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Abstract 

Hurricanes have intense destructive impacts on biodiverse and valuable shallow-water ecosystems of 

the Caribbean. Quantifying and mapping the spatial distribution of these impacts assists marine 

management efforts. This paper utilises satellite imagery techniques to derive bathymetry and benthic 

habitat cover of the British Virgin Islands (BVI) before and after Hurricane Irma in September 2017. 

The robust ratio transform approach was applied to WorldView-2 images to generate bathymetry data 

and Object-Based Image Analysis (OBIA) methods provided habitat maps for the pre and post-Irma 

scenes. Change detection analyses identified the location and magnitude of change across the 

archipelago. Depth and habitat models were validated with independent ground-truth data obtained 

via multibeam echosounder (MBES) surveys and field data collection. Satellite-Derived Bathymetry 

(SDB) models achieved Root Mean Square Error (RMSE) values of 2.42m and 3.84m and Mean 

Absolute Error values of 0.078m and 0.44m (MAE) for the pre and post-Irma scenes respectively. Pre 

and post-Irma habitat maps were 62% and 67% accurate respectively. Change detection identified 

significant differences in depth between the pre and post-Irma scenes. Research outputs assess the 

influence of Hurricane Irma on the shallow-water environment of the BVI and provide a baseline for 

future ecological monitoring programmes. This paper reinforces the merit of remote sensing systems 

in bathymetry and habitat mapping and highlights the great potential of these techniques in assessing 

changes to the marine environment.  

Introduction 

Shallow-water ecosystems, such as coral reefs and seagrass beds, provide invaluable ecosystem 

services and are biodiversity hotspots. Millions of people worldwide, particularly in developing 

countries, depend on reef ecosystems for fisheries, tourism, coastal protection (Cinner et al., 2016) 

while seagrass beds stabilise coastal sediments, improve water quality and provide nursery and 

feeding grounds for fish and turtle species (Topouzelis et al., 2016).  

But they are under severe pressure from human populations and are vulnerable to extensive damage 

from natural disasters. Nutrient enrichment, overfishing and elevated sea temperatures are examples 

of chronic stressors undermining the recovery potential of marine ecosystems following natural 

disturbances (Alvarez-Filip et al., 2011; Bythell et al., 2000).  

Hurricanes pose a significant threat in the coastal environment. These powerful events trigger 

excessive nutrient loading, fish mortality, algal blooms, the release of pathogens and pollutants in 

addition to mechanical destruction of coral structures and scouring of seagrass beds (Klemas, 2009; 

Mumby, 1999). Although Hurricanes play a relatively small role in global coral cover declines, these 

events have substantial localised impacts and can inflict damage up to 50m deep (Alvarez-Filip et al., 
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2011). The majority of the destruction is felt within 10-20m depth, where coral breakage and abrasion 

is most intense and the near-total removal of benthic communities can occur (Hubbard et al., 1991). 

Hurricanes drive major reductions in coral reef complexity following mass mortality of more delicate 

branching species, which alters the ecosystem dynamics and lowers biodiversity (Alvarez-Filip et al., 

2011; Bythell, 1997). 

Caribbean Ecosystems 

Caribbean coastal ecosystems are some of most threatened habitats in the world. The synergistic 

effects of chronic human stressors, intense Hurricane impacts and mass mortality events of Acropora 

palmata and Diadema antillarum in the 1970s and 1980s respectively have decimated Caribbean reefs 

(Bythell et al., 2000; Hoegh-Guldberg et al., 2007).  Coral cover has declined by 80% over the last four 

decades (Gardner et al., 2003). Phase-shifts to algal dominance are prevalent throughout the 

Caribbean (Hoegh-Guldberg et al., 2007) and are facilitated by the clearing of substrate during 

Hurricane events. Hurricane induced scouring and boat anchor scars are rife in Caribbean seagrass 

beds (Short et al., 2011).  

In 1989 Hurricane Hugo reduced coral cover to 0.8% in shallow areas of the Buck Island Reef National 

Monument, St Croix (Rogers, 2000). Caribbean coral cover is reduced by an average of 17% the year 

following a Hurricane and impacted sites continue to decline at a faster rate than sheltered areas, 

highlighting the lasting effects of these events (Gardner et al., 2005). Up to 11% of the historical extent 

of Caribbean reefs were lost by 2003, with 16% significantly damaged (Gardner et al., 2003). The rate 

of decline has slowed since the 1980s, but the negative trend persists (Gardner et al., 2003). The 

significant degradation of Caribbean shallow-water ecosystems and the continued negative change 

trajectory highlights the urgent need for effective management.  

Recovery Potential 

Coastal ecosystems have high recovery potential following natural disasters. Coral cover in St Croix, 

US Virgin Islands, recovered to 89% of the pre-Hurricane Hugo levels within six years (Bythell, 1997) 

while species richness increased to 136% of the pre-Hurricane levels following the category 5 event 

(Bythell et al., 2000). However, underlying anthropogenic pressures hinder the natural recovery 

mechanisms of coral reefs (Hughes, 1994). These seminal studies are fairly outdated, which highlights 

the need for current research into Hurricane impacts on coastal ecosystems.   

Remote Sensing in Coastal Environments 

Bathymetry estimations further our understanding of the oceanographic processes underlying marine 

ecosystem dynamics (Traganos et al., 2018). Bathymetric data are required for navigation, assessing 

sediment movements and examining the complexity of marine habitats (Hernandez and Armstrong, 
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2016; Jagalingam et al., 2015). Mapping the spatial distribution of benthic habitats identifies 

ecosystems vulnerable to disturbance events and highlights target areas for conservation measures. 

Combining bathymetric and benthic cover data creates a holistic view of the near-shore environment. 

Bathymetry and habitat extent assessments form the basis of change detection studies, both in 

response to a discrete event and as part of an extended time-series.   

The extensive and often inaccessible nature of coastal environments coupled with the prohibitive 

costs of conventional in-situ data collection restricts the provision of accurate baseline data for long-

term monitoring programmes (Jagalingam et al., 2015). Developments in active sensors, such as LiDAR 

and sonar devices, are useful in bathymetry detection, but these methods cover relatively small areas, 

are time-consuming and extremely costly (Evagorou et al., 2019). The application of satellite based 

remote sensing in the marine environment creates new research opportunities, as the vast area 

covered by a single image and comparatively low acquisition costs make this resource invaluable and 

accessible.  

The launch of the first Landsat platform and seminal research in the 1970s and 1980s identified the 

great potential of remote sensing techniques for marine mapping (Lyzenga 1978; 1981; Schott et al., 

1988). Further developments in image pre-processing and SDB algorithms led to vast improvements 

in mapping accuracies (Mumby et al., 1998; Stumpf et al., 2003). Increased image spatial resolution 

enables the interpretation of fine details in complex marine ecosystems, such as coral reefs (Call et 

al., 2003).  

