Intersessional Correspondence Group on Cumulative Effects – Amended 25th March 2011

Presented by the United Kingdom and the Netherlands on behalf of the Intersessional Correspondence Group Cumulative Effects

Pressure list and descriptions

This is an amended version of the document submitted to both EIHA and ICG-COBAM based on comments received from the Netherlands, Spain, Germany, France ICG-COBAM and the UK. Given the range of responses not all suggested revisions have been applied verbatim, however, it is believed that the spirit and intention of all the recommendations from Contracting Parties listed above have been included.

Pressure theme	Pressures	Code	Pressure Descriptor	MSFD Annex III Table 2
Hydrological changes (inshore/local)	Tempe ra ture changes - local	H1	Events or activities increasing or decreasing local water temperature. This is most likely from thermal discharges, e.g. the release of cooling waters from power stations. This could also relate to temperature changes in the vicinity of operational sub sea power cables. This pressure only applies within the thermal plume generated by the pressure source. It excludes temperature changes from global warming which will be at a regional scale (and as such are addressed under the dimate change pressures).	Significant changes in thermal regime (e.g. by outfalls from power stations)
Hydrological changes (inshore/local)	Salinity changes - local	H2	Events or activities increasing or decreasing local salinity. This relates to anthropogenic sources/causes that have the potential to be controlled, e.g. freshwater discharges from pipelines that reduce salinity, or brine discharges from salt caverns washings that may increase salinity. This could also include hydromorphological modification, e.g. capital navigation dredging if this alters the halodine, or erection of barrages or weirs that alter freshwater/seawater flow/exchange rates. The pressure may be temporally and spatially delineated derived from the causal event/activity and local environment.	Significant changes in salinity regime (e.g. by constructions impeding water movements, water abstraction)

Hydrological changes (inshore/local)	Water flow (tidal current) changes – local, ind uding sediment transport considerations [possibly split water flow & sediment transport, i.e. separate into 'Hydrological' & 'Physical']	H3	Changes in water movement associated with tidal streams (the rise and fall of the tide, riverine flows), prevailing winds and ocean currents. The pressure is therefore associated with activities that have the potential to modify hydrological energy flows, e.g. Tidal energy generation devices remove (convert) energy and such pressures could be manifested lee ward of the device, capital dredging may deepen and widen a channel and therefore decrease the water flow, canalisation &/or structures may alter flow speed and direction; managed realignment (e.g. Wallasea, England). The pressure will be spatially delineated. The pressure extremes are a shift from a high to a low energy environment (or vice versa). The biota associated with these extremes will be markedly different as will the substrate, sediment supply/transport and associated seabed elevation changes. The potential exists for profound changes (e.g. coastal erosion/deposition) to occur at long distances from the construction itself if an important sediment transport pathway was disrupted. As such these pressures could have multiple and complex impacts associated with them.	X
Hydrological changes (inshore/local)	Emergence regime changes – local, induding tidal level change considerations [possibly split emergence regime & tidal level changes]	H4	Changes in water levels reducing the intertidal zone (and the associated/dependant habitats). The pressure relates to changes in both the spatial area and duration that intertidal species are immersed and exposed during tidal cycles (the percentage of immersion is dependant on the position or height on the shore relative to the tide). The spatial and temporal extent of the pressure will be dependant on the causal activities but can be delineated. This relates to anthropogenic causes that may directly influence the temporal and spatial extent of tidal immersion, e.g. upstream and downstream of a tidal barrage the emergence would be respectively reduced and increased, beach re-profiling could change gradients and therefore exposure times, capital dredging may change the natural tidal	X

