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1 Automated Testing of the R package 
 
1.1 Overview 
 
We conducted a range of automated tests to identify whether there are any situations in 
which errors or inconsistencies arise when running the R package which underpins the PVA 
Shiny tool. These tests included independent checking of the underlying R code, automated 
testing of the R package, comparison of R package and Shiny tool outputs, and biological 
plausibility of outputs. Note that we focus only on testing the components of the R package 
that are also used within the Shiny tool. Elements that were solely included in the R package 
to provide futureproofing against possible future developments (inclusion of skipped 
breeding, and inclusion of correlations between demographic rates) were not included within 
the testing. Global sensitivity analysis was only subject to very limited testing, since this is 
the most computationally intensive part of the code. 
 
The focus of this component of the testing process is only on testing the R package (not the 
Shiny tool), and that it is solely designed to detect bugs (i.e. situations where the R package 
operates in a way that differs from the way it is intended, and documented, to operate) and 
potential areas for improvement in the way that code works, rather than to assess biological 
plausibility. If the process revealed any apparent bugs, the cause of these was investigated; 
where these were revealed to be genuine bugs, and could be fixed easily, the bugs were 
fixed and the testing process was re-run. 
 
The R code that was used for automated testing of the R package has now been 
incorporated into the R package itself, as an additional set of files, to enable the testing to 
easily be repeated if the R package is updated in future. 
 
We ran three separate batches of automated tests. The results of the automated testing that 
we report here are for Version 4.12 of the R package (the only differences between Version 
4.12 and Version 4.13 relate to the presentation of outputs, and so are not relevant to the 
testing).  
 
1.2 Batch 1 – Valid Inputs 
 
1.2.1 Methods 
 
The first batch involved running the R package using a large numbers of sets of inputs in 
which the code should run successfully - i.e. where the inputs have the correct format, 
dimension and naming, and contain logically valid values. In these situations, testing involves 
(a) checking that the code does run successfully, and (b) checking that it produces outputs 
that are of the correct dimension and format and contain logically valid values. 
 
We achieved this by producing an R function that is able to simulate a random set of valid 
inputs for the tool, for each of the four main ways of running the tool (simulation, validation, 
local sensitivity analysis, global sensitivity analysis). A detailed description of how random 
valid inputs are generated is given in Appendix A. We generate a large number of sets of 
random inputs for each of these four variants (200 for the former two variants, 100 for the 
latter two variants which are more computationally intensive), to run the tool using each set 
of inputs, and to check the outputs produced. 
 
1.2.2 Results 
 
In Table 1 we summarize the results of this batch of testing. We regard there as being five 
“acceptable” outputs: 
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A. The run completes fully, without an error message. 
B. The run only partially completes – e.g. reached a point where calculations are 

impossible – but produces partial output, and no error message. 
C. The run aborts with error message E1:  
 
Error in leslie.update(demobase.ests = demobase.ests[j; ; ]; nbyage.prev = 

nbyage.prev; : Population size explosion - will lead to numerical overflow 
 
D. The run aborts with error message E2: 
 
Error in inits.burned(nbyage.burned = nbyage.burned; inipop.totals = 

inipop.totals): Error! Zero values during burn-in... 
 
E. The run completes with error message E3: 
 
Error in leslie.update(demobase.ests = demobase.ests[j; ; ]; nbyage.prev = 

nbyage.prev; : Invalid survival/productivity probabilities simulated! 
 
These three error messages are regarded as “acceptable” because they represent issues 
with the output, rather than bugs, and represent situations in which it would currently be 
impossible for the calculations to continue. 
 
Table 1. 

Status 

Number of simulations 

“simulation” 
mode “validation” “local 

sensitivity” 
“global 

sensitivity” 
Completed fully without error 
message 50 82 20 

54 Completed partially without 
error message 37 30 28 

Completed with error message 
E1 18 9 24 16 

Completed with error message 
E2 37 14 17 13 

Completed with error message 
E3 58 65 11 17 

Completed with other error 
messages 0 0 0 0 

 
In all cases, the code completed either fully or partially, or exited with one of these three error 
messages. It may seem surprising that the code exits so frequently with error messages, or 
only completed partially, but it should be remembered that we are running the PVAs with 
inputs that are logically valid but otherwise random – there is no guarantee that these are 
biologically plausible, and in most cases they will not be. Leslie matrix models are fairly 
sensitive to slight variations in the demographic rates, so running PVAs with randomly 
generated inputs will lead to populations that explode (leading to error message E1) to 
become extremely large or else rapidly become extinct (leading to error message E2, or 
partial completion) in a very high proportion of cases. 
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1.3 Batch 2 – Invalid Inputs 
 