Satellite Derived Bathymetry 

SDB has the capacity to provide accurate baseline data for change detection analyses and long-term 

monitoring schemes on a large scale. Detailed bathymetric data provides information about the 

complexity of shallow-water reefs, which can be assessed at different time scales to identify structural 

change (Hedley et al., 2018). Current SDB methods are divided into analytical and empirical 

approaches (Pe’eri et al., 2014).  

Two competing approaches are driving developments in interpretation. Analytical methods are based 

on radiative transfer models and require estimates of atmospheric, water column and bottom 

material parameters (Pe’eri et al., 2014; Gao, 2009). Physics-based optimisation approaches 

deconstruct spectra into components relating to water depth, quality and benthic cover (Hamylton et 

al., 2015).  

Empirical methods are simplified models with fewer parameters. Concurrent depth measurements 

are needed to train these models and the accuracy of SDB estimates is heavily dependent on water 
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depth (Gao, 2009; Hamylton et al., 2015). However, successful bathymetry data has been calculated 

up to 20m depth in many previous studies (Evagorou et al., 2019; Hochberg et al., 2003; Pe’eri et al., 

2014).  

One effective approach was pioneered by Lyzenga (1978; 1981), based on the idea that bottom-

reflected radiance is a linear function of bottom reflectance and an exponential function of depth. The 

Lyzenga (1978) linear transform method provides a relationship between reflectance, depth and 

bottom albedo. This method performs well but requires the estimation of five variables and struggles 

to retrieve depths beyond 15m deep and in areas of low bottom albedo (Stumpf et al., 2003).  

The ratio transform method outlined by Stumpf et al. (2003) solves these difficulties by using the ratio 

of two spectral bands to infer depth. This approach works on the principle that spectral radiation is 

attenuated through the water column and relies on the idea that bottom radiance of one band decays 

at a faster rate than the other (Pe’eri et al., 2014). The reflectance of the spectral band with higher 

absorption will decrease proportionately faster than the band with the lower absorption (Stumpf et 

al., 2003). A widely-used band combination is blue:green, as green light is absorbed more quickly than 

blue light as depth increases, meaning the ratio of blue:green increases with depth (Stumpf et al., 

2003). The high penetration depth of the blue band increases the potential for extracting depth 

information (Caballero and Stumpf, 2019). The Stumpf et al. (2003) method assumes the water column 

is uniformly mixed and affects the reflectance of both bands similarly (Pe’eri et al., 2014). The ratio 

transform approach compensates for variable bottom habitat type, as changes in albedo associated 

with different benthic cover types will affect both bands similarly, whereas changes in depth will 

influence the green band more than the blue band (Stumpf et al., 2003). The SDB model is trained and 

validated using ground-truth depth measurements (Lee et al., 2013; Gao, 2009). 

Both linear and ratio transform methods are effective, but the ratio transform approach is less 

complex, retrieves depths of over 25m in clear waters and shows greater stability than the linear 

transform method (Stumpf et al., 2003).  

Benthic Habitat Classification  

Identifying benthic habitat cover supports and builds upon bathymetric data in mapping diverse 

coastal environments. The benthic cover of an area influences the surface-leaving reflectance used in 

SDB (Doxani et al., 2012). Habitat maps can improve the training of SDB models over variable bottom-

type and validate SDB complexity information using genuine benthic cover data. Previous research has 

shown the aptitude of remote sensing methods in mapping seagrass percentage cover, species 

composition, biomass and area extent, making it a valuable tool in marine planning and monitoring 

(Fauzan et al., 2017; Phinn et al., 2008).  
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Depth Invariant Index Creation 

The confounding influence of variable depth on the bottom reflectance poses difficulties in habitat 

mapping (Mumby et al., 1998). In order to correct for the effects of the water column on bottom 

reflectance a Depth Invariant Index (DII) is created, as outlined by Lyzenga (1978; 1981). The gradient 

of the regression line between two visible bands give the ratio of attenuation coefficients, which are 

used to generate a DII (Manessa et al., 2014). The DII is used as the input for classification processes, 

as the variation in bottom reflectance is assumed to be a result of bottom albedo alone (Lyzenga, 

1981; Manessa et al., 2014; Hafizt et al., 2017).  

Classification  

There are multiple different methods used to classify satellite images to derive meaningful 

information about the extent of underwater habitats. Classification algorithms are commonly applied 

on a pixel level, but the recent development of object-based image analysis (OBIA) provides and 

alternative approach. In pixel-based approaches, multiple habitat types often fall within a single pixel, 

restricting the distinction between bottom-types (Wicaksono, 2016). OBIA clusters smaller pixels into 

image objects using spectral signatures and pixel shape and size (Wicaksono, 2016). This enhances the 

ability to create habitat maps using object statistics that are meaningful at real-world habitat scales.  

Pixel-based Approach 

Unsupervised classification methods are the most basic and are often used to create preliminary 

habitat classes for planning field surveys (Halls and Costin, 2016; Pu et al., 2012). Unsupervised 

algorithms generate a specified number of classes by clustering pixels with similar spectral signatures 

that the user then assigns to meaningful habitat classes (Halls and Costin, 2016). Popular algorithms 

include K-Means and ISODATA.  

Supervised classification methods utilise ground-truth datasets to train and validate the classification 

process. The most widely-used algorithm is the Maximum Likelihood Classifier, which estimates the 

probability that a pixel belongs to a certain class (Pu et al., 2012; Halls and Costin, 2016; Manessa et 

al., 2014). The Maximum Likelihood Classifier performs better than any other parametric classifier, as 

it takes into account the variance within each class (Koedsin et al., 2016). The Mahalanobis Distance 

Classifier is also popular in habitat mapping (Meyer and Pu, 2012) and machine-learning approaches 

such as the Support Vector Machine algorithm are becoming more prevalent (Moniruzzaman et al., 

2019; Marcello et al., 2018).  
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Object-based Approach 

Many studies suggest that object-based analysis is more accurate and efficient when identifying 

habitat classes over heterogeneous land cover (Anggoro et al., 2018). OBIA involves segmenting the 

images into objects using the spectral signatures of pixels to discriminate habitat cover extents 

(Anggoro et al., 2018; Moniruzzaman et al., 2019). These image objects are then classified using 

ground-truth data and validated using independent habitat cover points (Moniruzzaman et al., 2019). 

Additional information can be incorporated into OBIA, such as texture, shape, size and external 

datasets including bathymetry, slope and aspect, to assign meaningful classes to image objects 

(Wicaksono, 2016).  

Change Detection 

Accurate change detection is crucial in understanding the impacts of natural disasters and human 

pressures on ecosystems (Lu et al., 2004). The outputs of satellite imagery analysis provide the data 

required for change detection studies. The high revisit frequency of WorldView-2 at 1.1 days enables 

the regular collection of data for use in long-term monitoring studies and measuring changes following 

discrete disturbances. Remote sensing allows the assessment of Hurricane damage to optimise future 

conservation strategies (Klemas, 2009). Using remote sensing techniques to assess land cover change 

is well documented (Lambin and Strahler, 1994) but this approach is comparatively unexplored in 

marine settings.  