Г				T
			range, managed realignment, saltmarsh creation. Such alteration may be of importance in estuaries because of their influence on tidal flushing and potential wave propagation. Changes in tidal flushing can change the sediment dynamics and may lead to changing patterns of deposition and erosion. Changes in tidal levels will only affect the emergence regime in areas that are inundated for only part of the time. The effects that tidal level changes may have on sediment transport are not restricted to these areas, so a very large construction could significantly affect the tidal level at a deep site without changing the emergence regime. Such a change could still have a serious impact. This excludes pressure from sea level rise which is considered under the dimate change pressures. Local changes in wave length, height and	x
Hydrological changes (inshore/local)	Wave exposure changes - local	Н5	frequency. Exposure on an open shore is dependant upon the distance of open seawater over which wind may blow to generate waves (the fetch) and the strength and incidence of winds. Anthropogenic sources of this pressure indude artificial reefs, breakwaters, barrages, wrecks that can directly influence wave action or activities that may locally affect the incidence of winds, e.g. a dense network of wind turbines may have the potential to influence wave exposure, depending upon their location relative to the coastline.	Λ
Pollution and other chemical changes	Transition elements & organo-metal (e.g. TBT) contamination. Indudes those priority substances listed in Annex II of Directive 2008/105/EC.	Ρ1	The increase in transition elements levels compared with background concentrations, due to their input from land/riverine sources, by air or directly at sea. For marine sediments the main elements of concern are Arsenic, Cadmium, Chromium, Copper, Mercury, Nickel, Lead and Zinc Organo-metallic compounds such as the butyl tins (Tri butyl tin and its derivatives) can be highly persistent and chronic exposure to low levels has adverse biological effects, e.g. Imposex in molluscs.	Introduction of non-synthetic substances and compounds (e.g. heavy metals, hydro- carbons, resulting, for example, from pollution by ships and oil, gas and mineral exploration, atmospheric deposition, riverine inputs)

			Increases in the levels of these	Introduction of non-synthetic
Pollution and other chemical changes	Hydrocarbon & PAH contamination. Indudes those priority substances listed in Annex II of Directive 2008/105/EC.	Ρ2	compounds compared with background concentrations. Naturally occurring compounds, complex mixtures of two basic molecular structures: - straight chained aliphatic hydrocarbons (relatively low toxicity and susceptible to degradation) - multiple ringed aromatic hydrocarbons (higher toxicity and more resistant to degradation) These fall into three categories based on source (indudes both aliphatics and polyaromatic hydrocarbons): - petroleum hydrocarbons (from natural seeps, oil spills and surface water run-off) - pyrogenic hydrocarbons (from combustion of coal, woods and petroleum) - biogenic hydrocarbons (from plants & animals) Ecological consequences indude tainting, some are acutely toxic, carcinomas, growth defects.	substances and compounds (e.g. heavy metals, hydro- carbons, resulting, for example, from pollution by ships and oil, gas and mineral exploration, atmospheric de position, riverine inputs)
Pollution and other chemical changes	Synthetic compound contamination (ind. pesticides, antifoulants, pharmaceuticals). Includes those priority substances listed in Annex II of Directive 2008/105/EC.	Ρ3	Increases in the levels of these compounds compared with background concentrations. Synthesised from a variety of industrial processes and commercial applications. Chlorinated compounds include polychlorinated biphenols (PCBs), dichlor-diphenyl- trichloroethane (DDT) & 2,3,7,8- tetrachlorodibenzo(p)dioxin (2,3,7,8- TCDD) are persistent and often very toxic. Pesticides vary greatly in structure, composition, environmental persistence and toxicity to non-target organisms. Includes: insecticides, herbicides, rodenticides & fungicides. Pharmaceuticals and Personal Care Products originate from veterinary and human applications compiling a variety of products including, Over the counter medications, fungicides, chemotherapy drugs and animal therapeutics, such as growth hormones. Due to their biologically active nature, high levels of consumption, known combined effects, and their detection in most aquatic environments they have become an emerging concern. Ecological	Introduction of synthetic compounds (e.g. priority substances under Directive 2000/60/EC which are relevant to the marine environment such as pesticides, anti-foulants, pharmaceuticals, resulting, for example, from losses from diffuse sources, pollution by ships, atmospheric deposition and biologically active substances)