1.3.1 Methods 
 
The second batch of testing involves running a large number of scenarios in which the code 
should fail. These include situations in which inputs have incorrect format, incorrect 
dimension or incorrect naming, or inputs have values that are logically invalid (such as 
negative survival rates). The testing involves (a) checking that the code does indeed crash in 
these situations, and (b) checking that it produces clear and accurate error messages when it 
does so. 
 
We conducted these tests by producing an R function that is able to introduce pre-specified 
errors into a set of valid inputs. We use the function from Batch 1 to generate a set of valid 
inputs, and then used this function to generate 20 sets of invalid inputs associated with this, 
by introducing 20 different possible errors. The set of possible errors that we considered is 
outlined in Appendix B. We repeated this for a number of different sets of valid inputs (e.g. 
200 or 100 sets for each mode of running, as in Batch 1). 
 
1.3.2 Results 
 
Detailed results are given in Appendix B. The results suggest that the error messages that 
are produced do not always enable users to uniquely identify the issue that led the code to 
fail; in future versions of the R package we recommend improving the utility of the error 
messages. 
 
Under scenarios 2-7, 11-17 and 19-20 the code always reported an error message. Under 
scenarios 1, 8, 9, 10 and 18 the code failed to report an error message in 26%, 64%, 8%, 
39% and 32% of simulations, respectively. The explanation for this is that four of the 
underlying errors (A, H, I and J) did not always yield an error message. In the context of error 
A, this is because the value of “mbs” is not always used in the calculations (e.g. if 
“model.prodmax = FALSE”), so it is legitimate that the failure to provide this will not lead to 
an error in these situations. In the context of error H, negative values of “nburn” are 
interpreted by the code as corresponding to “no burn in” (i.e. nburn = 0); it future versions of 
the code it may be worth explicitly introducing an error message if users specify negative 
burn-in periods. In the context of error I, these appear to be situations where the inputs were 
actually valid (since the final value of “demobase.survadult” can be negative in models with 
density dependence), so it is correct that no error message is produced. In the context of 
error J, it appears that if the size of “npop” is larger than that required for the calculations this 
does not lead to an error message; whilst this is not a bug as such (the additional values are 
simply ignored), it may be desirable to introduce an error message in this situation, as the 
fact users have specified an input of incorrect size suggests they have misunderstood the 
format of the input, and so may have structured the inputs incorrectly. 
  
1.4 Batch 3 – Consistency of Inputs 
 
1.4.1 Methods 
 
The final batch involves checking the internal consistency of outputs generated by the R 
package. This involves checking that  the same results are obtained by specifying identical 
inputs to the tool, but in different ways, and is the most sophisticated  and complex part of 
the automated testing – it is designed to detect general bugs in the code, and also (for 
models that include stochasticity) to check whether matching works correctly when inputs are 
specified in different format (i.e. that identical results are obtained for PVAs with the same 
format and specification, but generated using inputs in different formats). 
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We checked whether: 
 

a. the same results are obtained by running a deterministic PVA or by running a 
stochastic PVA with zero stochasticity; 

b. the same results are obtained by running a density independent model or by running 
a density dependent model with zero magnitude of density dependence; 

c. the same results are obtained by specifying baseline demographic rates as being 
common to subpopulations or separate for different subpopulations, in situations 
where the rates used are actually the same for all subpopulations; 

d. the same results are obtained by specifying baseline demographic rates as being 
common to immatures and adults, or separate for immatures and adults, in situations 
where the rates used are actually the same for immatures and adults; 

e. the same results are obtained by specifying impacts as being common to 
subpopulations or separate for different subpopulations, in situations where the 
impacts are actually the same for all subpopulations; 

f. the same results are obtained by specifying impacts as being common to immatures 
and adults, or separate for immatures and adults, in situations where impacts are 
actually the same for immatures and adults; 

g. the same results are obtained by running a model without uncertainty in impacts, or 
by running a model with uncertainty, in a situation where the standard errors are 
actually equal to zero 

 
We achieved this by repeatedly simulating a relevant set of valid inputs, specified in a 
specific way (Appendix C), and then creating 128 = 27 sets of inputs that are all designed to 
represent the same model, but specify it in a different way for each of these 7 decisions.  
 