Conventional methods of change detection include image differencing, Principle Components Analysis 

(PCA) and post-classification comparison (Lu et al., 2004). There has been a diversification of change 

detection methods in recent years, with new techniques such as Spectral Mixture Analysis and 

Artificial Neural Networks providing alternatives to traditional procedures (Lu et al., 2004). The 

incorporation of Geographical Information Systems in remote sensing data analysis is becoming more 

prevalent (Lu et al., 2004). Many studies highlight the tendency of change detection methods to 

overestimate changed areas, which poses challenges when interpreting the results (Li and Yeh, 1998).  

2017 Caribbean Hurricane Season 

Predicted increases in Hurricane intensity and frequency pose a significant threat to shallow marine 

ecosystems, which highlights the urgent need for effective assessments of Hurricane damage and 

ecosystem recovery potential (Mann and Emanuel, 2006; Knutson et al., 2010). The BVI has suffered 

from ten Hurricanes in the 30 years since Hurricane Hugo in 1989, the first event for over 50 years. 

The 2017 season was unprecedented in its severity with six major events including Hurricanes Irma 

and Maria, which were both category 5. Hurricane Irma was the most intense and destructive to ever 
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hit BVI, as the eye passed directly over the islands and winds reached over 170mph (National 

Hurricane Centre). Hurricane Maria followed closely, limiting the available recovery time. 

Rationale 

This research will quantify the change in reef and seagrass environments resulting from the 2017 

Caribbean Hurricane season and provide a framework for future assessment. The 2014 Darwin Plus 

project provided bathymetric and habitat cover data for a small area of Tortola (Figure 4) using MBES 

surveys. More extensive mapping of the BVI marine habitats feeds into the Darwin Plus programme, 

which aims to establish an ongoing monitoring scheme to analyse the health coral reefs and seagrass 

beds. Assessing the impacts of discrete Hurricane events and monitoring long-term ecosystem 

changes provides useful information for marine management policies and helps to identify priority 

sites for conservation efforts (Topouzelis et al., 2018). This research is one of the first projects to assess 

Hurricane impacts using satellite imagery techniques.  

Project Aims  
This research aims to analyse and map the shallow water environment surrounding the BVI using high 

resolution satellite imagery. Bathymetric and habitat cover maps will be created and the impacts of 

the 2017 Hurricane season will be identified by comparing the bathymetry and habitat cover of pre-

Hurricane and post-Hurricane imagery.  

Objectives 
1) Determine the bathymetry and habitat cover pre-Hurricane Irma; 

2) Determine the bathymetry and habitat cover following Hurricane Irma; 

3) Ground-truth the post-Hurricane data using in-water survey techniques; 

4) Assess the change in bathymetry and habitat cover as a result of the Hurricane season; 

5) Produce detailed maps of the marine environment in the BVI as the baseline for future long-

term monitoring schemes. 

Research will utilise the Stumpf et al. (2003) ratio transform method of satellite derived bathymetry 

to produce depth data for the BVI archipelago. OBIA techniques will be applied to determine the 

extent of major benthic habitat types and Hurricane impacts will be measured using change detection 

procedures. The literature review and previous related research by Environment Systems and 

Newcastle University justified the use of these approaches to produce accurate results.  
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Methods 

Site Description 

The British Virgin Islands (BVI) are a British overseas territory in the Caribbean Sea. The islands lie at 

the north-eastern point of the Greater Antilles with Puerto Rico to the west, and include Tortola, Virgin 

Gorda, Jost Van Dyke, Anegada and 32 smaller islands (Figure 1). Covering an area of 59 square miles 

they have a population of 28,054 people. The shallow water environment of the BVI is comprised of 

dense reefs of Plexauridae, Faviidae and Montastrea species with associated soft corals, seagrass 

meadows of Syringodium filiforme and Thalassia testudinum, sandy areas and bare coral rubble and 

rock (Fitzsimmons et al., 2016). Coastal ecosystems of the BVI are threatened by Caribbean-wide 

pressures such as anthropogenic development, overfishing, pollution and natural events including 

Hurricanes and climate change (Forster et al., 2011).  Prior to the 2017 Hurricane season the reefs of 

the BVI were considered generally healthier than most in the Caribbean, with consistently high coral 

cover compared to algal cover (Fitzsimmons et al., 2016). Post-Hurricane assessments have yet to be 

made, but the health of coral reefs and seagrass beds are expected to have deteriorated.  

 

Figure 1: Map of the BVI showing the track of Hurricane Irma. Tortola is the main island and the capital 
Road Town is denoted by the red circle. 
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Data 

Satellite Imagery Data 
 

Both pre and post-Hurricane image datasets were acquired from DigitalGlobe’s WorldView-2 satellite. 

WorldView-2 offers high resolution imagery and includes additional bands that are expected to 

improve mapping accuracy (Diedda and Sanna, 2012; Halls and Costin, 2016). Satellite parameters are 

summarised in Table 1. 

Table 1: WorldView-2 satellite image product details. 

Satellite Parameter  

Image Type Standard 2A 

Pixel Size 2.0 

Spatial Resolution Multispectral 1.85m at nadir; 2.07m at 20° off-nadir 
Panchromatic 0.46m at nadir; 0.52m at 20° off-nadir 

Radiometric Resolution  16 bits per pixel 

Spectral Bands  Spectral Band  Wavelength (nm) 
Coastal                400 – 450 
Blue                450 – 510 
Green                510 – 580 
Yellow                585 – 625 
Red                630 – 690 
Red Edge 705 – 745 
NIR1                770 – 895 
NIR2                860 – 1040 
 

Swath Width 16.4 km at nadir 

Geographic Coordinate System WGS_1984 

Projected Coordinate System WGS_1984_UTM_Zone_20N 

 

Pre-Irma Images 

Newcastle University obtained seven DigitalGlobe WorldView-2 satellite images covering the entire 

BVI archipelago in 2015 (Figure 2). Six images were used to establish the bathymetry and benthic 

habitat cover before Hurricane Irma. Cloud cover ranged from 0.1-2.0% and the sun elevation varied 

between 43.8-54.3° (Appendix A: Table 1).  
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Figure 2: Pre-Irma WorldView-2 satellite images in raw format obtained by Newcastle University. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Post-Irma Images 

 

Six WorldView-2 images taken after Hurricane Irma were obtained by Environment Systems Ltd. and 

were used to determine the bathymetry and habitat cover following the event (Figure 3). Five images 

were used, with cloud cover ranging from 4-29.4% and sun elevation between 58.6-73.4° (Appendix 

A: Table 2).  

Anegada was excluded from this research due to a lack of ground-truth data. P005 was used as the 

reference image for the pre-Irma scene and P001 for the post-Irma scene, as these images contained 

the most ground-truth points. The pre-Irma ground-truth data only fell within the boundaries of P005 

so training and validation points were created in the overlap of images and each image was trained 

using P005 as the reference. 50% of the ground-truth data points were used as the training dataset 

and 50% for validation (Phinn et al., 2008). The number of training and validation points for each image 

varied according to cloud cover and image size. These are summarised in Appendix A: Table 3.  
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Figure 3: Post-Irma WorldView-2 images in raw format obtained by Environment Systems Ltd. 

