Report for methodology and results for testing of tool
	Contents
	1 Automated Testing of the R package
	1.1 Overview
	1.2 Batch 1 – Valid Inputs
	1.2.1 Methods
	1.2.2 Results

	1.3 Batch 2 – Invalid Inputs
	1.3.1 Methods
	1.3.2 Results

	1.4 Batch 3 – Consistency of Inputs
	1.4.1 Methods
	1.4.2 Results

	1.5 Conclusions

	2 Review of R code
	2.1 Summary

	3 Comparison of output between R package and Shiny tool
	3.1 Summary

	4 Biological plausibility of Shiny outputs
	4.1 Overview
	4.2 Results and Conclusions

	5 References
	6 Acknowledgements
	7 Appendix A: Simulating a random set of valid inputs
	8 Appendix B: Simulating a random set of invalid inputs
	8.1 Detailed results

	9 Appendix C: Generating inputs to use for testing internal consistency