We focused here solely upon the “simulation” mode for running the tool, as these aspects of 
model specification either act in the same way for other modes of running the tool or are not 
relevant for those models (e.g. “impacts” are not included when running in validation mode). 
 
We compared the estimated final population sizes (from individual simulation runs) 
generated by using the 128 different ways of specifying the same set of inputs. We do this 
using a range of different numbers of simulations (sim.n) – if there are genuine discrepancies 
between the different specifications these will persist even as the number of simulations 
becomes large, but if the discrepancies arise solely from a failure to match random seeds 
when specifying the model in different ways (which is a known limitation of the tool) these 
discrepancies will reduce towards zero as the number of simulations becomes large.  
 
We used a set of 20 random initial sets of inputs which will give a total of 20 * 128 = 2560 
sets of inputs to consider – but, for computational reasons, we only chose to use a small 
number of simulations (10) within each input set. 
 
1.4.2 Results 
 
We found that identical results are (for all combinations, and all sets of simulations) always 
obtained: 
 

- by running a density independent model or by running a density dependent model with 
zero magnitude of density dependence (b); 

- by specifying baseline demographic rates as being common to subpopulations or 
separate for different subpopulations, in situations where the rates used are actually 
the same for all subpopulations (c); 

- by specifying baseline demographic rates as being common to immatures and adults, 
or separate for immatures and adults, in situations where the rates used are actually 
the same for immatures and adults (d). 
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The results suggest, however, that different projections can be obtained in at least some 
situations when: 
 

- by running a deterministic PVA or by running a stochastic PVA with zero stochasticity 
(a); 

- by specifying impacts as being common to subpopulations or separate for different 
subpopulations, in situations where the impacts are actually the same for all 
subpopulations (e); 

- by running a model without uncertainty in impacts, or by running a model with 
uncertainty, in a situation where the standard errors are actually equal to zero (f); 

- by specifying impacts as being common to immatures and adults, or separate for 
immatures and adults, in situations where impacts are actually the same for immatures 
and adults (g). 

 
These results are to be expected: we know that the matching procedure that we use will not 
always be effective in matching across different formats for specifying the impacts. The 
options where matching sometimes or always fails (a, e, f, g) are the options where the 
results of the option determines whether a stochastic simulation is generated or not, whereas 
the options where matching works (b, c, d) are those that solely relate to the way that non-
stochastic (deterministic) calculations operate. 
 
The numeric differences between runs can be large, but this may solely be due to lack of 
matching and to the use of a very small number of simulations, so it would be useful in future 
to check if the differences persist when using a much larger number of simulations. 
 
1.5 Conclusions 
 
We use a table to summarise the key findings of the automated testing, and to make 
recommendations that link to each of these. 
 
Table 2. 

Batch Conclusion Recommendations 

Batch 1 When run with random but syntactically valid 
inputs, the package almost always either 
runs without error, or else crashes with one 
of three “acceptable” error messages (e.g. 
error messages that relate to situations in 
which the current version of the code is 
designed to fail). The three “acceptable” 
error messages correspond to situations in 
which (E1) zero abundance is obtained 
during the burn-in period, (E2) the simulated 
population size explodes to be so large that 
numerical instability is likely to become an 
issue (and so large that it is entirely 
implausible), and (E3) invalid survival or 
productivity values are simulated. 

Suggested improvements: 
 
Error message E1: in this situation it 
should be possible to modify the code 
to produce partial output 

 
Error message E3: this error could be 
detected at the point that users specify 
inputs, because it appears to 
essentially arise from the specification 
of input values for which calculations 
are not actually possible. 

Batch 2 The error messages that are produced when 
the code fails often do not easily allow a user 
to trace the underlying source of the error (in 
terms of the specification of invalid inputs) 

Suggested improvement: 
 
The error messages should be 
improved, so that users can more 
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easily identify situations in which errors 
have arisen due to specification of 
invalid inputs  

Batch 3 Matching fails in situations where: the user 
changes the form of environmental 
stochasticity; the user changes whether 
impacts are split between 
subpopulations/ages or not; or the user 
changes whether standard errors are 
specified or not. 