Pollution and other chemical changes	Introduction of other substances (solid, liquid or gas)	Ρ4	consequences include physiological changes (e.g. growth defects, carcinomas). The 'systematic or intentional release of liquids, gases' (from MSFD Annex III Table 2) is being considered e.g. in relation to produced water from the oil industry. It should therefore be considered in parallel with P1, P2 and P3.	Introduction of other substances, whether solid, liquid or gas, in marine waters resulting from their systematic and/or international release into the marine environment, as permitted in a ccordance with other Community legislation and/or international conventions
Pollution and other chemical changes	Radionudide contamination	Ρ5	Introduction of radionudide material, raising levels above background concentrations. Such materials can come from nudear installation discharges, and from land or sea-based operations (e.g. oil platforms, medical sources). The disposal of radioactive material at sea is prohibited unless it fulfils exemption criteria developed by the International Atomic Energy Agency (IAEA), namely that both the following radiological criteria are satisfied: (i) the effective dose expected to be incurred by any member of the public or ships crew is 10 μ Sv or less in a year; (ii) the collective effective dose to the public or ships crew is not more than 1 man Sv per annum, then the material is deemed to contain de minimis levels of radioactivity and may be disposed at sea pursuant to it fulfilling all the other provisions under the Convention. The individual dose criteria are placed in perspective (i.e. very low), given that the average background dose to the UK population is ~2700 μ Sv/a. Ports and coastal sediments can be affected by the authorised discharge of both current and historical low-level radioactive wastes from coastal nudear establishments.	Introduction of radio- nudides
Pollution and other chemical changes	Nutrient en richment	Р6	Increased levels of the elements nitrogen, phosphorus, silicon (and iron) in the marine environment compared to background concentrations. Nutrients can enter marine waters by natural	Inputs of fertilisers and other nitrogen - and phosphorous- rich substances (e.g. from point and diffuse sources, including agriculture,

			processes (e.g. decomposition of detritus, riverine, direct and atmospheric inputs) or anthropogenic sources (e.g. waste water runoff, terrestrial/agricultural runoff, sewage discharges, aquaculture, atmospheric deposition). Nutrients can also enter marine regions from 'upstream' locations, e.g. via tidal currents to induce enrichment in the receiving area. Nutrient enrichment may lead to eutrophication (see also organic enrichment). Adverse environmental	aqua culture, a tmospheric de position)
			effects include deoxygenation, algal blooms, changes in community structure of benthos and macrophytes.	
Pollution and other chemical changes	Organicenrichment	Ρ7	Resulting from the degraded remains of dead biota & microbiota (land & sea); faecal matter from marine animals; flocculated colloidal organic matter and the degraded remains of: sewage material, domestic wastes, industrial wastes etc. Organic matter can enter marine waters from sewage discharges, aquaculture or terrestrial/agricultural runoff. Black carbon comes from the products of incomplete combustion (PIC) of fossil fuels and vegetation. Organic enrichment may lead to eutrophication (see also nutrient enrichment). Adverse environmental effects indude de oxygenation, algal blooms, changes in community structure of benthos and macrophytes.	Inputs of organic matter (e.g. sewers, mariculture, riverine inputs)
Pollution and other chemical changes	De oxygena tion	Ρ8	Any deoxygenation that is not directly associated with nutrient or organic enrichment. The lowering, temporarily or more permanently, of oxygen levels in the water or substrate due to anthropogenic causes (some areas may naturally be deoxygenated due to stagnation of water masses, e.g. inner basins of fjords) This is typically associated with nutrient and organic enrichment, but it can also derive from the release of ballast water or other stagnant waters (where organic or nutrient enrichment may be absent). Ballast waters may be deliberately deoxygenated via treatment with inert	x

			gases to kill non-indigenous species.	
Physical loss (Permanent Change)	Physical loss (to land or freshwater habitat)	L1	The permanent loss of marine habitats. Associated activities are land daim, new coastal defences that encroach on and move the Mean High Water Springs mark seawards, the footprint of a wind turbine on the seabed, dredging if it alters the position of the halodine. This excludes changes from one marine habitat type to another marine habitat type.	Sealing (e.g. by permanent constructions)
Physical loss (Permanent Change)	Physical change (to another seabed type)	L2	The permanent change of one marine habitat type to another marine habitat type, through the change in substatum, induding to artificial (e.g. concrete). This therefore involves the permanent loss of one marine habitat type but has an equal creation of a different marine habitat type. Associated activities indude the installation of infrastructure (e.g. surface of platforms or wind farm foundations, marinas, coastal defences, pipelines and cables), the placement of scour protection where soft sediment habitats are replaced by hard/coarse substrate habitats, removal of coarse substrate (marine mineral extraction) in those instances where surficial finer sediments are lost, capital dredging where the residual sedimentary habitat differs structurally from the pre-dredge state, creation of artificial reefs, mariculture i.e. mussel beds. Protection of pipes and cables using rock dumping and mattressing techniques. Placement of cuttings piles from oil & gas activities could fit this pressure type, however, there may be an additional pressures, e.g. "pollution and other chemical changes" theme. This pressure exdudes navigation dredging where the depth of sediment is changes locally but the sediment typology is not changed.	Smothering (e.g. by man made structures, disposal of dredge spoil)
Physical damage (Reversible Change)	Habitat structure changes - removal of substratum (extraction)	D1	Unlike the "physical change" pressure type where there is a permanent change in sea bed type (e.g. sand to gravel, sediment to a hard artificial substrate) the "habitat structure change" pressure type relates to temporary and/or reversible change, e.g. from marine	Selective extraction (e.g. by exploration and exploitation of living and non-living resources on seabed and subsoil)