Ground-Truth Data  

Pre-Irma MBES and Still Image Ground-Truth Data 

 

Training and validation data for the Pre-Irma scene were acquired from CEFAS Data Hub. CEFAS 

conducted bathymetric and benthic habitat surveys as part of the Darwin Plus project DPLUS026 in 

2014. Pre-Irma bathymetry was obtained from the raster file “HI1462_MB_Bathymetry_1m.img” and 

benthic cover data were provided by “DPLUS026_BVI_Proforma_Still_Image_Analysis.csv” and 

“BVI__Still_Images_Analysis.csv.” MBES bathymetry and still image locations are shown in Figure 4 

and the range of depth values is displayed in Figure 5.  

Figure 4: CEFAS ground-truth dataset including MBES bathymetry and still images.  
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Figure 5: Count of pre-Irma MBES training points for each depth.  

Post-Irma Field Survey Ground-Truth Data 

An extensive field survey was conducted in June/July 2019 covering the extent of the BVI archipelago, 

except for Anegada (Figure 6). Georeferenced depth measurements (Figure 7) and underwater still 

images were taken at each survey site to generate benthic habitat cover data, using Coral Point Count 

(CPCe) to classify images according to the classification scheme outlined in Figure 8.  

Figure 6: Location of ground-truth depth and habitat cover surveys conducted in June 2019. 
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Ground-Truth Data Collection  

Sampling Strategy 

 

Initial ground-truthing site selection was conducted by modelling Hurricane Irma impacts using ArcGIS. 

The model was constructed using data obtained from USGS-SRTM, CEFAS land cover, ReefBase, 

GEBCO and NOAA National Hurricane Centre. The maps produced were used to guide the selection of 

ground-truthing points in order to target worst-affected areas to assess the extent of the damage. The 

model and outcomes are presented in Appendix B. Final survey sites were selected based on the initial 

model and the local knowledge of the BVI National Parks Trust staff. Sites were spread over the entire 

archipelago, with the exception of Anegada, as rough weather prevented this excursion. Site selection 

depended heavily on access to the shallow water areas, as the presence of reefs often prevented this. 

Wherever possible, both leeward and windward sides of islands were sampled.  

Field Measurements 

 

Depth and GPS measurements were collected using a Deeper Sonar Pro+ device towed alongside the 

boat at a low speed (below 2 mph). Each transect was at least 50m in length and this was repeated at 

42 sites of various depths (Figure 6). All sites were shallower than 25m, as SDB is inaccurate after this 

depth (Stumpf et al., 2003).  

Five sites were randomly selected along each transect and a GoPro Hero 4 camera was lowered on a 

weighted frame to approximately 50 cm from the seafloor. Photographs were taken every 10 seconds 

and the camera remained close to the seafloor for at least 90 seconds as the boat drifted. GPS 

coordinates were recorded using a Garmin handheld GPS every 10 seconds to correspond with the 

photographs. A total of 1643 suitable images were classified. Benthic habitat cover was determined 

by classifying 25 overlaid points to habitat type or species level in Coral Point Count (CPCe) software 

(Kohler and Gill, 2006; Phinn et al., 2008). Each ground-truth image was classified according to the 

Figure 7: Count of post-Irma ground-truth survey training points for each depth.  
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classification scheme outlined in Figure 8. This classification scheme was adapted from Mumby and 

Harborne (1999); Fauzan et al. (2017); Manessa et al. (2014) and Wicaksono et al. (2019). The classes 

described are distinct enough to ensure the dominant class cover is associated with the reflectance 

value of that image object.  

 

 

 

 

 

 

 

 

 

 

Image Pre-Processing 

SDB requires extensive pre-processing to eliminate the atmosphere and water column effects on 

spectral reflectance values. Image pre-processing was carried out using ENVI 5.0 software and ArcGIS. 

Each image was calibrated and processed separately to minimise errors (Caballero and Stumpf, 2019). 

Methods were finalised by adapting similar processing stages outlined in the literature (Hedley et al., 

2005; Hochberg et al., 2003; Lyzenga, 1978; 1981; Mumby et al., 1998; Phinn et al., 2008; Stumpf et 

al., 2003). Pre-processing steps are outlined below and in Figure 9. 

1) Radiometric Calibration 

Raw WorldView-2 images are already radiometrically corrected but require radiometric 

calibration to convert the pixel value from Digital Number (DN) to top-of-atmosphere 

reflectance using sensor-specific gain and offset values.  

2) Orthorectification 

Images were orthorectified against the USGS Shuttle Radar Topography Mission Digital 

Elevation Model and georeferenced in ArcGIS using ground-control points.  

Figure 8: Classification scheme used to categorise benthic habitat images in CPCe. These 
classes give distinct spectral signatures to accurately train the segmented satellite images 
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3) Land/Cloud/Shadow Masking 

Areas of land, cloud and shadow were masked using a BVI land shapefile and manually-drawn 

cloud “Region of Interest” files.  

4) Sunglint Correction 

The masked images were then corrected for the effect of sunglint, which can distort the pixel 

values (Hedley et al., 2005). The method outlined by Hochberg et al. (2003) and developed by 

Hedley et al. (2005) was followed to remove sunglint using the NIR band and Equation 1: 

 

5) Convolution Filtering 

A Low-Pass Filter with a 3x3 kernel size was applied to the glint-corrected images to reduce 

noise and smooth the image. Low pass filters reduce the discrepancy between pixel values by 

averaging adjacent pixel values.  

6) Depth Invariant Index 

Benthic habitat mapping requires the creation of a Depth Invariant Index (DII) image to correct 

for light attenuation through the water column (Mumby et al., 1998). DII images were 

produced using the method developed by Lyzenga (1978; 1981) which requires linearised pixel 

values and applies a ratio of attenuation coefficients to each image, resulting in three DII files: 

Blue:Green, Blue:Red and Green:Red. The attenuation coefficients for pairs of spectral bands 

are determined using Equations 2 and 3: 
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Figure 9: Image pre-processing stages correcting for radiometric and geometric distortion, sunglint and water column effects. 
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Bathymetry Derivation 

Bathymetry was calculated using the empirical ratio transform approach outlined by Stumpf et al. 

(2003). This method utilises the ratio between two spectral bands to derive depth. The reflectance of 

the band with higher absorption will decrease proportionately faster than the band with lower 

absorption, meaning the ratio between the two will increase with depth (Stumpf et al., 2003). The 

ratio transform method is more stable than previous linear transform methods, can retrieve depths 

over 25m and is not sensitive to variable substrate type, as changes in albedo affect both bands 

relatively equally (Stumpf et al., 2003). The blue:green ratio gives the most reliable results compared 

to other band combinations (Stumpf et al., 2003). 