Suggested improvement: 
 
Amend the code so that matching 
continues to work in these situations – 
this is a fairly substantial piece of work, 
however, as it requires a restructuring 
of the existing code. 
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2 Review of R code 
 
2.1 Summary 
 
UKCEH (Kate Searle) spent approximately three days reviewing the R code for the R 
package, firstly with BioSS (Adam Butler), and then as an independent review. No major 
issues were discovered as a result of this review, and no additional bugs were identified, 
other than those identified during the automated testing described above. 
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3 Comparison of output between R package and Shiny 
tool 

 
3.1 Summary 
 
We ran a suite of tests to generate a range of PVA models and outputs within the R package, 
and similarly within the Shiny tool. We tested a range of PVA models within each of the three 
Shiny modes – Simulation, Validation and Sensitivity. These tests revealed a number of 
bugs, all to do with default settings within Shiny that needed to be updated to match those 
within the R package. After these bugs were updated, the Shiny tool produced almost 
identical output to the R package under all three modes of use. Very minor discrepancies 
between the two sets of output (Shiny versus R) were expected due to differences in seed 
matching arising from the automated generation of inputs within the methods used to 
generate the R outputs in the testing. 
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4 Biological plausibility of Shiny outputs 
 
4.1 Overview 
 
To check the biological plausibility of the tool output, we ran four case studies using data 
from the Forth Tay (Table 3). In all four cases, we ran a ‘historical’ PVA where we projected 
each population forwards to the current day using known population sizes from the 1980s. 
We then generated a future PVA with three impact scenarios of 0.01, 0.025 and 0.05 
additional adult mortality. 
 
Table 3. Baseline demographic rates and initial population sizes used in running the Population 
Viability Analysis (PVA) for each population (combination of species and SPA). Source: age at first 
breeding: Porter and Coulson (1987), Cam et al. (2002), Harris and Wanless (2011), Lahoz-Monfort et 
al. (2013), Harris et al. (2016); max brood size: CEH unpublished data; adult and immature survival: 
Coulson and White (1959), Breton et al. (2006), Harris et al. (2007), Lavers et al. (2008), Harris and 
Wanless (2011); Jitlal et al. (2017); breeding success: Newell et al. (2016); initial population size: 
http://archive.jncc.gov.uk/smp/.  

Species 
Age at 
first 
breeding 

Max 
brood size 

Adult 
survival 
(mean,SD) 

SPA 
Breeding 
success 
(mean,SD) 

Immature 
survival 
(mean, 
SE) 

Initial 
population 
size (year) 

Kittiwake 4 2 0.857 
(0.067) 

Forth 
Islands 0.55 (0.35) 0.697 

(0.054) 4206 (2019) 

Guillemot 6 1 0.926 
(0.044) 

Forth 
Islands 0.725 (0.108) 0.796 

(0.012) 
21812 
(2019) 

Razorbill 5 1 0.909 
(0.057) 

Forth 
Islands 0.63 (0.078) 0.838 

(0.021) 
4855 

(2019)) 

Puffin 5 1 0.906 
(0.059) 

Forth 
Islands 0.691 (0.133) 0.921 

(0.019) 
49210 
(2017) 

 
4.2 Results and Conclusions 
 
The results for black-legged kittiwakes, common guillemots, razorbills and Atlantic puffins are 
presented in Figures 1-4 respectively. The results accord closely with recent population 
modelling of these species at this SPA (Freeman et al. 2014; Jitlal et al. 2017), both with 
respect to retrospective predictions of past population change and forecasting of future 
population change. Specifically, the results accord with past work showing that kittiwakes 
have shown a marked decline since the 1980s, which is predicted to continue in the future.  
Similarly, as shown in past work, guillemots and razorbills have shown a moderate increase 
since the 1980s and, therefore, are predicted to increase further in future. Finally, again as 
shown in past work, puffins have shown a marked exponential increase since the 1980s that 
is predicted to continue in future resulting in very large predicted population sizes at the end 
of the forecast period. Population counts of puffins are carried out approximately every five 
years, in contrast to the other species that are counted annually.  As a result, there have only 
been nine counts since 1984, and this limited data together with the sharp past increase 
results in erratic future predictions that are markedly in excess of previous observations and 
of doubtful realism (see Freeman et al. 2014, for a full discussion on this). 
 