7 of 14

			mineral extraction where a proportion of seabed sands or gravels are removed but a residual layer of seabed is similar to the pre-dredge structure and as such biological communities could re-colonise; navigation dredging to maintain channels where the silts or sands removed are replaced by non-anthropogenic mechanisms so the sediment typology is not changed.	
Physical damage (Reversible Change)	Penetration and/or disturbance of the substrate below the seabed, including abrasion	D2	The disturbance of sediments where there is limited or no loss of substrate from the system. This pressure is associated with activities such as anchoring, taking of sediment/geological cores, cone penetration tests, cable burial (ploughing or jetting), propeller wash from vessels, certain fishing activities, e.g. scallop dredging, beam trawling. Agitation dredging, where sediments are deliberately disturbed by and by gravity & hydraulic dredging where sediments are deliberately disturbed and moved by currents could also be associated with this pressure type. Compression of sediments, e.g. from the legs of a jack-up barge could also fit into this pressure type. Abrasion relates to the damage of the sea bed surface layers (typically up to 50cm depth) Activities associated with abrasion can cover relatively large spatial areas and include: fishing with towed demersal trawls (fish & shellfish); bio- prospecting such as harvesting of biogenic features such as maerl beds where, after extraction, conditions for recolonisation remain suitable or relatively localised activities including: seaweed harvesting, recreation, potting, aqua culture. Change from gravel to silt substrate would adversely affect herring spawning grounds.	Abrasion (e.g. impact on the seabed of commercial fishing, boating, anhoring)
Physical damage (Reversible Change)	Changes in suspended solids (water darity)	D3	Changes in water darity from sediment & organic particulate matter concentrations. It is related to activities disturbing sediment and/or organic particulate matter and mobilising it into the water column. Could be 'natural' land run-off and riverine discharges or	X

	ſ			
			from anthropogenic activities such as all	
			forms of dredging, disposal at sea, cable	
			and pipeline burial, secondary effects of	
			construction works, e.g. breakwaters. Partide size, hydrological energy (current	
			speed & direction) and tidal excursion are	
			all influencing factors on the spatial	
			extent and temporal duration. This	
			pressure also relates to changes in	
			turbidity from suspended solids of	
			organic origin (as such it excludes	
			sediments - see the "changes in	
			suspended sediment" pressure type).	
			Salinity, turbulence, pH and temperature	
			may result in flocculation of suspended	
			organic matter. Anthropogenic sources	
			mostly short lived and over relatively	
			small spatial extents.	
			When the natural rates of siltation are	Changes in siltation (e.g. by
			altered (increased or decreased).	outfalls, increased run-off,
			Siltation (or sedimentation) is the settling	dredging/disposal or dredge
			out of silt/sediments suspended in the	spoil)
			water column. Activities associated with	
			this pressure type include mariculture,	
			land daim, navigation dredging, disposal	
			atsea, marine mineral extraction, cable	
			and pipeline laying and various	
			construction a ctivities. It can result in	
			short lived sediment concentration	
			gradients and the accumulation of	
	Siltation rate		sediments on the sea floor. This	
	Physical damage changes, including smothering (depth of	D4		
			a coumulation of sediments is	
(Reversible Change)	vertical sediment		synonymous with "light" smothering,	
	overburden)		which relates to the depth of vertical	
			overburden.	
			"Light" smothering relates to the	
			deposition of layers of sediment on the	
			seabed. It is associated with a ctivities	
			such as sea disposal of dredged materials	
			where sediments are deliberately	
			deposited on the sea bed. For "light"	
			smothering most benthic biota may be	
			able to adapt, i.e. vertically migrate	
			through the deposited sediment.	
			"Heavy" smotheringalso relates to the	
	l			