Depth measurements are calculated using equation 4: 

  

The blue:green ratio was applied to the pre-processed images to give single-banded images with pixel 

values of relative depth. The images were then trained using ground-truthing data. Extracted pixel 

values were regressed against absolute depth measurements to acquire the slope and y-intercept 

parameters. Equation 4 was applied to the reference images holding most ground-truth data points 

to obtain absolute depth values for each pixel. In the pre-Irma scene the reference image was used to 

train all other images. Absolute depth values extracted from the reference image formed new ground-

truthing data to regress against pixel values of overlapping images. The ground-truth data collected 

for the post-Irma scene gave depth data across the entire BVI, so each image was trained separately. 

Final bathymetry maps were produced using ArcGIS. An extinction depth of 20m was selected, as this 

is commonly cited as the limit for accurate SDB depth retrieval (Stumpf et al., 2003; Mumby et al., 

1998; Lyzenga, 1978; 1981) and the training scatter plot indicated an increase in variability beyond 

this depth.  

Independent validation data points were used to extract SDB and absolute depth values from the 

ground-truth dataset. A linear regression was performed to provide estimates of Overall Accuracy, 

Mean Absolute Error and Root Mean Square Error. 
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Habitat Mapping  

Benthic habitat determination was conducted using Trimble eCognition Developer 9.0 software. The 

reference images for each scene were segmented using the blue:green DII and the coastal and blue 

spectral bands of the de-glinted, filtered image. The strong penetration capacity of the coastal and 

blue bands makes them invaluable in defining benthic habitat extents (Lee et al., 2013). Different 

segmentation parameters were trialled, and the final segmentation result was obtained using a scale 

parameter of 800, shape coefficient of 0.3 and a compactness coefficient of 1.0. 

Image objects were classified using a Standard Nearest Neighbour algorithm trained with ground-truth 

benthic habitat data. The image object features that gave the best separation distance were used to 

assign classes. These were: mean brightness; mean B:G DII; mean B:R DII; mean G:R DII; mean blue; 

mean coastal; mean green; standard deviation B:G DII; standard deviation B:R DII; standard deviation 

G:R DII; standard deviation blue; standard deviation coastal; standard deviation green; max. 

difference. Figure 10 illustrates the overlap of reflectance values in a selection of bands between 

classes, which influences the classification accuracy. Seagrass classes are more distinctive in the pre-

Irma scene and the variation in reflectance values of each class is higher in the post-Irma images 

(Figure 10).  

All other images were segmented using the same parameters. The classification algorithms were 

applied to the P005 reference image of the pre-Irma scene and ground-truth samples were created 

from this classification image. Two other pre-Irma images were classified using ground-truth samples 

created in the overlapping area of P005. The overlap areas of the other images were not large enough 

to create ground-truth samples, so the pre-Irma scene does not include Virgin Gorda. The post-Irma 

ground-truth data covered the entire scene, so each image was classified separately using these data 

as samples. The classification images were then mosaicked together to create a single file for each 

scene.  

Ground-truth habitat cover and modelled classification output values were extracted using validation 

data points. These data were used to create confusion matrices and calculate overall accuracy and 

kappa coefficients. Accuracy assessment using eCognition produced stability maps that illustrate the 

spatial distribution of errors.   
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Figure 10: Class separation for Mean Blue, Mean Green, Standard Deviation Coastal and Standard Deviation Red Edge for (A) 
pre-Irma Tier 1; (B) post-Irma Tier 1; (C) pre-Irma Tier 2 and (D) post-Irma Tier 2. 
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Change Detection 

Differences in bathymetry and habitat cover between the pre and post-Irma scenes were assessed 

using ArcGIS to produce a change image. The bathymetric change was then classified into meaningful 

thresholds according to the data to illustrate the spatial distribution and magnitude of depth changes 

in the BVI. Change thresholds must be outside the error margins to ensure the difference is significant. 

The habitat change map was classified into broad thresholds of “No Change” and “Change” but a more 

detailed map was also produced using the Tier 1 classification to show the nature of change.  

Results 

Bathymetry 

The bathymetry detection provided detailed results with distinct differences shown between pixels. 

White areas close to shore represent bright shallow sand, which return erroneous positive depth 

values and are therefore misclassified as land.  

The pre-Irma bathymetry map (Figure 11; 12) returned significantly more accurate results than the 

post-Irma bathymetry (Table 2). Validation plots show the pre-Irma bathymetry model explained 66% 

of the variation in MBES ground-truth depths whereas the post-Irma bathymetry model explained only 

38% of the variation in survey depths (Figure 13; 14). There was considerably higher variation shown 

in the post-Irma validation depth points (Figure 14). The error associated with both pre and post-Irma 

bathymetry maps was low, with RMSE values of 2.42m and 3.84m and MAE of 0.078m and 0.44m 

respectively (Table 5). Initial exploration of the pre-Irma training data revealed separate relationships 

between SDB and MBES depths for vegetated and non-vegetated areas (Figure 15).  

Significant positive change was shown to the south of Tortola and Virgin Gorda and around Norman 

and Peter Island, indicating these areas have become shallower (Figure 16). Areas to the north of 

Tortola and Virgin Gorda demonstrated negative change, meaning these areas have become deeper 

(Figure 16).  
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Figure 11: (A) Pre-Irma bathymetry map showing different depth intervals. (B) Post-Irma bathymetry map showing 
different depth intervals. White areas denote land, cloud and regions below 20m depth. 
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Figure 12: (A) Pre-Irma bathymetry map over Road Town Harbour, Tortola. (B) Post-Irma bathymetry map 
over Road Town Harbour, Tortola. White areas denote land, cloud and regions below 20m depth. 
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Table 2: Accuracy assessments of pre-Irma bathymetric map 

 R2 RMSE MAE 

Pre-Irma Bathymetry 0.6613 2.4215 0.0787 

Post-Irma Bathymetry 0.3785 3.8399 0.4395 

 Figure 13: Validation plot of pre-Irma SDB depths against ground-truth MBES depth to 
an extinction depth of 20m. 

Figure 14: Validation plot for post-Irma SDB against survey ground-truth depth points with an 
extinction depth of 20m. 
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Figure 15: Training P005 to the MBES depth points with separate vegetated and non-vegetated areas. There appears to be 
different trends for each area, suggesting two different equations should be used to derive bathymetry. 
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Figure 16: Bathymetry change detection map for depths shallower than 20m. (A) Detectable changes (B) Significant 
changes outside the RMSE error margins. Green areas denote no significant change between the pre and post-Irma 
scenes. Red areas represent negative change, meaning these areas are deeper. Blue areas represent positive change, 
meaning these areas have become shallower.  
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Habitat 

Tier 1 

 

Tier 1 maps yielded areas of Bare, Seagrass and Mosaic cover. There were not enough ground-truth 

algae samples to include this habitat in the classification process. The pre-Irma habitat map shows 

bare cover around Jost Van Dyke and northern Tortola while the area south of Tortola is classified as 

mosaic (Figure 17). The post-Irma map shows significantly more seagrass cover, completely 

surrounding the perimeter of Tortola and prevalent to the northeast of Virgin Gorda (Figure 17). 