The three impact scenarios imposed expected changes in future predictions, with the largest 
divergence from the baseline in the scenario of 0.05 additional adult mortality, smallest 
divergence in the 0.01 scenario and intermediate divergence for the 0.025 scenario. 
 

http://archive.jncc.gov.uk/smp/
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In conclusion, we consider that the models and scenarios produced biologically plausible 
results for kittiwakes, guillemots and razorbills. For puffins, the lack of realism was a result of 
the limited availability of count data coupled with the exponential past increase in population 
size, a set of circumstances that has proved challenging for multiple population modelling 
exercises to date, and therefore does not reflect the methods employed or, in this case, the 
performance of the Shiny tool. 
 

 
Figure 1. Historical population projection (left panel) and future PVA (right panel) for black-legged 
kittiwakes breeding at the Forth Islands SPA. Impact scenarios for future PVA are scen1: 0.01 
reduction in adult survival; scen2: 0.025 reduction in adult survival; scen3: 0.05 reduction in adult 
survival. 
 

 
Figure 2. Historical population projection (left panel) and future PVA (right panel) for common 
guillemots breeding at the Forth Islands SPA. Impact scenarios for future PVA are scen1: 0.01 
reduction in adult survival; scen2: 0.025 reduction in adult survival; scen3: 0.05 reduction in adult 
survival. 
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Figure 3. Historical population projection (left panel) and future PVA (right panel) for razorbills 
breeding at the Forth Islands SPA. Impact scenarios for future PVA are scen1: 0.01 reduction in adult 
survival; scen2: 0.025 reduction in adult survival; scen3: 0.05 reduction in adult survival. 
 

 
Figure 4. Historical population projection (left panel) and future PVA (right panel) for Atlantic puffins 
breeding at the Forth Islands SPA. Impact scenarios for future PVA are scen1: 0.01 reduction in adult 
survival; scen2: 0.025 reduction in adult survival; scen3: 0.05 reduction in adult survival. 
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7 Appendix A:  Simulating a random set of valid inputs 
 
The following table outlines the approach taken to simulate a random set of valid inputs for 
the PVA tool. The “when” column indicates which run types this input is provided for: blank 
indicates all run types (“simplescenario”, “validation”, “sensitivity.local”, “sensitivity.global”). 
“MV” indicates “simplescenario” and “validation” only, “M” indicates “simplescenario” only, 
“MS” indicates “simplescenario”, “sensitivity.local” or “sensitivity.global”, “V” indicates 
validation only, “S” indicates “sensitivity.local” or “sensitivity.global”. 
 
Table 4. 

Input When How simulated 

Inputs relating to model structure 

model.envstoch  Random select “betagamma” or “deterministic” 

model.demostoch  Randomly select TRUE or FALSE 

model.dd MV Randomly select “nodd” or “dduloglin” 

model.prodmax  Randomly select TRUE or FALSE 

mbs  Randomly select 1, 2, 3 or 4 

afb  Randomly select 1, 2, 3, 4, 5 or 6 

npop  Randomly select 1, 2, 3, 4 or 5 

nscen  Randomly select 1, 2 or 3 

nburn  Randomly select a whole number between 0 and 10 

sim.n  Randomly select a whole number between 1 and 10 

sim.seed  Randomly select a whole number between 1 and 10000 

Inputs relating to baseline demography 

demobase.specify.as.params MV Fix to be FALSE 

demobase.splitpops M Randomly select TRUE or FALSE 

demobase.splitimmat MV Randomly select TRUE or FALSE 

demobase.prod  To get mean values: select independent random 
numbers simulate uniformly between 0.2 and 0.9, and 
multiply by “mbs”. To get SEs: multiply mean values by 
independent random numbers simulated uniformly 
between 0.01 and 0.2. For get density dependence 
magnitude (if model.dd = “dduloglin”): simulate 
independently from N(0,0.1) distributions 

demobase.survadult  As for demobase.prod, but without multiplying by “mbs” 

demobase.survimmat MV As for demobase.prod, but without multiplying by “mbs” 