deposition of layers of sediment on the
seabed but is associated with a ctivities
such as sea disposal of dredged materials
where sediments are deliberately
deposited on the sea bed. This
a coumulation of sediments relates to the
depth of vertical overburden where the
sediment type of the existing and
de posite d sedi ment has simila r physi cal
characteristics because, although most
species of marine biota are unable to
adapt, e.g. sessile organisms unable to
make their way to the surface, a similar
biota could, with time, re-establish. If
the sediments were physically different
this would fall under L2.
Eleftheriou and Mdntyre, 2005 describe
that the majority of animals will inhabit
the top 5-10 cm in open waters and the
top 15 cm in interti dal a reas. The depth
of sediment overburden that benthic
biota can tolerate is both trophic group
and partide size/sediment type
de pendant (Bolam, 2010). Re cove ry
from burial can occur from:
- planktonic recruitment of la rvae
- la teral migration of juveniles/adults
- vertical migration
(see Chandrasekara and Frid, 1998;
Bolam etal, 2003, Bolam & Whomersley,
2005). Spatial scale, timing, rate and
depth of placement all contribute the
relative importance of these three
recovery mechanisms (Bolam et al,
2006).
As such the terms "light" and "heavy"
smothering are relative and therefore
difficult to define in general terms.
Bolam, 2010 cites various examples :
- H. ulvae maximum overburden 5 cm
(Chandrasekara & Frid, 1998)
- H. ul vae maximum overburden 20 cm

Other pressures	physical	Underwater noise changes	03	Increases over and above background noise levels (consisting of environmental noise (ambient) and incidental man- made/anthropogenic noise (apparent)) at a particular location. Species known to be affected are marine mammals and fish. The theoretical zones of noise influence (Richardson et al 1995) are	Underwater noise (e.g. from shipping, underwater a coustic equipment)
Other pressures	physical	Electromagnetic changes	02	Localised electric and magnetic fields associated with operational power cables and telecommunication cables (if equipped with power relays). Such cables may generate electric and magnetic fields that could alter behaviour and migration patterns of sensitive species (e.g. sharks and rays).	X
Other pressures	physical	Litter	01	marine litter is any manufactured or processed solid material from anthropogenic activities discarded, disposed or abandoned (excluding legitimate disposal) once it enters the marine and coastal environment induding: plastics, metals, timber, rope, fishing gear etc and their degraded components, e.g. microplastic partides. Ecological effects can be physical (smothering), biological (ingestion, induding uptake of microplastics; entangling; physical damage; accumulation of chemicals) and/or chemical (leaching, contamination).	Marine litter
				mud or 9 cm sand (Bijerk, 1988) - S. shrubsolii ma ximum overburden 6 cm (Saila et al, 1972, cited by Hall 1994) - N. succinea ma ximum overburden 90 cm (Maureret al 1982) - gastropod molluscs ma ximum overburden 15 cm (Roberts et al, 1998). Bolam, 2010 also reported when organic content was low: - H. ulvae ma ximum overburden 16 cm - T, be nedii ma ximum overburden 16 cm - S. shrubsolii ma ximum overburden <6 cm - Tharyx sp.A. ma ximum overburden <6	