Overall accuracy values of 62% and 67% were achieved for the pre-Irma and post-Irma Tier 1 habitat 

maps respectively (Tables 3; 4). The post-Irma map produced a higher kappa coefficient, indicating a 

stronger agreement between the modelled habitat classes and ground-truth data. The difference in 

user accuracies for each class illustrate the high variability in classifying different habitats.  

Tier 2 

 

Applying the Tier 2 classification scheme to the pre-Irma images returned areas of seagrass on the 

south side of Tortola and around Norman and Peter Island (Figure 18). Most bare areas in the Tier 1 

map were found to be bare mosaic areas in the Tier 2 map. Some areas of Tier 1 mosaic were 

reclassified as bare cover, while others were categorised as coral and bare mosaic around Virgin Gorda 

(Figure 18). The pre-Irma Tier 2 map attained an overall accuracy of 51% while the post-Irma Tier 2 

map was 65% accurate (Tables 5; 6). The post-Irma scene achieved a higher kappa coefficient, 

indicating a stronger agreement with the ground-truth samples (Tables 5; 6). 

Figure 19 shows the change in habitat cover between the pre and post-Irma scenes. The majority of 

the area surrounding Jost Van Dkye showed no change, but an increase in seagrass cover was shown 

in the deeper areas. A marked increase in seagrass occurred to the south and southwest of Tortola, 

where bare and mosaic covers changed to seagrass (Figure 19). Increases in bare cover were evident 

in the deeper areas to the south of Tortola and the north of Peter Island, while the benthic cover 

around Norman Island remained relatively unchanged (Figure 19). Habitat changes show no relation 

to the Hurricane Irma track.
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Figure 17: (A) Pre-Irma habitat Tier 1 classification (B) Post-Irma habitat Tier 1 classification 
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Figure 18: (A) Pre-Irma habitat Tier 2 classification (B) Post-Irma habitat Tier 2 classification 
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Table 3: Pre-Irma Tier 1 accuracy assessment 
 Modelled Classes 

G
ro

u
n

d
 T

ru
th

 

 
Bare Mosaic Seagrass Total 

Bare 23 8 0 31 

Mosaic 24 39 2 65 

Seagrass 1 3 1 5 

Total 48 50 3 101 
 

Producer Accuracy 0.7419 0.6 0.2 
 

 
User Accuracy 0.4791 0.78 0.3333 

 

 Overall Accuracy 0.6237      
 

Kappa Coefficient  0.2955 
   

 

Table 4: Post-Irma Tier 1 accuracy assessment. 

  
Modelled Classes 

G
ro

u
n

d
 T

ru
th

 

 
Algae Bare Coral Mosaic Seagrass Unclass Total 

Algae 0 1 0 0 0 0 1 

Bare 0 169 0 16 17 2 204 

Coral 0 1 0 3 0 0 4 

Mosaic 0 48 0 23 15 0 86 

Seagrass 0 26 0 0 68 0 94 

Total 0 245 0 42 100 2 389 
 

Producer Accuracy 0 0.8284 0 0.2674 0.7234 
  

 
User Accuracy 0 0.6898 0 0.5476 0.68 

  

 Overall Accuracy 0.6684       
 

Kappa Coefficient 0.4319 
      

 

Table 5: Pre-Irma Tier 2 accuracy assessment. 

 
   Modelled Classes  
 

 
Bare BM CM Seagras

s 
SM Total 

G
ro

u
n

d
 T

ru
th

  Bare 21 8 1 1 0 31 

 BM 12 18 4 6 0 40 

 CM 3 3 11 3 0 20 

 Seagrass 1 1 1 1 1 5 

 SM 0 1 3 0 1 5 

 Total 37 31 20 11 2 101 
 

 Producer Accuracy 0.6774 0.45 0.55 0.2 0.2 
 

 
 User Accuracy 0.5675 0.5806 0.55 0.0909 0.5 

 

  Overall Accuracy 0.5148      
 

 Kappa Coefficient 0.3265 
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Table 6: Post-Irma Tier 2 accuracy assessment. 

  
Modelled Class   

Algae AM Bare BM CM Coral Seagrass SM Unclass Total 

G
ro

u
n

d
 T

ru
th

 

Algae 0 0 1 0 0 0 0 0 0 1 

AM 0 0 3 2 0 0 0 0 0 5 

Bare 0 0 166 8 2 0 17 8 2 203 

BM 0 0 34 9 3 0 8 3 0 57 

CM 0 0 2 1 5 0 0 1 0 9 

Coral 0 0 1 0 3 0 0 0 0 4 

Seagrass 0 0 26 0 0 0 68 0 0 94 

SM 0 0 8 0 0 0 3 4 0 15 

 Total 0 0 242 20 13 0 96 16 2 389  
Producer Accuracy 0 0 0.8177 0.1578 0.5556 0 0.7234 0.2667 

  

 
User Accuracy 0 0 0.6859 0.45 0.3846 0 0.7083 0.25 

  

 Overall Accuracy 0.6478          
 

Kappa Coefficient 0.4186 
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Figure 19: (A) Areas of habitat change following the 2017 Hurricane season; (B) Nature of habitat change following the 
Tier 1 habitat classification. The red arrow represents the path of Hurricane Irma. 
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Discussion 

This research aimed to determine the bathymetry and benthic habitat cover of the BVI before and 

after Hurricane Irma and assess changes between the pre and post-Irma scenes. The outcomes of this 

study include detailed and accurate pre and post-Irma bathymetry and habitat cover maps (Figures 

11; 12; 17; 18) that provide a baseline for future long-term monitoring schemes. The change detection 

analyses revealed areas of significant bathymetric and potential habitat change (Figures 16; 19). 

Modelled habitat changes are uncertain due to limited ground-truth data samples causing 

misclassification in the pre-Irma scene. This research feeds into work already completed by the Darwin 

Plus initiative in Anguilla and proposed work in the Turks and Caicos Islands. The project outputs can 

assist marine management in the BVI and have created a long-term monitoring framework for local 

researchers. Tracking changes in shallow-water ecosystems over a longer timescale will provide an 

insight into the impacts of climate change on marine environments.  

Image Pre-Processing 

Pre-processing visibly improved image clarity and minimised the effects of confounding factors. 

Masking the land, cloud and shadow areas proved to be a crucial step in image analysis, as this 

isolation of the areas of interest allowed a more accurate assessment of pixel values. The sunglint 

correction stage removed outliers caused by extreme pixel values and the application of the low pass 

filter significantly smoothed the image. Creating the Depth Invariant Index was also found to be an 

invaluable processing step, as these inputs increased the accuracy of image segmentation and 

classification.  