Initial population size(s) 

inipop.years  Sample a random whole number between 2000 and 
2015 for each subpopulation 

inipop.inputformat MV Randomly select “breeding adults”, “breeding pairs” or 
“all individuals” 

inipop.counts  For each subpopulation take 10 to the power of a 
random number simulated to lie between 1 and 4 
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Impacts 

impacts.relative MS Randomly select TRUE or FALSE 

impacts.splitpops M Randomly select TRUE or FALSE 

impacts.splitimmat M Randomly select TRUE or FALSE 

impacts.provideses M Randomly select TRUE or FALSE 

impacts.year.start MS Randomly select a whole number between 
max(inipop.years)+1 and max(inipop.years)+20 

impacts.year.end MS Randomly select a whole number between 
impacts.year.start+1 and impacts.year.start+30 

impacts.scennames M Fix to be “scen1”, “scen2”, etc. 

imacts.matchscens M Randomly select TRUE or FALSE 

impacts.prod.mean MS Randomly uniform numbers between 0.2 and 0.9 

impacts.survadult.mean MS Randomly uniform numbers between 0.5 and 0.99 

impacts.survimmat.mean MS Randomly uniform numbers between 0.5 and 0.99 

impacts.prod.se M “impacts.prod.mean” multiplied by a random number 
between 0.1 and 0.5 

impacts.survadult.se M “impacts.survadult.mean” multiplied by a random number 
between 0.1 and 0.5 

impacts.survimmat.se M “impacts.survimmat.mean” multiplied by a random 
number between 0.1 and 0.5 

Outputs 

output.agetype MV Randomly select “breeding.adults”, “breeding.pairs” or 
“ages.separately” 

output.year.end  Randomly select a whole number between 
max(inipop.years)+30 and max(inipop.years)+60 

output.year.start MV Randomly select a whole number between 
output.year.end – 30 and output.year.end – 20 

output.popsize.target  Take 10 to the power of a random number simulated to 
lie between 1 and 4 

output.popsize.qe  Take 10 to the power of a random number simulated to 
lie between 0 and 1.5 

output.validation.years V See text 

output.validation.counts V See text 

Sensitivity analysis 

sens.pcr S Simulate three uniform random numbers between 0 and 
50 

sens.npvlocal or 
sens.npvglobal 

S Simulate a random whole number between 1 and 10  
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8 Appendix B:  Simulating a random set of invalid inputs 
 
We simulated a set of invalid inputs by simulating a set of valid inputs. We then introduced 
one or more errors into these inputs. Twenty possible “error scenarios” were considered, 
which involved introducing one or more of fifteen possible errors (A, B, C, D, E, F, G, H, I, J, 
K, L, M, N, O). 
 

 A B C D E F G H I J K L M N O 
1 X               
2  X              
3   X             
4    X            
5     X           
6      X          
7       X         
8        X        
9         X       
10          X      
11           X     
12            X    
13             X   
14              X  
15               X 

16    X        X    
17         X    X   
18 X       X        
19 X     X  X     X   
20 X X  X   X X X X X   X  

 
It can be seen that the first fifteen error scenarios involve introducing each of these fifteen 
errors in turn. The final five error scenarios involve introducing 2, 2, 2, 4 or 9 errors. 
 
The individual errors are as follows: 
 
Table 5. 

Error Description 
A Name of “mbs” is wrongly written as “mns” 

B “demobase.survadult” is given an incorrect dimension 

C “model.envstoch” is given as “bob” 

D “model.demostoch” is given as “fred” 

E “model.envstoch” is given as FALSE 

F “model.envstoch” is given as 3 

G “model.envstoch” is given as 7.4467 

H “nburn” is given as -1 

I “demobase.survadult” contains negative values 

J “npop” is inconsistent with the dimension of demographic rates & inputs 

K “output.year.end” is equal to min(inipop.years) – 1 

L The first entry in inipop.vals is missing (NA) 
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M The first entry is inipop.vals in “NaN” (“Not-a-number”) 

N The first entry in inipop.vals is infinite 

O The length of “inipop.years” does not match that of “inipop.vals” 

 
The choice of specific errors and construction of the scenarios is somewhat arbitrary but is 
designed to capture a broad range of potential errors, and combination of errors, that could 
conceivably occur. Note that these errors and error scenarios are designed to produce 
invalid inputs, not implausible inputs – i.e. the aim is to generate a broad suite of possible 
input sets under which the tool should definitely crash and produce an error message. 
 
8.1 Detailed results 
 
The following table lists all of the error messages that were encountered in this stage of 
testing, aside from the three “allowable” errors, and records the scenario(s) in which they 
occur. It also lists the underlying errors that could have caused the error message (as they 
are common to all scenarios). 
 