11 of 14

			temporary or permanent hearing loss, discomfort & injury; response; masking and detection. In extreme cases noise pressures may lead to death. The	
			physical or behavioural effects are dependant on a number of variables, including the sound pressure, loudness, sound exposure level and frequency. High amplitude low and mid-frequency impulsive sounds and low frequency continuous sound are of greatest concern for effects on marine mammals and fish. Some species may be responsive to the associated particle motion rather than the usual concept of noise. Noise propagation can be over large distances (tens of kilometres) but transmission losses can be attributable to factors such as water depth and sea bed topography. Noise levels associated with construction activities, such as pile-driving, are typically significantly greater than operational phases (i.e. shipping,	
Other physical pressures	Introduction of light	04	operation of a wind farm). Direct inputs of light from anthropogenic activities, i.e. lighting on structures during construction or operation to allow 24 hour working; new tourist facilities, e.g. promenade or pier lighting, lighting on oil & gas facilities etc. Ecological effects may be the diversion of bird species from migration routes if they are disorientated by or attracted to the lights. It is also possible that continuous lighting may lead to increased algal growth.	x
Other physical pressures	Barrier to species movement	05	The physical obstruction of species movements and including local movements (within & between roosting, breeding, feeding areas) and regional/global migrations (e.g. birds, eels, salmon, whales). Both include up river movements (where tidal barrages & devices or dams could obstruct movements) or movements across open waters (offshore wind farm, wave or tidal device arrays, mariculture infrastructure or fixed fishing gears). Species affected are mostly birds, fish, mammals.	x

Other physical pressures	Death or injury by collision	06	Injury or mortality from collisions of biota with both static &/or moving structures. Examples indude: Collision with rigs (e.g. birds) or screens in intake pipes (e.g. fish at power stations) (static) or collisions with wind turbine blades, fish & mammal collisions with tidal devices and shipping (moving). Activities increasing number of vessels transiting areas, e.g. new port development or construction works will influence the scale and intensity of this pressure.	X
Biological pressures	Visual distu <i>r</i> ban <i>c</i> e	B1	The disturbance of biota by anthropogenic activities, e.g. increased vessel movements, such as during construction phases for new infrastructure (bridges, cranes, port buildings etc), increased personnel movements, increased tourism, increased vehicular movements on shore etc disturbing bird roosting areas, seal haul out areas etc	X
Biological pressures	Genetic modification & translocation of indigenous species	Β2	Genetic modification can be either deliberate (e.g. introduction of farmed individuals to the wild, GM food production) or a by-product of other activities (e.g. mutations associated with radionudide contamination). Former related to escapees or deliberate releases e.g. cultivated species such as farmed salmon, oysters, scallops if GM practices employed. Scale of pressure compounded if GM species "captured" and translocated in ballast water. Mutated organisms from the latter could be transferred on ships hulls, in ballast water, with imports for aquaculture, aquaria, live bait, species traded as live seafood or 'natural' migration. Movement of native species to new regions can also introduce different geneticstock.	X
Biological pressures	Introduction or spread of non- indigenous species	В3	The direct or indirect introduction of non-indigenous species, e.g. chinese mitten crabs, slipper limpets, Pacific oyster and their subsequent spreading and out-competing of native species. Ballast water, hull fouling, stepping stone effects (e.g. offshore wind farms) may	Introduction of non- indigenous species and translocations

			facilitate the spread of such species. This pressure could be associated with aquaculture, mussel or shellfishery activities due to imported seed stock	
Biological pressures	Introduction of microbial pathogens	В4	imported or from accidental releases. Untreated or insufficiently treated effluent discharges & run-off from terrestrial sources & vessels. It may also be a consequence of ballast water releases. In mussel or shellfisheries where seed stock are imported, 'infected' seed could be introduced, or it could be from accidental releases of effluvia. Escapees, e.g. farmed salmon could be infected and spread pathogens in the indigenous populations. Aqua culture could release contaminated faecal matter, from which pathogens could enter the food chain.	Introduction of microbial pathogens
Biological pressures	Removal of target species	В5	The commercial exploitation of fish & shellfish stocks, including smaller scale harvesting, angling and scientific sampling. The physical effects of fishing gear on sea bed communities are addressed by the "abrasion" pressure type D2, so B5 addresses the direct removal / harvesting of biota. Ecological consequences include the sustainability of stocks, impacting energy flows through food webs and the size and age composition within fish stocks.	Selective extraction of species, (e.g. by commercial and recreational fishing)
Biological pressures	Removal of non- targetspecies	В6	By-catch associated with all fishing activities. The physical effects of fishing gear on sea bed communities are addressed by the "abrasion" pressure type (D2) so B6 addresses the direct removal of individuals associated with fishing/ harvesting Ecological consequences include food web dependencies, population dynamics of fish, marine mammals, turtles and sea birds (including survival threats in extreme cases, e.g. Harbour Porpoise in Central and Eastem Baltic).	Selective extraction of species, including incidental non-target catches (e.g. by commercial and recreational fishing)