Satellite Derived Bathymetry  

The results demonstrate the success of SDB in estimating depth data for the BVI. Outputs illustrate 

fine-scale benthic features and show depth variations on a small spatial scale (Figures 11; 12). The 

higher accuracy of the pre-Irma bathymetry map (Table 2) highlights the strong relationship between 

the SDB values and MBES depths. The high variation in validation depths for the post-Irma scene 

(Figure 14) indicates a weaker relationship between the SDB model and absolute depths. The post-

Irma ground-truth survey was conducted using a Deeper Sonar device designed for small-scale fish-

finding whereas the pre-Irma ground-truth data was collected using a large-scale boat-mounted MBES 

device operated by CEFAS. This suggests the pre-Irma MBES depth data were more accurate and less 

prone to localised variations in sea conditions than the post-Irma survey data.  

SDB depths were overestimated in coastal areas of bright, shallow sand, as some pixels returned 

values over 0. These bright areas of sand have been problematic in previous studies (Manessa et al., 

2014) and these incorrect values were removed from the final map. The results of this study fit within 
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the error margins of previous SDB studies. Lowest RMSE values reported are between 0.77m (Huang 

et al., 2017) and 1.94m (Eugenio et al., 2015) but higher values are common throughout the literature. 

Hernandez and Armstrong (2016) describe an RMSE of 3.16m and Pike et al., 2019 report 8.99m for 

deeper regions. Caballero and Stumpf (2019) report MAE values of 0.5 and SDB estimates by Huang 

et al. (2017) show MAE values of 0.56-0.81m.  

The success of SDB using WorldView-2 images supports the use of SDB techniques in future large-scale 

mapping studies. The high repeatability and accessibility of this method lends itself to time-series 

analysis and creates important research opportunities in the BVI, including the impact assessment of 

chronic stressors and discrete disturbance events, such as Hurricanes, on diverse shallow-water 

environments. The high spatial resolution and low cost of this research compared to MBES or LiDAR 

surveys consolidates SDB methods as an invaluable marine research tool.  

Habitat Mapping 

The habitat maps illustrate a high concentration of seagrass beds and fringing reefs in shallow coastal 

waters surrounding the BVI (Figure 18). The Tier 2 pre-Irma scene depicts a high abundance of coral 

mosaic and seagrass areas in the path of Hurricane Irma (Figure 18).  

The Standard Nearest Neighbour algorithm classified the majority of image objects, but unclassified 

sections were returned in areas of very bright, shallow sand and deep areas, as the reflectance values 

of these benthic covers do not fit within calculated class thresholds. Habitat models were more 

accurate using the Tier 1 scheme, which reinforces the theory that broad classification schemes 

produce more robust results (Wicaksono et al., 2019). The post-Irma scene achieved slightly higher 

overall accuracy values compared to the pre-Irma scene (Tables 3; 4; 5; 6). Previous studies report 

classification accuracy values ranging from 42% (Janowski et al., 2018) to 98.86% (Mohamed et al., 

2018). The results of this study sit within the overall accuracy range of 55.85-77.66% achieved by OBIA 

(Siregar et al., 2018). Accuracy values of this research could be increased by applying a more complex 

classification algorithm, such as Support Vector Machine.  

The higher accuracy of the post-Irma scene is potentially due to the higher number of ground-truth 

samples in each class, as the pre-Irma scene was trained with only 101 data points compared to 389 

in the post-Irma scene. Only five seagrass data points were present in the pre-Irma scene compared 

to 94 in the post-Irma scene. Areas of bare habitat cover were classified most accurately, followed by 

mosaic classes in Tier 1 (Tables 3; 4). Seagrass classification is inaccurate in the pre-Irma scene, with 

user accuracy values of between 9-30% compared to 68-71% in the post-Irma scene. The pre and post-

Irma classification stability maps show significantly higher stability in bare and mosaic classes 

compared to seagrass areas (Appendix C).  
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Overlapping spectral values limits the accuracy of habitat classification. Seagrass samples were distinct 

in the blue, coastal and red edge bands of the pre-Irma scene, but are not easily separable in the post-

Irma images due to the high variation in the data (Figure 10). Confusion matrices highlight the 

misclassification of bare and mosaic classes in all maps and of seagrass as bare classes, particularly in 

the post-Irma scene (Tables 3; 4; 5; 6). Coral mosaic classes were mischaracterised as bare mosaic 

areas due to overlapping spectral signatures (Figure 10). Fewer samples were misclassified in the post-

Irma scene compared to the pre-Irma scene, emphasising the limitations of the pre-Irma ground-truth 

data.  

Change Detection 

Most depth changes in the BVI were within the RMSE margin of the bathymetry maps but areas of 

significant negative and positive change that were 4-6m outside the error margin were identified 

(Figure 16). Negative depth changes found to the north of Tortola and Virgin Gorda suggest the 

possible loss of reef habitats, removal of benthic cover and scouring of loose sediment often caused 

by Hurricanes (Alvarez-Filip et al., 2011). Positive change to the south of the BVI is potentially the 

result of sediment deposition. Habitat changes indicate an increase in seagrass cover, particularly to 

the south of Tortola (Figure 19). Areas of mosaic habitat around Peter Island changed to bare cover, 

which suggests a loss in diversity in these areas. The unexpected increase in seagrass cover is most 

likely due to the low number of seagrass training samples in the pre-Irma scene compared to the post-

Irma scene, as this resulted in the misclassification of seagrass areas to bare or mosaic classes in the 

pre-Irma map (Tables 3; 5). The spatial distribution of bathymetric and habitat changes was not related 

to the track of Hurricane Irma, as the impacts were felt throughout the BVI (Figure 19). 

Limitations 

Suspended sediment visible in the images could confound the bottom reflectance of the area and 

therefore influence the bathymetry and habitat predictions (Fauzan et al., 2017; Koedsin et al., 2016; 

Pike et al., 2019).  

While the pre-Irma MBES ground-truth data provides accurate depths at a high resolution, the data 

falls within one image only. All other images in the pre-Irma scene were trained to this reference 

image, which lowers the accuracy of the training process. There are also very few MBES values in 

shallow water areas, with the majority of the data points falling between 22-30m depth (Figure 5). 

This limits the training capacity of this data set, as the range of values is not representative of the 

shallow water environment. Many studies suggest SDB is inaccurate below 25m depth (Stumpf et al., 

2003), which means these depths in the MBES dataset are unsuitable for bathymetric training. The 

post-Irma ground-truth dataset holds significantly more points at shallower depths compared to the 
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MBES dataset (Figure 6), which could increase the accuracy of the post-Irma bathymetric training, as 

these data cover the target depth range of >25m more thoroughly. Classification of seagrass habitats 

was restricted by the low number of ground-truth samples in the pre-Irma dataset. More accurate 

classification results could be achieved with more evenly distributed training data.  

Field survey data used to ground-truth the post-Irma scene was collected 21 months after the satellite 

images were acquired, which could lessen the suitability of these data to train the bathymetry and 

habitat models. Previous research states the field surveys should be conducted as close to the image 

acquisition date as possible (Halls and Costin, 2016).  

Damage to shallow water ecosystems may not be detectable until up to two years after a disturbance 

event, as there are time lags in ecological responses (Meyer and Pu, 2012). Change detection analysis 

would benefit from acquiring satellite images from a range of dates before and after the disturbance 

event, as this would ensure changes were the result of that discrete event instead of natural, gradual 

changes.  