Table 6. 

Error message Scenarios Possible 
errors 

"Error in !model.demostoch: invalid argument type", 4, 16 D 

"Error in demomods$es[[zi]]: attempt to select less than one 
element in get1index" 

3, 5, 6, 7,19,20 CEFG 

"Error in inputs$demobase.prod[i; ]: subscript out of bounds" 10 J 

"Error in demobase.vals[i; nd; ] <- 
as.numeric(c(inputs$demobase.survadult)): number of items 
to replace is not a multiple of replacement length" 

2 B 

"Error in demobase.vals[i; j + 1; ] <- 
as.numeric(c(inputs$demobase.survadult)): number of items 
to replace is not a multiple of replacement length" 

2 B 

"Error in ru.base[j; tt; ; ; drop = FALSE]: subscript out of 
bounds", 

11 K 

"Error in ntot[; ic; ; j; drop = FALSE]: subscript out of 
bounds" 

11 K 

"Error in apply(ntots; 1; getsumy): dim(X) must have a 
positive length" 

11 K 

"Error in '[<-'('*tmp*'; i; j; inipop.relyears[j];" 11 K 

"Error in nbyage[i; j; inipop.relyears[j]; ; a] <- inipop.counts[a; 
; j]: NAs are not allowed in subscripted assignments" 

10, 15 JO 

"Error in eigen(mmat): infinite or missing values in 'x'" 10,12,13,14,16,17 JLMN 

"Error in if (max(frot) > 1e+08) {: missing value where 
TRUE/FALSE needed" 

12, 13, 14, 17 LMN 

"Error in if (any(nprev < 0)) {: missing value where 
TRUE/FALSE needed" 

12, 13, 14, 16, 17  

"Error in year.first:output.year.end: result would be too long 
a vector" 

15 O 
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"Error in if (tt > inipop.relyears[j]) {: missing value where 
TRUE/FALSE needed" 

10,15 O 

"Error in out[1] <- mbs * fn.pred.con(pars = 
as.numeric(c(ests[1; ])); : replacement has length zero" 

1, 18 A 

"Error in out[ids; idp; 1] <- prod: number of items to replace 
is not a multiple of replacement length" 

10 J 

"Error in ests[1; 1:2] <- fn.mom.con(c(prod.mn/mbs; 
prod.sd/mbs)): replacement has length zero" 

1, 18 A 

“….replacement has 11 rows; data has 2” 2, 20 B 

“Error in Ops.data.frame(standard.vals; (1 + 
(pcchange/100))): '*' only defined for equally-sized data 
frames" 

2, 20 B 
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9 Appendix C:  Generating inputs to use for testing 
internal consistency 

 
In order to test internal consistency, a random set of valid inputs, with a particular format, 
were simulated. 127 alternative ways of representing the same inputs were then constructed. 
 
The random initial set of valid inputs was constructed in the same way as in Appendix A, 
except that: 
 

1. The values of “npop” and “nscen” are simulated to be whole numbers between 2 and 5 
and between 2 and 3 respectively (whereas in Appendix A they were simulated to be 
between 1 and 5 and between 1 and 3 respectively); 

 
2. “model.envstoch” is fixed to be “betagamma”, “model.dd”is fixed to be “dduloglin”, and 

“demobase.splitpops”, “demobase.splitimmat”, “impacts.splitpops”, “impacts.splitimmat” 
and “impacts.provideses” are all specified to be TRUE; 

 
3. the values of “demobase.prod”, “demobase.survadult”, “demobase.survimmat”, 

“impacts.prod.mean”, “impact.survadult.mean”, “impacts.survimmat.mean”, 
“impacts.prod.se”, “impact.survadult.se”, “impacts.survimmat.se” are selected in such a 
way that the seven arguments just mentioned (“model.envstoch”, etc.) could equally 
have been specified in the opposite way. So, for example, the standard deviations for 
environmental stochasticity are fixed to be zero, so that it should be equivalent to either 
use “model.envstoch = betagamma” or “model.envstoch = deterministic”. 

 
The remaining 127 alternative specifications of these inputs were formed by swapping some 
or the seven options being considered (“model.envstoch”, etc.) to have the opposite value, 
and then amending the dimensions of the “demobase.” and “impacts.” inputs accordingly. 
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