Future Study 

The accuracy of satellite imagery analysis could be increased by pan-sharpening the multispectral 

images with the high resolution panchromatic images acquired at the same time.  

The variety of benthic habitats present in BVI mean a single equation to calculate bathymetry is 

insufficient (Halls and Costin, 2016). Previous research has found that habitats show different 

relationships between reflectance values and LiDAR depths (Halls and Costin, 2016). The presence of 

seagrass influences the relationship between water reflectance and depth, reducing the accuracy of 

SDB generation in these areas (Doxani et al., 2012). Images could be subset by habitat type using 

masking techniques and separate SDB algorithms could be applied to increase accuracy (Halls and 

Costin, 2016; Doxani et al., 2012). Initial training plots of the pre-Irma reference image suggested there 

were several patterns in the data that were unexplored. Linear regression of SDB and MBES depth 

values over different habitats indicated different trends for vegetated and non-vegetated areas 

(Figure 15). Unsupervised K-means classification was carried out on the pre-processed reference 

image and 30 classes were visually assessed and combined to form vegetated and non-vegetated 

classes. These classes were converted to vectors and used to create a vegetation mask. This section 

of the research was not completed due to time and data constraints. The limited spatial extent of the 

pre-Irma ground-truth data and the small image overlap of the pre-Irma scene does not yield enough 

data points over vegetated and non-vegetated habitats to provide robust training data for SDB. Future 

research with improved ground-truth data coverage could explore using different training algorithms 

over vegetated and non-vegetated areas. 
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Some papers advocate the separation of shallow and deep areas in habitat classification. Using the 

sunglint-corrected image as the classification input for shallow areas and the DII as the input for deep 

areas significantly increased the classification accuracy (Hafizt et al., 2017).  

The use of Principal Components Analysis or Min Noise Fraction transforms extracts reliable 

information and reduces noise and redundancy within the data (Marcello et al., 2018). PCA reduces 

the number of dimensions but retains the original data of the first principle components, which 

provides clearer thematic maps (Marcello et al., 2018). Future research could explore the application 

of these transformations to reduce noise.  

Alternative methods of mosaicking satellite images could improve the cohesion between images to 

form a continuous scene. The Pseudo-Invariant Feature (PIF) approach involves regressing pixel values 

each band of two images against each other to generate coefficients (Schott et al., 1988). Sample 

areas of bright and dark pixel values are selected, such as shallow sand and shallow seagrass habitats 

(Pike et al., 2019). This approach corrects for differences in sensor responses, atmospheric conditions 

and illumination effects between acquisition times to create a seamless mosaic (Schott et al., 1988; 

(Traganos et al., 2018).  

Conclusion 

This research reinforces the application of satellite imagery analysis techniques to derive bathymetry 

and habitat cover for shallow-water marine environments. The accurate bathymetry maps generated 

provide crucial information to develop our understanding of the oceanographic processes underlying 

BVI marine ecosystems. Benthic cover maps and change detection analyses can be used to guide 

marine management efforts to effectively conserve biodiverse habitats. Remote sensing methods 

prove to be extremely cost-effective and accessible, creating exciting opportunities for future 

research. This study has produced valuable mapping outcomes for the BVI that provide baseline data 

for long-term ecological monitoring schemes. This original research is one of the first studies to assess 

Hurricane damage in shallow-water ecosystems using satellite imagery and the successful results 

highlight the great potential of this approach. The methods outlined establish a framework for 

assessing the impact of future disturbance events in the BVI and can be applied to similar settings 

worldwide. These applications of remote sensing techniques are particularly potent in light of 

accelerated climate change impacts on fragile marine ecosystems.  
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Appendix A: Image Parameter Tables 

 
Table 1: Pre-Irma WorldView-2 imagery details. 

Image No. 
Columns 

No. 
Rows 

Acquisition 
Time 

Cloud 
Cover 

Sun 
Azimuth 

Sun 
Elevation 

054689891010_01_P001_MUL 3570 23750 2013-02-13 
15:24:53 

0.1% 150.7° 54.3° 

054689891010_01_P002_MUL 8678 31058 2013-12-09 
15:12:08 

0.3% 160.5° 46.4° 

054689891010_01_P003_MUL 8733 31055 2013-12-09 
15:12:01 

0.4% 160.6° 46.4° 

054689891010_01_P004_MUL 8751 23924 2013-12-09 
15:24:59 

0.5% 150.9° 54.3° 

054689891010_01_P005_MUL 8788 31061 2013-12-09 
15:12:33 

1.6% 160.4° 46.3° 

054689891010_01_P006_MUL 10128 31068 2014-12-24 
14:56:37 

2.0% 154.2° 43.8° 

 

Image No. 
Columns 

No. 
Rows 

Acquisition 
Time 

Cloud 
Cover 

Sun 
Azimuth 

Sun 
Elevation 

057338465050_01_P001_MUL 10997 8769 2017-09-24 
15:19:45 

5% 145.4° 67.3° 

057338465050_01_P002_MUL 14759 9058 2017-09-24 
15:20:43 

7.7% 146.2° 67.5° 

057338465050_01_P003_MUL 22889 12490 2017-09-10 
15:35:44 

16.1% 143.6° 73.4° 

057338465050_01_P004_MUL 13271 8009 2017-09-28 
14:31:56 

29.4% 128.5° 58.6° 

057338465050_01_P005_MUL 10779 8926 2017-09-24 
15:17:53 

4% 144.1° 67.0° 

Table 2: Post-Irma WorldView-2 imagery details. 
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Table 3: Training and validation point coverage for each satellite image. 

Image No. Training Points No. Validation Points 

054689891010_01_P001_MUL 1897 1897 

054689891010_01_P002_MUL 2063 2063 

054689891010_01_P004_MUL 1989 1988 

054689891010_01_P005_MUL 2048 1244 

054689891010_01_P006_MUL 2148 2148 

   

057338465050_01_P001_MUL 1701 1701 

057338465050_01_P002_MUL 1282 1281 

057338465050_01_P003_MUL 741 741 

057338465050_01_P004_MUL 317 316 

057338465050_01_P005_MUL 798 798 

 

Appendix B: Preliminary Ground-Truth Site Selection 

 

 

 

 

  

Figure B:1: Aspect of the bathymetry of the BVI with the most exposed areas (to the South, 

East and Southeast) highlighted in red.  
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Figure B:2: The hillshade effect of the BVI classified into five ranks, with red representing the most 

exposed areas and green the sheltered areas. The south-east coastline of the islands was most 

exposed to Hurricane Irma. 
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Figure B:3: ArcGIS model used to determine the worst-affected areas of the BVI to inform the selection of ground-truthing points.  
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Appendix C: Habitat Classification Stability 

 

 

 

 

 

 

 

Figure C:1: Pre-Irma habitat classification stability for reference image P005.    
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Figure C:2: Post-Irma habitat classification stability for reference image P001.    
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